簡易檢索 / 詳目顯示

研究生: 賴明證
Lai, Ming-Cheng
論文名稱: 機器手臂在考量關節間隙下之多目標最佳路徑規劃
Multiobjective Optimal Path Planning for Robot Manipulators with Joint Clearance
指導教授: 黃金沺
Huang, Chin-Tien
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 65
中文關鍵詞: 關節間隙最佳路徑機械手臂位置誤差能量
外文關鍵詞: Joint clearance, Optimal trajectory, Robot manipulator, Position error, Energy
相關次數: 點閱:160下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 機械手臂的關節間隙是由製造等過程產生的自然結果,雖然許多研究中假設沒有關節間隙,但關節間隙的存在是難以避免的,因此其影響需要被評估。 隨著機械設備精度提升的趨勢,關節間隙所造成的誤差漸漸成為重要的議題。
    本研究評估機械手臂因為關節間隙的而造成偏離目標加工位置的誤差。偏離目標位置的誤差可以經由適當的加工路徑選擇而降低。最佳路徑的產生是在目標加工位置下先將目標參數化,相關的控制輸入,亦即速度、角速度以及加速度可由逆向運動學計算,關節間隙再加入其中,而產生路徑的偏差。最佳化的架構以路徑參數為設計變數,並最小化結果的誤差。本文展示這個建議的最佳化架構,在不增加額外設備成本或控制的情況下提升精度並減低能量消耗。以並聯式五連桿機械手臂示範所提出的方法。

    Manipulator joint clearance is a natural consequence of manufacturing processes. Although most studies in the literature have assumed zero joint clearance, its existence is unavoidable and thus its impact needs to be evaluated. With the miniaturizing trend in engineering products, errors due to joint clearance have become an increasingly important issue. This study investigates how manipulators deviate from the desired working sites due to joint clearance. Deviations from the target locations can be reduced by properly selecting the working path. The optimal path is obtained by first parameterizing the path based on the required target task locations. Corresponding controlling inputs, namely linear and angular velocities as well as their accelerations, are calculated using inverse kinematics. Joint clearances are then added to obtain the deviations a path will make. An optimization framework with path parameters as the design variables is then formulated to minimize the resulting deviations. The proposed framework is shown to improve accuracy without additional equipment cost or control effort. A five-bar parallel manipulator is used to demonstrate the effectiveness of the proposed method. Results show that paths without considering joint clearance could have larger errors with higher energy requirements. Systematically bringing joint clearance uncertainty into initial path planning could achieve better results for both objectives without additional cost.

    書名頁. . . . . . .i 論文口試委員審定書. . . . . .ii 中文摘要. . . . . . . iii Abstract. . . . . . . iv 誌謝. . . . . . .v Table of Contents. . . . . .vi List of Tables. . . . . . ix List of Figures. . . . . . x List of Symbols. . . . . .xiii 1 Introduction. . . . . .1 1.1 Background. . . . . .1 1.2 Research motivations. . . . .2 2 Literature Review. . . . . 3 2.1 Literature classification basis. . . 3 2.2 Design without considering joint clearance. .4 2.3 Analysis considering joint clearance. . .6 2.4 Design considering joint clearance. . .8 2.5 Summary. . . . . .10 3 Accuracy Analysis with Joint Clearance. . . 11 3.1 Maximal deviation via geometrics. . . 11 3.2 Dynamic deviation via kinematics. . . 14 3.3 Comparison. . . . . . 20 4 Proposed Methodology. . . . . 22 4.1 Overview. . . . . . 22 4.2 Model and initial setting. . . .24 4.3 Position analysis by inverse kinematics. .25 4.4 Dynamics analysis. . . . .31 4.5 Influence on the performances of the working path selection. . 34 4.6 Optimal trajectory. . . . . 36 4.7 Pareto front. . . . . 39 5 Case Studies. . . . . . 43 5.1 Parallel five-bar robot manipulator. . .43 5.1.1 Influence on performances of path selection.45 5.1.2 Optimal trajectory. . . . 47 5.1.3 Pareto front. . . . . 48 5.2 Pick-and-place in manufacturing. . .51 5.2.2 Pareto front. . . . . 58 5.3 Summary. . . . . .60 6 Conclusion and Future Work. . . . 61 6.1 Conclusion. . . . . . 61 6.2 Future work. . . . . .62 References. . . . . . 63 Appendix. . . . . . . 65

    [1] G. Alici. An inverse position analysis of five-bar planar parallel manipulators. Robotica, 20(2):195-201, 2002.
    [2] O. Altuzarra, J. Aginaga, A. Hernandez, and I. Zabalza. Workspace analysis of positioning discontinuities due to clearances in parallel manipulators. Mechanism and Machine Theory, 46(5):577-592, 2011.
    [3] W. Bailon, E. Cardiel, I. Campos, and A. Paz. Mechanical energy optimization in trajectory planning for six dof robot manipulators based on eighth-degree polynomial functions and a genetic algorithm. In 2010 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE 2010). IEEE, 2010.
    [4] W.-H. Bu, Z.-Y. Liu, J.-R. Tan, and S.-M. Gao. Detachment avoidance of joint elements of a robotic manipulator with clearances based on trajectory planning. Mechanism and Machine Theory, 45(6):925-940, 2010.
    [5] S. Erkaya. Trajectory optimization of a walking mechanism having revolute joints with clearance using an s approach. Nonlinear Dynamics, 71(1-2):75-91, 2013.
    [6] S. Erkaya and I. Uzmay. Determining link parameters using genetic algorithm in mechanisms with joint clearance. Mechanism and Machine Theory, 44(1):222-234, 2009.
    [7] Y.-C. Hsueh. Impacts of tolerance and stiffness on the accuracy of manipulators with payload. Master's thesis, National Cheng Kung University, 2012.
    [8] G. Incerti. Trajectory tracking for SCARA robots with compliant transmissions a technique to improve the positioning precision. In Proceedings of the 12th IFToMM World Congress, 2007.
    [9] K.-L. Ting J. Zhu. Invariant link rotatability of n-bar kinematic chains. Journal of Mechanical Design, 116(1):343-347, 1994.
    [10] K.-L. Ting J. Zhu. Uncertainty analysis of planar and spatial robots with joint clearances. Mechanism and Machine Theory, 35(9):1239-1256, 2000.
    [11] J. Jeevamalar and S. Ramabalan. Optimal trajectory planning for autonomous robots - a review. In Advances in Engineering, Science and Management (ICAESM), 2012 International Conference on, pages 269-275. IEEE, 2012.
    [12] L. Nunes, V. Rosado, and F. Grandinetti. Optimal trajectory and solution of the inverse kinematics of a robotic manipulator by genetic algorithms. In Practical Applications of Intelligent Systems Advances in Intelligent and Soft Computing, volume 124, pages 749-759. Springer, 2012.
    [13] B. Rout and R. Mittal. Tolerance design of manipulator parameters using design of experiment approach. Structural and Multidisciplinary Optimization, 34(5):445-462, 2007.
    [14] V. Steef and S. saramago. Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system. Mechanism and Machine Theory, 33(7):883-894, 1998.
    [15] K.-L. Ting, J. Zhu, and D. Watkins. The effects of joint clearance on position and orientation deviation of linkages and manipulators. Mechanism and Machine Theory, 35(3):391-401, 2000.
    [16] L.-W. Tsai. Robot Analysis. Wiley-Interscience, 1999.
    [17] M.-J. Tsai and T.-H. Lai. Kinematic sensitivity analysis of linkage with joint clearance
    based on transmission quality. Mechanism and Machine Theory, 39(11):1189-1206, 2004.
    [18] L.-X. Xu and Y.-G. Li. Investigation of joint clearance effects on the dynamic performance of a planar 2-dof pick and-place parallel manipulator. Robotics and Computer Integrated Manufacturing, 30(1):62-73, 2014.

    無法下載圖示 校內:2015-07-15公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE