| 研究生: |
劉宗達 Liou, Tzung-Da |
|---|---|
| 論文名稱: |
雷射輔助電漿增強式化學氣相沉積法成長矽基薄膜太陽能電池之特性研究 Investigation of Silicon-based Thin-Film Solar Cell grown by Laser-assisted Plasma Enhanced Chemical Vapor Deposition |
| 指導教授: |
李清庭
Lee, Ching-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 太陽能電池 、薄膜 、矽 |
| 外文關鍵詞: | Solar Cell, Thin Film, Silicon |
| 相關次數: | 點閱:80 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討的主題是利用雷射輔助電漿增強式化學氣相沉積系統進行矽基薄膜沉積,比較在雷射輔助化學氣相反應下,矽基薄膜性質是否有結構上的改變。本研究探討在不同雷射功率輔助下,化學氣相沉積系統所沉積的P型碳化矽、I型矽和N型矽鍺薄膜於結晶特性以及鍵結特性上造成的差異,並計算光學能隙值和薄膜電性的量測。在應用方面,元件結構為能隙漸變式,可以增加太陽光吸收波長範圍。另外一方面,非晶結構的薄膜在長時間照光下,卻發現到薄膜品質產生光劣化的現象。因此,尋找加強矽基薄膜品質的方法變成了改善薄膜太陽電池的重要目標,本研究朝此目標前進,將用雷射輔助電漿增強式化學氣相沉積法成長的矽基薄膜應用到薄膜太陽電池上,最後進行太陽能元件特性比較。
In this work, the laser assisted plasma enhanced chemical vapor deposition technique has been developed to deposit microcrystalline silicon-based films at low temperature. This study investigates the thin films performance of P-type silicon-carbide , I-type silicon and N-type silicon-germanium. The effects of laser assistance on the crystalline structure and bonding characteristics of the deposited films have been explored. The optical energy gap of thin film and electrical properties was measured with the different laser power. In terms of application, the absorption of solar wavelength range was increased in the structure of device with the energy gap gradient. On the other hand, the performances of the amorphous silicon-based solar cells would be degraded under a long term illuminating. Therefore, the laser assisted plasma enhanced chemical vapor deposition technique deposited silicon-based film could supply a better quality of silicon-based thin film as P-I-N layer to overcome this weakness. The research is to achieve this goal. And the characteristics of solar cells were compared finally.
第一章 緒論
[1] 楊昌中, “能源領域中的奈米科技研究,” 工業研究所 能源與環境研究所, 中華民國95年12月
[2] 戴寶通, 鄭晃忠, “太陽能電池技術手冊,” 台灣電子材料與元件協會, 2008.
[3] O. Vetterl, F. Finger, R. Carius, P. Hapke, L. Houben, O. Kluth, A. Lambertz, A. MuKck, B. Rech and H. Wagner, “Intrinsic microcrystalline silicon : A new material for photovoltaics,” Sol. Energy Mater. Sol. Cells, vol. 62, pp.97-108(2000)
[4] 楊德仁, “太陽能電池材料,” 五南圖書出版股份有限公司, 2008
[5] M. Abdelkrim, M. Loulou, R. Gharbi, M. Fathallah, C. F. Pirri and E. Tresso, “Static and dynamic electrical study of a-SiC:H based p–i–n structure, effect of hydrogen dilution of the intrinsic layer,” Solid-State Electron., vol. 51, pp.159-163(2007)
[6] P. C. Taylor, G. Ganguly and D. E. Carlson, “Direct role of hydrogen in the Staebler-Wronski effect in hydrogenated amorphous silicon,” Phys. Rev. Lett., vol. 89, pp.015502.1-015502.4(2002)
[7] Y. S. Tsuo and W. Juft, “Alternative deposition processes for hydrogenated amorphous silicon and related alloys,” Appl. Phys. Commun., vol. 10, pp.71-76(1990)
第二章 背景理論
[1] 楊德仁, “太陽能電池材料,” 五南圖書出版股份有限公司,2008
[2] R. Hulstrom, R. Bird and C. Riordan, “Spectral solar Irradiance Data Sets for Selected Terrestrial Conditions,” Solar Cells, vol.15, pp.365-369(1985)
[3] Donald A. Neamen, “Semiconductor Physics and Devices,” 3rd edition, McGraw-Hill, New Delhi, 2003
[4] 余合興, “半導體材料與元件,” 中央圖書出版社, 1996
[5] 戴寶通, 鄭晃忠, “太陽能電池技術手冊,” 台灣電子材料與元件協會, 2008.
[6] 施敏, “半導體元件物理與製作技術,” 國立交通大學出版社, 1980.
[7] 陳陵援, 吳慧眼, “儀器分析,” 三民書局, 2002
[8] 吳國禎, “分子振動光譜學概論,” 高立圖書有限公司, 2001.
[9] M. Cardona, “Vibrational Spectra of Hydrogen in Silicon and Germanium,” Phys. Stat. Sol. B, vol. 118, pp.463-481(1983)
[10] 汪建民, “材料分析,” 民全書局, 2005.
[11] 莊嘉琛,“太陽能工程-太陽電池篇,” 全華科技圖書股份有限公司, 2001.
第三章 矽基薄膜特性比較
[1] P. Masri, “ Silicon carbide and silicon carbide-based structures The physics of epitaxy,” Surface Science Reports, vol. 48, pp.1–51(2002)
[2] I. Pereyra, M. N. P. CarrenÄo, M. H. Tabacniks, R. J. Prado and M. C. A. Fantini, “ The influence of starving plasma regime on carbon content and bonds in a-Si1-XC X: H thin films,” J. Appl. Phys., vol.84, pp.2271-2297(1998)
[3] S. M. Iftiquar, A. K. Barua, “Control of the properties of
wide bandgap a-SiC : H films prepared by RF PECVD method by varying methane flow rate,” Sol. Energy Mater. Sol. Cells, vol. 56, pp.117-123(1999)
[4] U. Coscia, G. Ambrosone, S. Lettieri, P. Maddalena, V. Rigato, S. Restello, E. Bobeico, M. Tucci, “Preparation of microcrystalline silicon–carbon films,” Sol. Energy Mater. Sol. Cells, vol. 87, pp.433-444(2005).
[5] J. M. Seo, M. C. Jeong, and J. M. Myoung, " Effects of hydrogen on poly-and nano-crystallization of a-Si: H prepared by RF magnetron sputtering," J. Cryst. Growth, vol. 295, pp.119-123(2006).
[6] S. Guha, J. Yang, S. J. Jones, Y. Chan and D. L. Williamson,“ Effect of microvoids on initial and light-degraded efficiencies of hydrogenated amorphous silicon alloy solar cells,”Appl. Phys. Lett., vol. 61, pp.1444-1446(1992).
[7] S. Hazra, R. Middya, S. Ray, C. Malten and F. Finger,“Role of deposition parameters on the photovoltaic quality of amorphous silicon germanium alloys: correlation of microstructure with defect density and electronic transport,”J. Phys. D: Appl. Phys. vol. 34, pp.2475-2481(2001)
[8] L. W. Lai, H. Y. Lee, J. H. Cheng and C. T. Lee, “Investigation of laser-assisted microcrystalline SiGe films deposited at low temperature,“ J. Electronic Mater., vol. 37, pp.167-171(2008)
第四章 矽基薄膜太陽能電池特性
[1] I. A. Yunaz, K. Hashizume, S. Miyajima, A. Yamada and M. Konagai, “Fabrication of amorphous silicon carbide films using VHF-PECVD for triple-junction thin-film solar cell applications,” Sol. Energy Mater. Sol. Cells, vol93, pp.1056-1061(2009)
[2] S. Klein, T .Repmann and T. Brammer,“Microcrystalline silicon films and solar cells deposited by PECVD and HWCVD,”Solar Energy, vol 77, pp.893-908(2004).
[3] Q. Zhang, E. V. Johnson, Y. Djeridane, A. Abramov and P. R. I. Cabarrocas, “Decoupling crystalline volume fraction and VOC in microcrystalline silicon pin solar cells by using a µc-Si:H intrinsic layer,” phys. stat. sol. vol. 2, pp.154 –156(2008)
[4] A. V. Shah, J. Meier, E. V. Sauvain, N. Wyrsch, U. Kroll, C. Droz and U. Graf, “Material and solar cell research in microcrystalline silicon,” Sol. Energy Mater. Sol. Cells, vol. 78, pp.469–491(2003)