簡易檢索 / 詳目顯示

研究生: 夏年
Xia, Nian
論文名稱: 於非飽和流量下針對IEEE 802.11ah RAW機制之研究
On the Study of Restricted Access Window in IEEE 802.11ah under Unsaturated Traffic
指導教授: 楊竹星
Yang, Chu-Sing
共同指導教授: 陳曉華
Chen, Hsiao-Hwa
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 電腦與通信工程研究所
Institute of Computer & Communication Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 117
中文關鍵詞: 機器對機器通信人對人通信IEEE 802.11ahRAW非飽和吞吐量
外文關鍵詞: M2M Communications, H2H Communications, IEEE 802.11ah, Restricted Access Window, Unsaturated Throughput
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著日常生活中智慧電錶,智慧停車和智慧交通系統等機器對機器通信應用的快速 增長,機器對機器通信將在5G以及未來B5G系統發揮至關重要的作用。與專注於提 供高數據速率和低延遲的常規人對人通信不同,機器對機器通信需要容納大量具有 各種服務品質要求的連接。現有的無線通信系統主要是為傳統的人對人通信設計 的,無法為大量的機器對機器通信設備提供服務。諸如3GPP和IEEE之類的國際標準 化組織一直在積極製定新的無線接入技術標準,包括NB-IoT和IEEE 802.11ah。
    傳統的IEEE 802.11系統採用distributed coordination function (DCF)作為隨機接入技 術,DCF的性能隨著用戶數的增多而快速下降,因而無法支援大量物聯網設備。為了緩解這個問題,IEEE 802.11ah導入了restricted access window (RAW)的機制。與傳統的DCF機制相比,RAW機制只允許其組內的用戶在被分配的時隙內傳輸資料。現在關於IEEE 802.11ah RAW機制的研究聚焦於飽和流量下的吞吐量。然而物聯網應用常常會面對非飽和流量的情形,針對非飽和流量下RAW機制的研究卻沒有得到太多關注。本文主要研究於非飽和流量下IEEE 802.11ah RAW機制在非跨越時隙邊界以及 跨越時隙邊界下的性能分析與建模。本文提出了一種二維馬爾科夫模型來表徵IEEE 802.11ah在非飽和流量以及有限緩衝區下的RAW機制。為了反映封包到達泊松分佈 的特性,M/M/1/K排隊模型被整合進二維馬爾科夫模型中。本論文推導出了理論分析的結果,並與模擬結果比較。實驗結果表明我們提出的模型可以很好的表徵IEEE 802.11ah RAW在非飽和流量下的吞吐量特性。
    關鍵字 ─ 機器對機器通信,人對人通信,IEEE 802.11ah,RAW,非飽和吞吐 量。

    With the rapid growth of machine-to-machine (M2M) applications like smart metering, smart parking, and intelligent transportation systems in our daily life, M2M communications will play a vital role in 5G and beyond 5G (B5G) systems. Unlike the conventional human- to-human (H2H) communications that focus on providing high data rates with low latency, M2M communications are expected to accommodate a massive number of connections with diverse Quality-of-Service (QoS) requirements. Existing wireless systems are primarily de- signed for traditional H2H communications and can not serve a huge number of M2M de- vices. Different standardization organizations like 3GPP and IEEE have been active on new radio access technologies (RATs), i.e., narrowband IoT (NB-IoT) and IEEE 802.11ah.
    As the performance of the conventional distributed coordination function (DCF) method in IEEE 802.11 systems degrades significantly with the increasing number of devices, IEEE 802.11ah introduces the restricted access window (RAW) to provide connectivity for a massive number of devices. Although the saturated throughput of RAW has been studied, RAW under unsaturated traffic does not be equally treated. In this dissertation, one two-dimensional Markov chain model is suggested to model RAW in IEEE 802.11ah under un- saturated traffic with finite buffer. Moreover, one M/M/1/K queueing model is integrated to character the buffer status of each station (STA). For both non-cross slot boundary and cross-slot boundary cases, the unsaturated throughput of RAW is derived. Analytical results of the proposed model are evaluated by simulations. Experimental results demonstrated the efficiency of the proposed approach in terms of throughput.
    Index Terms – M2M Communications, H2H Communications, IEEE 802.11ah, Restricted Access Window, Unsaturated Throughput.

    摘要 ix Abstract xi Acknowledgements xiii Table of Contents xv List of Figures xvii List of Tables xxv List of Abbreviations xxvii List of Symbols xxxi 1 Introduction 1 1.1 Background................................... 1 1.2 Motivations ................................... 3 1.3 The Main Contributions............................. 6 1.4 The Organization of This Dissertation ..................... 8 2 An Overview of IEEE 802.11ah 9 2.1 S1G PHY for IEEE802.11ah.......................... 9 2.1.1 Channelization for IEEE802.11ah................... 11 2.1.2 Modulation and Coding Scheme for S1G PHY . . . . . . . . . . . . 11 2.2 Association Identifier and Traffic Indication Map . . . . . . . . . . . . . . . 12 2.3 Access Control Schemes in IEEE802.11ah .................. 14 2.3.1 Distributed Coordination Function................... 14 2.3.2 Enhanced Distributed Channel Access. . . . . . . . . . . . . . . . . 15 2.3.3 Restricted Access Window....................... 17 3 Related Works 25 3.1 Access Control ................................. 25 3.2 Restricted Access Window Modeling...................... 27 4 Analytical Modeling for IEEE 802.11ah Networks 35 4.1 Summary of Assumptions for The Proposed Model . . . . . . . . . . . . . . 35 4.2 The Discrete-Time Markov Chain Model for a Tagged STA . . . . . . . . . . 38 4.3 Performance Analysis.............................. 46 5 Comparison of Analytical and Simulation Results 53 5.1 Experimental Configurations .......................... 53 5.2 Computation Time ............................... 55 5.3 Restricted Access Window with Non-Cross Slot Boundary . . . . . . . . . . 59 5.4 Restricted Access Window with Cross Slot Boundary . . . . . . . . . . . . . 70 5.5 Comparison of Non-cross Slot Boundary and Cross Slot Boundary . . . . . . 83 6 Conclusion and Future Works 95 References 97 A Detailed Derivations of The Proposed Markov Chain Model 103 A.1 Steady State Probabilities............................103 A.2 Derivation of pm,0 ................................105 A.3 Derivation of pm,bm ...............................107 A.4 Derivation of (4.29)and(4.27) .........................108 A.5 Derivation of (4.22) and (4.25) .........................110

    [1] S. Aust, R. V. Prasad and I. G. M. M. Niemegeers, ”Outdoor Long-Range WLANs: A Lesson for IEEE 802.11ah,” IEEE Communications Surveys & Tutorials, vol. 17, no. 3, pp. 1761-1775, thirdquarter 2015.
    [2] L. F. Del Carpio, P. Di Marco, P. Skillermark, R. Chirikov, K. Lagergren and P. Amin, ”Comparison of 802.11ah and BLE for a home automation use case,” 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communica- tions (PIMRC), Valencia, pp. 1-6, 2016.
    [3] P.DiMarco,R.Chirikov,P.AminandF.Militano,”CoverageanalysisofBluetoothlow energy and IEEE 802.11ah for office scenario,” 2015 IEEE 26th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Hong Kong, pp. 2283-2287, 2015.
    [4] WiFi Alliance: https://www.wi-fi.org/discover-wi-fi/wi-fi-halow.
    [5] A. Seferagic ́, I. Moerman, E. De Poorter and J. Hoebeke, ”Evaluating the Suitability of IEEE 802.11ah for Low-Latency Time-Critical Control Loops,” IEEE Internet of Things Journal, vol. 6, no. 5, pp. 7839-7848, Oct. 2019.
    [6] T. Kim and J. M. Chang, ”Enhanced power saving mechanism for large-scale 802.11ah wireless sensor networks,” vol. 1, no. 4, pp. 516-527, Dec. 2017.
    [7] Y. Zhao, O. N. C. Yilmaz and A. Larmo, ”Optimizing M2M energy efficiency in IEEE 802.11ah,” 2015 IEEE Globecom Workshops (GC Wkshps), San Diego, pp. 1-6, De- cember 2015.
    [8] A. Argyriou, ”Power-efficient estimation in IEEE 802.11ah wireless sensor networks with a cooperative relay,” 2015 IEEE International Conference on Communications (ICC), London, pp. 6755-6760, June 2015.
    [9] R. P. Liu, G. J. Sutton and I. B. Collings, ”Power save with offset listen interval for IEEE 802.11ah Smart Grid communications,” 2013 IEEE International Conference on Communications (ICC), Budapest, pp. 4488-4492, June 2013.
    [10] K. Ogawa, Y. Sangenya, M. Morikura, K. Yamamoto and T. Sugihara, ”IEEE 802.11ah based M2M networks employing virtual grouping and power saving methods,” 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), Las Vegas, NV, pp. 1-5, September 2013.
    [11] C. Kai, J. Zhang, X. Zhang and W. Huang, ”Energy-Efficient Sensor Grouping for IEEE 802.11ah Networks With Max-Min Fairness Guarantees,” IEEE Access, vol. 7, pp. 102284-102294, 2019.
    [12] C. Hu, ”Approximation Algorithms of Minimizing Hidden Pairs in 802.11ah Net- works,” IEEE Access, vol. 7, pp. 170742-170752, 2019.
    [13] M. Ghasemiahmadi, Y. Li and L. Cai, ”RSS-Based Grouping Strategy for Avoiding Hidden Terminals with GS-DCF MAC Protocol,” 2017 IEEE Wireless Communica- tions and Networking Conference (WCNC), San Francisco, CA, pp. 1-6, March 2017.
    [14] X. Lei and S. H. Rhee, ”A Novel Grouping Mechanism for Performance Enhancement of Sub-1 GHz Wireless Networks,” 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA, 2019, pp. 1-5.
    [15] M. Ghosh and F. LaSita, ”Puncturing of CRC Codes for IEEE 802.11ah,” 2013 IEEE 78th Vehicular Technology Conference (VTC Fall), pp. 1-5, Las Vegas, NV, 2013.
    [16] RichardL.Burden,J.DouglasFaires,”NumericalAnalysis,”CENGAGELEARNING, Boston, Ninth edition. (2010)
    [17] IEEE Standard for Information technology–Telecommunications and information ex- change between systems - Local and metropolitan area networks–Specific require- ments - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 2: Sub 1 GHz License Exempt Operation,” IEEE Std 802.11ah-2016 (Amendment to IEEE Std 802.11-2016, as amended by IEEE Std 802.11ai-2016), pp.1-594, April 2017.
    [18] D. Bankov, E. Khorov, A. Lyakhov and E. Stepanova, ”Fast centralized authentication in Wi-Fi HaLow networks,” 2017 IEEE International Conference on Communications (ICC), Paris, pp. 1-6, June 2017.
    [19] N. Nawaz, M. Hafeez, S. A. R. Zaidi, D. C. McLernon and M. Ghogho, ”Through- put enhancement of restricted access window for uniform grouping scheme in IEEE 802.11ah,” 2017 IEEE International Conference on Communications (ICC), Paris, pp. 1-7, June 2017.
    [20] Y. Kim, G. Hwang, J. Um, S. Yoo, H. Jung and S. Park, ”Throughput Performance Optimization of Super Dense Wireless Networks With the Renewal Access Protocol,” IEEE Transactions on Wireless Communications, vol. 15, no. 5, pp. 3440-3452, May 2016.
    [21] X. Zhang and K. L. Yeung, ”LLE: A timer extension mechanism for alarm-triggered traffic in IEEE 802.11ah WLANs,” 2017 IEEE International Conference on Communi- cations (ICC), Paris, pp. 1-6, June 2017.
    [22] N. Ahmed and M. I. Hussain, ”Periodic Traffic Scheduling for IEEE 802.11ah Net- works,” IEEE Communications Letters, Early Access, 2020.
    [23] T. Chang, C. Lin, K. C. Lin and W. Chen, ”Traffic-Aware Sensor Grouping for IEEE 802.11ah Networks: Regression Based Analysis and Design,” IEEE Transactions on Mobile Computing, vol. 18, no. 3, pp. 674-687, 1 March 2019.
    [24] C. W. Park, D. Hwang and T. J. Lee, ”Enhancement of IEEE 802.11ah MAC for M2M Communications,” IEEE Communications Letters, vol. 18, no. 7, pp. 1151-1154, July 2014.
    [25] Y. Wang, K. K. Chai, Y. Chen, J. Schormans and J. Loo, ”Energy-Delay Aware Re- stricted Access Window with Novel Retransmission for IEEE 802.11ah Networks,” 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, pp. 1-6, December 2016.
    [26] T. C. Chang, C. H. Lin, K. C. J. Lin and W. T. Chen, ”Load-Balanced Sensor Group- ing for IEEE 802.11ah Networks,” 2015 IEEE Global Communications Conference (GLOBECOM), San Diego, CA, pp. 1-6, December 2015.
    [27] Y.YangandS.Roy,”Grouping-BasedMACProtocolsforEVChargingDataTransmis- sion in Smart Metering Network,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 7, pp. 1328-1343, July 2014.
    [28] E. Khorov, A. Krotov and A. Lyakhov, ”Modelling machine type communication in IEEE 802.11ah networks,” 2015 IEEE International Conference on Communication Workshop (ICCW), London, pp. 1149-1154, June 2015.
    [29] L. Zheng, M. Ni, L. Cai, J. Pan, C. Ghosh and K. Doppler, ”Performance Analysis of Group-Synchronized DCF for Dense IEEE 802.11 Networks,” IEEE Transactions on Wireless Communications, vol. 13, no. 11, pp. 6180-6192, November 2014.
    [30] O. Raeesi, J. Pirskanen, A. Hazmi, T. Levanen and M. Valkama, ”Performance eval- uation of IEEE 802.11ah and its restricted access window mechanism,” 2014 IEEE International Conference on Communications Workshops (ICC), Sydney, pp. 460-466, June 2014.
    [31] M. Z. Ali, J. Misˇic ́ and V. B. Misˇic ́, ”Performance Evaluation of Heterogeneous IoT Nodes With Differentiated QoS in IEEE 802.11ah RAW Mechanism,” IEEE Transac- tions on Vehicular Technology, vol. 68, no. 4, pp. 3905-3918, April 2019.
    [32] G. Bianchi, ”Performance analysis of the IEEE 802.11 distributed coordination func- tion,” IEEE Journal on Selected Areas in Communications, vol. 18, no. 3, pp. 535-547, March 2000.
    [33] L. Tian et al., ”Optimization-Oriented RAW Modeling of IEEE 802.11ah Heteroge- neous Networks,” IEEE Internet of Things Journal, vol. 6, no. 6, pp. 10597-10609, Dec. 2019.
    [34] Garetto, M. and Chiasserini, C. -F., ”Performance Analysis of 802.11 WLANs Under Sporadic Traffic”, Networking 2005: Networking Technologies, Services, and Proto- cols; Performance of Computer and Communication Networks; Mobile and Wireless Communications Systems, pp. 1343-1347, Springer Berlin Heidelberg, 2005.
    [35] Nick T. Thomopoulos, ”Fundamentals of Queuing Systems: Statistical Methods for Analyzing Queuing Models,” Springer, New York. (2012)
    [36] A. Leon-Garcia, ”Probability, Statistics, and Random Processes for Electrical Engi- neering,” Pearson/Prentice Hall, Upper Saddle River, NJ, Third edition. (2008)

    無法下載圖示 校內:2025-07-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE