簡易檢索 / 詳目顯示

研究生: 范逸軒
Fan, Yi-Hsuan
論文名稱: 脂肪分解酵素Pseudomonas cepacia固定於奈米纖維膜並應用在生質柴油製程之研究
Immobilization of Pseudomonas cepacia Lipase onto Nanofibrous Membrane for Biodiesel Production
指導教授: 吳文騰
Wu, Wen-Teng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 88
中文關鍵詞: 生質柴油固定化技術脂肪分解酵素電紡織技術
外文關鍵詞: biodiesel, immobilization, lipase, electrospinning
相關次數: 點閱:68下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要利用電紡織技術將聚丙烯腈高分子材料製備成奈米纖維膜的形態。使用amidination reaction活化聚丙烯腈上的CN官能基,藉此可與脂肪分解酵素上NH2官能基形成NC-N共價鍵結,達到脂肪分解酵素固定在奈米纖維膜上的目標。在酵素固定化程序研究發現活化時間5分鐘、固定化時間30分鐘、酵素濃度0.5 wt%、固定化溫度50°C及固定化pH值6的條件下,可製備出最佳比活性之固定化酵素。測試酵素安定性方面,固定化酵素儲存於水溶液20天後其活性沒有任何的損失。此外在重複使用次數方面,固定化酵素經10次批次使用後仍保有其原始活性。酵素反應動力學方面,固定化酵素Vmax為18.27 U/mg-protein和Km為88.42 mM與游離酵素的數值差異不明顯。固定化酵素經過安定性及反應動力學分析所展現之特性為相當具有發展潛力,因此進一步將固定化酵素應用於催化大豆油系統反應生成生質柴油。經最適化反應條件研究發現脂肪酸含量50%的油脂10克、甲醇量4克及水量3.84克於30°C下反應24小時即可達到90%的轉化率,且經重複使用10次後其生質柴油轉化率仍維持在81.2%,不但改善了酵素製程之高成本問題,也提升酵素製程生產生質柴油工業化之可行性。

    In the study, electrospun polyacrylonitrile (PAN)nanofibrous membrane was activated by amidination reaction for immobilized Pseudomonas cepacia lipase with covalent binding.
    For optimized immobilization, different levels of temperature, pH value, immobilization time and enzyme concentration were investigated to determine the optimal specific activity of enzyme. The reaction conditions were obtained as the temperature at 50°C, pH value at 6, immobilization time of 30 min, and enzyme concentration for immobilized lipase of 0.5 wt%. The biocatalytic reaction between enzymatic active site and substrates can be described by using the Michaelis-Menten equation, so the kinetic parameters of immobilized lipase, Km and Vmax, were determined as 88.42 mM and 18.27 U/mg-protein, respectively. Besides, the thermal and pH stabilities of immobilized lipase were improved and still retained the activity as the original one after 10 times repeated uses.
    The effects of methanol amount, water content, temperature and content of fatty acid on the conversion of biodiesel were also illustrated and the optimal operation condition was determined. Under the optimal condition, methanol of 4 g, water content of 3.84 g, temperature at 30°C and 10 g oil (contain 50% fatty acid) for biodiesel production, a conversion of 90% was obtained in 24 hours and can remain the conversion of 81.2% after 10 times repeated uses. This effective immobilized lipase demonstrated the high potential for biodiesel production in industrial applications.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 第二章 文獻回顧 4 2.1 奈米纖維膜 4 2.1.1 奈米纖維膜之製備程序 5 2.1.2 電紡織技術之原理 7 2.1.3 電紡織技術之操作變因 10 2.2 脂肪分解酵素 13 2.2.1 脂肪分解酵素之結構特性 16 2.2.2 脂肪分解酵素之現況 19 2.3 固定化技術 21 2.3.1 固定化方法 22 2.3.2 固定化酵素之性質 24 2.3.3 固定化酵素之安定性 25 2.4 生質柴油 27 2.4.1 生質柴油之製備方法 31 2.4.2 生質柴油之發展現況 34 第三章 實驗藥品與方法 37 3.1 實驗藥品與設備 37 3.1.1 實驗藥品 37 3.1.2 實驗設備 39 3.2 實驗方法 40 3.2.1 奈米纖維膜之製備 40 3.2.2 脂肪分解酵素種類之選擇 41 3.2.3 固定化酵素之製備 42 3.2.4 酵素蛋白質定量分析 43 3.2.5 酵素固定化之活性分析 44 3.2.6 酵素之安定性探討 45 3.2.7 酵素反應動力學之探討 46 3.2.8 固定化酵素轉酯化大豆油之探討 46 3.2.9 脂肪酸之定量分析 47 3.2.10 生質柴油之定量分析 49 第四章 結果與討論 50 4.1 奈米纖維膜製備 50 4.1.1 奈米纖維膜之表面分析 50 4.1.2 奈米纖維膜結構之物理特性 54 4.2 酵素固定化之參數探討 56 4.2.1 活化時間對酵素固定化的影響 56 4.2.2 固定化時間對酵素固定化的影響 57 4.2.3 酵素濃度對酵素固定化的影響 59 4.2.4 固定化溫度對酵素固定化的影響 60 4.2.5 pH值對酵素固定化的影響 62 4.3 固定化酵素之特性 64 4.3.1 酵素反應動力學 64 4.3.2 酵素之熱安定性 66 4.3.3 酵素之pH值安定性 67 4.3.4 酵素之儲存安定性 68 4.3.5 固定化酵素之操作安定性 70 4.4 固定化酵素於大豆油系統反應 71 4.4.1 甲醇濃度對生質柴油轉化率的影響 71 4.4.2 反應溫度對生質柴油轉化率的影響 73 4.4.3 反應物比例量對生質柴油轉化率的影響 74 4.4.4 脂肪酸含量對生質柴油轉化率的影響 76 4.4.5 催化油脂反應之操作安定性 77 第五章 結論與未來展望 79 5.1 結論 79 5.2 未來展望 80 參考文獻 82 自述 88

    Anita A, Sastry CA, Hashim MA. Immobilization of urease using Amberlite MB-1. Bioprocess Engineering 17: 355-359, 1997.
    Arroyo M, Sanchez-Montero JM, Sinisterra JV. Thermal stabilization of immobilized lipase B from Candida antarctica on different supports: effect of water activity on enzymatic activity in organic media. Enzyme Microb Technol 24: 3-12, 1999.
    Bala BK. Studies on biodiesels from transformation of vegetable oils for diesel engines. Energy Edu Sci Technol 15: 1-43, 2005.
    Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Analytical Biochemistry 72: 248-254, 1976.
    Brzozowski AM, Derewenda U, Dererwenda ZS, Dodson GG, Lawson DM, Turkenburg JP, Blorkling F, Huge-Jensen B, Patkar SA, Thim L. A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature 351: 491-495, 1991.
    Connemann J, Fischer J. Biodiesel quality Y2K and market experiences with FAME, CEN/TC 19 Automotive Fuels Millennium Symposion, Amsterdam, The Netherlands, 25-26 Nov., 1999.
    Demirbas A. Importance of biodiesel as transportation fuel. Energy Policy 35: 4661-4670, 2007.
    Dube MA, Tremblay AY, Liu J. Biodiesel production using a membrane reactor. Bioresource Technology 98: 639-647, 2007.
    Eggert T, Pouderoyen GV, Pencreac’h G, Douchet I, Verger R, Dijkstra BW, Jaeger KE. Biochemical properties and three-dimensional structures of two extracellular lipolytic enzymes from Bacillus subtilis. Colloids and Surfaces B: Biointerfaces 26: 37-46, 2002.
    Formhals A. Process and apparatus for preparing artificial threads. US Patent 1,975,504; 1934.
    Formhals A. Method and apparatus for spinning. US Patent 2,160,962; 1939.
    Formhals A. Artificial thread and method of producing same. US Patent 2,187,306; 1940.
    Fukuda H, Kondo A, Noda H. Biodiesel Fuel Production by Transesterification of Oils. Journal of Bioscience and Bioengineering 92: 405-416, 2001.
    Goldstein L. A new polymier carrier for immobilization of proteins of water insoluble derivaties of pepsin and trypsin. Biochimica Et Biophysica Acta. Enzymology 327: 132-137, 1973.
    Handa T, Hirose A, Yoshida S, Tsuchiya H. The Effect of Methylacrylate on the Activity of Glucoamylase Immobilized on Granular Polyacrylonitrile. Biotechnology and Bioengineering 24: 1639-1652, 1982.
    Holcapek M, Jandera P, Fisher J, Prokes B. Analytical monitoring of the production of biodiesel by high-performance liquid chromatography with various detection methods. Journal of Chromatography A 858: 13-31, 1999.
    Li SF, Chen JP, Wu WT. Electrospun polyacrylonitrile nanofibrous membranes for lipase immobilization. Journal of Molecular Catalysis B: Enzymatic 47: 117-124, 2007.
    Lichts FO. World Ethanol and Fuels Report, 2004. Cited in: IEA, Biofuels for Transport an International Perspective, Paris, 2003.
    Ma F, Hanna MA. Biodiesel production: a review. Bioresource Technology 70: 1-15, 1999.
    Martinek K, Klibanov AM, Goldmacher VS, Berezin IV. The principles of enzyme stabilization 1. Increase in thermostability of enzymes covalently bound to a complementary surface of a polymer support in a multipoint fashion. Biochimica Et Biophysica Acta Enzymology 485: 1-12, 1977.
    Mateo C, Palomo JM, Gloria FL, Guisan JM, Roberto FL. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology 40: 1451-1463, 2007.
    Morton WJ. Method of Dispersing Fluids. US Patent 705,691; 1902.
    Nelson JM, Griffin EG. The influence of certain substances on the activity of invertase. Journal American Chemical Society 38: 722-730, 1916.
    Noureddini H, Gao X, Philkana RS. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresource Technology 96: 769-777, 2005.
    Paiva AL, Balcao VM, Malcata FX. Kinetics and mechanisms of reactions catalyzed by immobilized lipases. Enzyme and Microbial Technology 27: 187-204, 2000.
    Pencreac’h G, Baratti JC. Comparison of Hydrolytic Activity in Water and Heptane for Thirty-two Commercial Lipase Preparations. Enzyme and Microbial Technology 28: 473-479, 2001.
    Ramakrishna S, Fujihara K, Teo WE, Lim TC, Ma Z. An Introduction to Electrospinning and Nanofibers. in Introduction & Electrospinning Process; 1st Edition, World Scientific, Singapore, 2005.
    Ramakrishna S, Fujihara K, Teo WE, Yong T, Ma Z, Ramaseshan R. Electrospun nanofibers: solving global issues. Materialstoday 9: 40-50, 2006.
    Ranganathan SV, Narasimhan SL, Muthukumar K. An overview of enzymatic production of biodiesel. Bioresource Technology 99: 3975-3981, 2007.
    Reneker DH, Chun I. Nanometre Diameter Fibres of Polymer, Produced by Electrospinning. Nanotechnology 7: 216-223, 1996.
    Reneker DH, Fong H. Polymeric Nanofibers. in Applications of Electrospun Nanofibers in Current and Future Material; 1st Edition, American Chemical Society, Washington, 2006.
    Salis A, Pinna M, Monduzzi M, Solinas V. Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology 119: 291-299, 2005.
    Sharma R, Chisti Y, Banerjee UC. Production, purification, characterization, and applications of lipases. Biotechnology Advances 19: 627-662, 2001.
    Shri DJ. Nonwovens Report International 2006; Issue 3; Dutta on behalf of M/s. Eastlead Publications Private Ltd.
    Sill TJ, Recum HAV. Electrospinning: Applications in drug delivery and tissue engineering. Biomaterials 28: 1989-2006, 2008.
    Tan T, Chen BQ, Ye H. Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor. Biochemical Engineering Journal 29: 41-45, 2006.
    Tickell J. From the fryer to the fuel tank. Tickell Energy Consulting: Tallahassee, FL, 2000.
    Valivety RH, Halling PJ, Peilow AD, Macrae AR. Relationship Between Water Activity and Catalytic Activity of Lipases in Organic Media. European Journal of Biochemistry 222: 461-466, 1994.
    Vulfson EN. Industrial applications of lipases. In: Woolley P, Peterson SB, editors. Lipases: their structure, biochemistry and applications. Cambridge: Cambridge Univ. Press, pp. 271-88, 1994.
    Wang Y, Ou S, Liu P, Xue F, Tang S. Comparison of two different processes to synthesize biodiesel by waste cooking oil. Journal of Molecular Catalysis A: Chemical 252: 107-112, 2006.
    Watanabe Y, Pinsirodom P, Nagao T, Yamauchi A, Kobayashi T, Nishida Y, Takagi Y, Shimada Y. Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. Journal of Molecular Catalysis B: Enzymatic 44: 99-105, 2007
    Wright HJ, Segur JB, Clark HV, Coburn SK, Langdon EE, Dupuis RN. A report on ester interchange. Oil and Soap 21: 145-148, 1944.
    Ye P, Xu ZK, Che AF, Wu J, Seta P. Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization. Biomaterials 26: 6394-6403, 2005.
    Zeleny J. The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces. Physical review 3: 69-91, 1914.
    呂鋒洲、林仁混,基礎酵素學。聯經出版事業公司,1991。
    邱少華,幾丁聚醣在固定化技術上之應用。博士論文,清華大學,2003。
    陳國誠,生物固定化技術與產業應用。茂昌圖書有限公司,2000。
    經濟部能源局,http://www.moeaboe.gov.tw,2008。

    下載圖示 校內:2009-07-15公開
    校外:2009-07-15公開
    QR CODE