| 研究生: |
高健庭 Kao, Chien-Ting |
|---|---|
| 論文名稱: |
發展縮尺度加速加載模擬儀與漢堡輪跡車轍試驗儀間之轉換係數 Development of Conversion Coefficient Between Hamburg Wheel Tracking Test and Scaled Accelerated Pavement Simulator |
| 指導教授: |
楊士賢
Yang, Shih-Hsien |
| 共同指導教授: |
黃建維
HUANG, JIAN-WEI |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 57 |
| 中文關鍵詞: | 模擬試驗車轍轉換 、時-溫疊加原理 、加載速度與代表頻率 、成效試驗 |
| 外文關鍵詞: | Rutting, Simulation testing, SALS, HWTD, conversion factor |
| 相關次數: | 點閱:66 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
瀝青鋪面常見的破壞主要可分為車轍與裂縫兩大類,本研究著重在車轍的探討,瀝青混凝土車轍發生之原因可分為兩部分,其一為初始開放交通時因孔隙壓密造成之壓密變形,其二為高溫或低車速環境時,瀝青混凝土發生剪力破壞產生之永久變形。車轍分析常以成效試驗進行評估,透過成效試驗能評估瀝青混凝土之基本黏彈性與黏塑性質或透過模擬輪跡試驗(漢堡輪跡試驗HWTD與縮尺寸加速加載試驗SALS)評估車轍行為。本研究之目的在於探討不同模擬車轍試驗結果間轉換之可能性,根據文獻發現模擬試驗的各項指標間,關聯性大都互相獨立且彼此間並無強力的關聯性,不同指標間的評估也僅以排名關係互相比較。為此本研究考慮不同模擬試驗中獨特之試驗條件與環境(載重速度與溫度),計算模擬試驗條件下材料在Z方向之代表頻率,配合黏彈性質以時-溫疊加原理並利用動態模數主曲線求得模擬試驗中材料之表現,使兩種模擬試驗轉換到同一評估基準,並發展不同種成效車轍試驗轉換因子。研究結果發現頻率掃描試驗與MSCR試驗間對於瀝青膠泥成效等級之差異,能夠解釋台灣鋪面的車轍問題;過去常以剝脫反曲點作為HWTD試驗評估水侵害影響的指標點,但根據試驗結果發現其實水侵害早在交通量壓密後就已經出現;SALS之試驗結果發現LL與PL階段間各指標結果接近。車轍轉換因子若以不同動態模數間之比值進行試驗之轉換,40°C乾式SALS試驗轉換至乾式、濕式的HWTD試驗結果良好;40°C乾式SALS轉換至50°C乾式的HWTD試驗結果尚能接受;40°C乾式SALS轉換至50°C濕式的HWTD試驗結果差異非常明顯,表示在同時考慮溫度(40°C至50°C)及水侵害(乾式至濕式)的轉換其結果不甚理想。
The main objective of this study is to development of conversion coefficient between Hamburg Wheel Tracking Test and Scaled Accelerated Pavement Simulator. Because of The correlation between two simulation testing have been analysis to get conversion factor. Two kind of parameter testing (temperature and speed of simulated testing) considered in this research. Thereafter, the calculation analysis covering : representative frequency, dynamic modulus (with considering property of viscoelastic and time-temperature superposition). Base on the logical analysis can be done validation conversion coefficient between two kinds of simulation test.
The result of this study that HWTD test showed water damage appears from post compaction. Besides that results of SALS test are smaller than the HWTD test results. The conversion from SALS to HWTD (dry and wet,t=40 °C) generated propencity good value. Meanwhile, form SALS (t=40 °C) to HWTD test (dry,t=50 °C) were acceptable and SALS (t=40 °C) to HWTD test (wet, t=50 °C) were unacceptable. It means that considering temperature (t= 40 °C and 50 °C) and moisture conditions (dry and wet) could not to determined conversion factor.
Aschenbrener, T. (1992). Comparison of results obtained from the French rutting tester with pavements of known field performance: Colorado Department of Transportation [Division of Transportation Development].
Aschenbrener, T., & Far, N. (1994). Influence of compaction temperature and anti-stripping treatment on the results from the Hamburg wheel-tracking device: Colorado Division of Transportation Development.
Bahia, H. U., Hanson, D., Zeng, M., Zhai, H., Khatri, M., & Anderson, R. (2001). Characterization of modified asphalt binders in superpave mix design (0309067073). Retrieved from
Beecroft, A., Petho, L., Griffin, J., & Denneman, E. (2014). Asphalt moisture-sensitivity assessment in Australia using the Hamburg Wheel Tracking Device (HWTD). Paper presented at the ARRB Conference, 26th, 2014, Sydney, New South Wales, Australia.
Bonaquist, R. F. (2008). Ruggedness testing of the dynamic modulus and flow number tests with the simple performance tester (0309117585). Retrieved from
Clyne, T. R., Li, X., Marasteanu, M. O., & Skok, E. L. (2003). Dynamic and resilient modulus of Mn/DOT asphalt mixtures. Retrieved from
Cooley, L., Kandhal, P. S., Buchanan, M. S., Fee, F., & Epps, A. (2000). Loaded wheel testers in the United States: State of the practice: Transportation Research Board, National Research Council.
D'Angelo, J., Kluttz, R., Dongre, R. N., Stephens, K., & Zanzotto, L. (2007). Revision of the superpave high temperature binder specification: The multiple stress creep recovery test (with discussion). Journal of the Association of Asphalt Paving Technologists, 76.
Delgadillo, R., Cho, D., & Bahia, H. (2006). Part 1: bituminous materials: nonlinearity of repeated creep and recovery binder test and relationship with mixture permanent deformation. Transportation Research Record: Journal of the Transportation Research Board(1962), 3-11.
Du Plessis, L., Coetzee, N., Burmas, N., Harvey, J. T., & Monismith, C. L. (2008). Heavy vehicle simulator in accelerated pavement testing: a historical overview and new developments.
Epps, A. L., Ahmed, T., Little, D. C., Hugo, F., Poolman, P., & Mikhail, M. (2001). Performance Prediction with the MMLS3 at WesTrack. Retrieved from
Gabet, T., Di Benedetto, H., Perraton, D., De Visscher, J., Gallet, T., Bańkowski, W., . . . Sauzéat, C. (2011). French wheel tracking round robin test on a polymer modified bitumen mixture. Materials and structures, 44(6), 1031-1046.
Gabra, R., & Horvli, I. (2006). Simplified testing method for evaluation of asphalt mixtures for their susceptibility to permanent deformation. Unpublished manuscript.
Groenendijk, J., Miradi, A., Molenaar, A., Vogelzang, C., Dohmen, L., Maagdenberg, A., & De Beer, M. (1997). PAVEMENT PERFORMANCE MODELLING USING LINTRACK. Retrieved from
Han, J., & Shiwakoti, H. (2016). Wheel tracking methods to evaluate moisture sensitivity of hot-mix asphalt mixtures. Frontiers of Structural and Civil Engineering, 10(1), 30-43.
Hugo, F., de Witt, R., & Helmich, A. (2004). Application of the MMLS3 as APT Tool for Evaluating Asphalt Performance on a Highway in Namibia. Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa (CAPSA'04), 12, 16.
Hugo, F., Fults, K., Chen, D.-H., Smit, A. d. F., & Bilyeu, J. (1999). An overview of the TxMLS program and lessons learned. CD-ROM), Proceedings of the First International Conference on Accelerated Pavement Testing, Reno, Nev.
Hugo, F., & Martin, A. E. (2004). Significant findings from full-scale accelerated pavement testing (Vol. 325): Transportation Research Board.
Izzo, R., & Tahmoressi, M. (1999). Use of the Hamburg wheel-tracking device for evaluating moisture susceptibility of hot-mix asphalt. Transportation Research Record: Journal of the Transportation Research Board(1681), 76-85.
Kandhal, P. S., & Cooley, L. A. (2003). Accelerated laboratory rutting tests: Evaluation of the asphalt pavement analyzer: Transportation Research Board.
Kim, S.-M., Hugo, F., & Roesset, J. M. (1998). Small-scale accelerated pavement testing. Journal of transportation engineering, 124(2), 117-122.
Kim, S.-M., Hugo, F., Roesset, J. M., & White, T. D. (1995). Dimensional analysis of the model mobile load simulator action on pavements. Research Rep. No. 2914-1F.
Lacroix, A., & Kim, Y. (2014). Performance predictions of rutting for the National Center for Asphalt Technology test track. Transportation Research Record: Journal of the Transportation Research Board(2457), 41-50.
Lee, J., & Kim, R. (2006). Performance evaluation of asphalt surface treatments using the MMLS3. Paper presented at the Airfield and Highway Pavements. The 2006 Airfield and Highway Pavement Specialty Conference.
Li, J., Zofka, A., & Yut, I. (2012). Evaluation of dynamic modulus of typical asphalt mixtures in Northeast US region. Road materials and pavement design, 13(2), 249-265.
Losa, M., & Natale, A. (2012). Evaluation of representative loading frequency for linear elastic analysis of asphalt pavements. Transportation Research Record: Journal of the Transportation Research Board(2305), 150-161.
Lu, Q., & Harvey, J. (2006). Evaluation of Hamburg wheel-tracking device test with laboratory and field performance data. Transportation Research Record: Journal of the Transportation Research Board(1970), 25-44.
Martin, A. E., & Park, D.-W. (2003). Use of the asphalt pavement analyzer and repeated simple shear test at constant height to augment superpave volumetric mix design. Journal of transportation engineering, 129(5), 522-530.
Metcalf, J. B. (1996). Application of full-scale accelerated pavement testing (Vol. 235): Transportation Research Board.
Mohammad, L. N., Cooper, S., Obulareddy, S., & Saadeh, S. (2007). Characterization of Louisiana asphalt mixtures using simple performance tests. Journal of Testing and Evaluation, 36(1), 1-12.
Nielson, J. (2010). Development of a testing temperature to be used with the Hamburg wheel tracking device on asphalt mixtures that utilize performance grade binders. The University of Utah.
Partl, M. N., Bahia, H. U., Canestrari, F., De la Roche, C., Di Benedetto, H., Piber, H., & Sybilski, D. (2012). Advances in interlaboratory testing and evaluation of bituminous materials: state-of-the-art report of the RILEM technical committee 206-ATB (Vol. 9): Springer Science & Business Media.
Roberts, F. L., Kandhal, P. S., Brown, E. R., Lee, D.-Y., & Kennedy, T. W. (1996). Hot mix asphalt materials, mixture design and construction.
Schram, S., & Williams, R. C. (2012). Ranking of HMA Moisture Sensitivity Tests in Iowa. Transportation Research Board of the National Academies of Sciences, Engineering, and Medicine Washington, DC.
Sel, I., Yildirim, Y., & Ozhan, H. B. (2014). Effect of Test Temperature on Hamburg Wheel-Tracking Device Testing. Journal of Materials in Civil Engineering, 26(8), 04014037.
Smit, A. d. F., Hugo, F., & Epps, A. (1999). Report on the first Jacksboro MMLS Tests. Retrieved from
Tram, N., West, R. C., Powell, B., & Kvasnak, A. N. (2009). Evaluation of AASHTO rut test procedure using the asphalt pavement analyzer. Journal of the Association of Asphalt Paving Technologists, 78.
Twagira, E., & Jenkins, K. (2012). Application of MMLS3 in laboratory conditions for moisture damage classification of bitumen stabilised materials. Road materials and pavement design, 13(4), 642-659.
Uzarowski, L., Paradis, M., & Lum, P. (2004). Accelerated performance testing of Canadian asphalt mixes using three different wheel rut testers. 2004 ANNUAL CONFERENCE AND EXHIBITION OF THE TRANSPORTATION ASSOCIATION OF CANADA-TRANSPORTATION INNOVATION-ACCELERATING THE PACE.
Van de Ven, M., & de Fortier Smit, A. (2000). The role of the MMLS devices in APT. SATC 2000.
Verhaeghe, B., Myburgh, P., & Denneman, E. (2007). Asphalt rutting and its prevention.
West, R. C., Zhang, J., & Cooley, A. (2004). Evaluation of the asphalt pavement analyzer for moisture sensitivity testing: the Center.
Williams, R., & Prowell, B. (1999). Comparison of laboratory wheel-tracking test results with Wes Track performance. Transportation Research Record: Journal of the Transportation Research Board(1681), 121-128.
Yildirim, Y., Jayawickrama, P. W., Hossain, M. S., Alhabshi, A., Yildirim, C., Smit, A. d. F., & Little, D. N. (2007). Hamburg wheel-tracking database analysis. Retrieved from
Yildirim, Y., & Kennedy, T. W. (2001). Correlation of field performance to hamburg wheel tracking device results. Retrieved from
Zhang, Y., Birgisson, B., & Lytton, R. L. (2015). Weak Form Equation–Based Finite-Element Modeling of Viscoelastic Asphalt Mixtures. Journal of Materials in Civil Engineering, 28(2), 04015115.