簡易檢索 / 詳目顯示

研究生: 李家妤
Lee, Chia-Yu
論文名稱: 以歸因理論觀點探究傳統教學與AI輔助教學對學生學習焦慮與學習成效之影響-以供應鏈長鞭效應為例
The Impact of Traditional Teaching and AI-supported Teaching on Students' Learning Anxiety and Learning Outcomes from the Perspective of Attribution Theory: The Case of the Bullwhip Effect in Supply Chain
指導教授: 王維聰
Wang, Wei-Tsong
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系
Department of Industrial and Information Management
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 147
中文關鍵詞: 歸因理論供應鏈管理長鞭效應自我效能學習倦怠學習焦慮學習效果
外文關鍵詞: Attribution Theory, Supply Chain Management, Bullwhip Effect, Self-efficacy, Learning Anxiety, Learning Burnout, Learning Outcomes
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要 I ABSTRACT II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 X 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 3 1.3 研究範圍與限制 4 1.4 研究流程 5 第二章 文獻探討 8 2.1 ChatGPT 9 2.1.1 ChatGPT的概述 9 2.1.2 ChatGPT於教育的應用 9 2.1.3 ChatGPT對教育的影響與挑戰 10 2.2 供應鏈管理與長鞭效應(Bullwhip Effect) 11 2.2.1 現代供應鏈管理的挑戰與數位化轉型 11 2.2.2 長鞭效應的成因與緩解策略 12 2.2.3 啤酒遊戲與長鞭效應 13 2.3 歸因理論 (Attribution Theory) 15 2.3.1 歸因理論的分類 15 2.3.2 歸因理論於教學中的應用 19 2.4 學習焦慮 (Learning Anxiety) 21 2.5 學習倦怠 (Learning Burnout) 22 2.5.1 學習倦怠的概念與成因 22 2.5.2 學習倦怠對學習成效的影響 23 2.6 學習成效 (Learning Effectiveness) 24 2.6.1 學習成效的定義與評估 24 2.6.2 多元教學法對學習成效之影響 25 2.7 教學系統互動性與即時回饋 26 2.8 小結 27 第三章 研究方法 29 3.1 研究架構 29 3.2 研究假說 31 3.2.1 內在歸因(能力、努力)與認知學習狀態 31 3.2.2 外在歸因(情境、運氣)與認知學習狀態 33 3.2.3 認知學習狀態與認知學習成效 34 3.2.4 認知學習狀態與實際學習成效 35 3.2.5 教學系統互動性與即時回饋 36 3.3 實驗設計 38 3.3.1 變項說明 39 3.3.2 實驗對象 42 3.3.3 實驗流程 43 3.3.4 教材設計與測驗內容 45 3.4 問卷構面 47 3.5 問卷設計 49 3.5.1 學業成就歸因 50 3.5.2 學業自我效能 52 3.5.3 學習焦慮 52 3.5.4 學習倦怠 53 3.5.5 學習成效 55 3.5.6 系統互動性與即時回饋 56 3.6 資料分析方法 58 3.6.1 結構方程模型資料分析方法 58 3.6.2 實驗資料分析方法 60 3.7 前測與資料蒐集 62 3.7.1 前測 62 3.7.2 資料蒐集 68 第四章 資料分析與結果 70 4.1 敘述性統計分析 70 4.1.1 問卷回收狀況 70 4.1.2 基本資料敘述性統計 70 4.1.3 研究變項常態性檢定 73 4.2 實驗操弄驗證與同質性檢定 77 4.2.1 實驗操弄驗證 77 4.2.2 同質性檢定 78 4.3 結構方程模式-衡量模型 79 4.3.1 信度分析 79 4.3.2 效度分析 82 4.3.3 共線性檢驗 91 4.4 結構方程模式-結構模型 92 4.4.1 路徑分析 92 4.5 假說檢定 95 第五章 結論 100 5.1 學術貢獻 100 5.2 實務貢獻 102 5.3 研究限制與未來研究方向 103 5.3.1 研究限制 104 5.3.2 未來研究方向 105 參考文獻 107 附錄A 先驗知識題目與答案 117 附錄B 後測知識題目與答案 121 附錄C 正式問卷 124 附錄D「Zensimu」網站啤酒遊戲完整流程 131

    Abramson, L. Y., Seligman, M. E. P., & Teasdale, J. D. (1978). Learned helplessness in humans: Critique and reformulation. Journal of Abnormal Psychology, 87(1), 49–74.
    Alabdulkarim, A. A. (2020). Minimizing the bullwhip effect in a supply chain: A simulation approach using the beer game. Simulation: Transactions of the Society for Modeling and Simulation International, 00(0), 1–16. https://doi.org/10.1177/0037549720930284
    Al-Maroof, R. S., Salloum, S. A., Al-Emran, M., & Shaalan, K. (2021). The influence of gamification on learning management systems: The mediating role of engagement and motivation. International Journal of Information and Learning Technology, 38(2), 130–153. https://doi.org/10.1108/IJILT-05-2020-0089
    Almeida, M. M. K. de, Marins, F. A. S., Salgado, A. M. P., Santos, F. C. A., & da Silva, S. L. (2015). Mitigation of the bullwhip effect considering trust and collaboration in supply chain management: A literature review. International Journal of Advanced Manufacturing Technology, 77(1-4), 495–513. https://doi.org/10.1007/s00170-014-6444-9
    Al-Sukhni, M., & Migdalas, A. (2025). The impact of information sharing factors on the bullwhip effect mitigation: A systematic literature review. Operational Research, 25, 36. https://doi.org/10.1007/s12351-025-00915-3
    Asikainen, H., Salmela-Aro, K., Parpala, A., & Katajavuori, N. (2020). Learning profiles and their relation to study-related burnout and academic achievement among university students. Learning and Individual Differences, 78, Article 101781. https://doi.org/10.1016/j.lindif.2019.101781.
    Bandura, A. (1997). Self-efficacy: The exercise of control. W. H. Freeman and Company.
    Braz, A. C., De Mello, A. M., Gomes, L. A. de V., & de Souza Nascimento, P. T. (2018). The bullwhip effect in closed-loop supply chains: A systematic literature review. Journal of Cleaner Production, 202, 376–389. https://doi.org/10.1016/j.jclepro.2018.08.042
    Cassady, J. C., & Johnson, R. E. (2002). Cognitive test anxiety and academic performance. Contemporary Educational Psychology, 27(2), 270–295. https://doi.org/10.1006/ceps.2001.1094
    Cazan, A.-M., & Indreica, S. E. (2014). Need for cognition and approaches to learning among university students. Procedia - Social and Behavioral Sciences, 127, 134–138. https://doi.org/10.1016/j.sbspro.2014.03.227
    Cazan, A.-M. (2015). Learning motivation, engagement and burnout among university students. Procedia - Social and Behavioral Sciences, 187, 413–417. https://doi.org/10.1016/j.sbspro.2015.03.077
    Chen, F., Drezner, Z., Ryan, J. K., & Simchi-Levi, D. (2000). Quantifying the bullwhip effect in a simple supply chain: The impact of forecasting, lead times, and information. Management Science, 46(3), 436–443.
    Christopoulos, A., & Mystakidis, S. (2023). Gamification in education. Encyclopedia, 3(4), 1223–1243. https://doi.org/10.3390/encyclopedia3040089
    Chrysafiadi, K., & Virvou, M. (2013). PeRSIVA: An empirical evaluation method of a student model of an intelligent e-learning environment for computer programming. Computers & Education, 68, 322-333.
    Díaz-Burgos, A., García-Sánchez, J.-N., Álvarez-Fernández, M. L., & de Brito-Costa, S. M. (2024). Psychological and educational factors of digital competence optimization interventions pre- and post-COVID-19 lockdown: A systematic review. Sustainability, 16(1), 51. https://doi.org/10.3390/su16010051
    Diefenbach, M. A., Weinstein, N. D., & O'Reilly, J. (1993). Scales for assessing perceptions of health hazard susceptibility. Health Education Research, 8(2), 181–192. https://doi.org/10.1093/her/8.2.181
    Dubey, R., Bryde, D. J., Blome, C., Roubaud, D., & Giannakis, M. (2021). Facilitating artificial intelligence powered supply chain analytics through alliance management during the pandemic crises in the B2B context. Industrial Marketing Management, 96, 135–146. https://doi.org/10.1016/j.indmarman.2021.05.003
    Durán Peña, J. A., Ortiz Bas, Á., & Reyes Maldonado, N. M. (2021). Impact of bullwhip effect in quality and waste in perishable supply chain. Processes, 9(7), 1232. https://doi.org/10.3390/pr9071232
    Dweck, C. S. (2000). Self-theories: Their role in motivation, personality, and development. Psychology Press.
    Dwivedi, Y. K., Kshetri, N., Hughes, L., Slade, E. L., Jeyaraj, A., Kar, A. K., ... & Wright, R. (2023). “So what if ChatGPT wrote it?” Multidisciplinary perspectives on opportunities, challenges and implications of generative conversational AI for research, practice and policy. International Journal of Information Management, 71, 102642. https://doi.org/10.1016/j.ijinfomgt.2023.102642
    Elliott, E. S., & Dweck, C. S. (1988). Goals: An approach to motivation and achievement. Journal of Personality and Social Psychology, 54(1), 5–12. https://doi.org/10.1037/0022-3514.54.1.5
    Fawaz, M. A., & Samaha, A. (2020). E‐learning: Depression, anxiety, and stress symptomatology among Lebanese university students during COVID‐19 quarantine. Nursing Forum, 55(4), 520–525. https://doi.org/10.1111/nuf.12521
    Gaier, S. (2015). Understanding why students do what they do: Using attribution theory to help students succeed academically. Research & Teaching in Developmental Education, 31(2), 6–19.
    Govindan, K., Soleimani, H., & Kannan, D. (2015). Reverse logistics and closed-loop supply chain: A comprehensive review to explore the future. European Journal of Operational Research, 240(3), 603–626. https://doi.org/10.1016/j.ejor.2014.07.012
    Govindan, K., Kannan, D., Jørgensen, T. B., & Nielsen, T. S. (2022). Supply Chain 4.0 performance measurement: A systematic literature review, framework development, and empirical evidence. Transportation Research Part E: Logistics and Transportation Review, 164, 102725. https://doi.org/10.1016/j.tre.2022.102725
    Graham, S., & Folkes, V. S. (Eds.). (1990). Attribution theory: Applications to achievement, mental health, and interpersonal conflict. Lawrence Erlbaum Associates.
    Graham, S., & Weiner, B. (1996). Theories and principles of motivation. In D. Berliner & R. Calfee (Eds.), Handbook of Educational Psychology (pp. 63–84). Macmillan.
    Graham, S. (2020). An attributional theory of motivation. Contemporary Educational Psychology, 61, 101861. https://doi.org/10.1016/j.cedpsych.2020.101861
    Grassini, S. (2023). Shaping the future of education: Exploring the potential and consequences of AI and ChatGPT in educational settings. Education Sciences, 13(7), 692. https://doi.org/10.3390/educsci13070692
    Guest, D. E., Sanders, K., Rodrigues, R., & Oliveira, T. (2020). Signalling theory as a framework for analysing human resource management processes and integrating human resource attribution theories: A conceptual analysis and empirical exploration. Human Resource Management Journal, 31(3), 796–818. https://doi.org/10.1111/1748-8583.12326Guest
    Heider, F. (1958). The psychology of interpersonal relations. Wiley.
    Hewett, T. E., Ford, K. R., Xu, Y. Y., Khoury, J., & Myer, G. D. (2017). Effectiveness of neuromuscular training based on the neuromuscular risk profile. American Journal of Sports Medicine, 45(9), 2142–2147. https://doi.org/10.1177/0363546517700128
    Hinton, P., McMurray, I., & Brownlow, C. (2014). SPSS Explained. London, England: Routledge Press.
    Horwitz, E. K., Horwitz, M. B., & Cope, J. (1986). Foreign language classroom anxiety. The Modern Language Journal, 70(2), 125–132.
    Hsu, T.-C., & Hwang, G.-J. (2023). Chatbot-assisted learning: A literature review of educational trends and opportunities. Educational Technology & Society, 26(1), 1–15.
    Hu, Q., & Schaufeli, W. B. (2009). The factorial validity of the Maslach Burnout Inventory–Student Survey in China. Psychological Reports, 105(2), 394–408. https://doi.org/10.2466/PR0.105.2.394-408
    Huang, C. F., Nien, W. P., & Yeh, Y. S. (2015). Learning effectiveness of applying automated music composition software in the high grades of elementary school. Computers & Education, 83, 74-89.
    Hui, C., & Mahmud, A. (2023). Game-based learning in mathematics education: A systematic review. Journal of Learning Technologies, 15(1), 87–102.
    Husman, J., & Lens, W. (1999). The role of the future in student motivation. Educational Psychologist, 34(2), 113–125. https://doi.org/10.1207/s15326985ep3402_4
    Im, T., & Kang, M. (2019). Structural relationships of factors which impact on learner achievement in online learning environment. International Review of Research in Open and Distributed Learning, 20(1), 1–22. https://doi.org/10.19173/irrodl.v20i1.4012
    Ivanov, D., Dolgui, A., Sokolov, B., Ivanova, M., & Fukuyo, M. (2018). The impact of digital technology and Industry 4.0 on the ripple effect and supply chain risk analytics. International Journal of Production Research, 57(3), 829–846. https://doi.org/10.1080/00207543.2018.1488086
    Ivanov, D., & Dolgui, A. (2019a). Low-certainty-need (LCN) supply chains: A new perspective in managing disruption risks and resilience. International Journal of Production Research, 57(15–16), 5119–5136. https://doi.org/10.1080/00207543.2018.1521025
    Ivanov, D., & Dolgui, A. (2019b). New disruption risk management perspectives in supply chains: Digital twins, the ripple effect, and resileanness. IFAC-PapersOnLine, 52(13), 337–342. https://doi.org/10.1016/j.ifacol.2019.11.138
    Ivanov, D., & Dolgui, A. (2020). A digital supply chain twin for managing the disruption risks and resilience in the era of Industry 4.0. Production Planning & Control. Advance online publication. https://doi.org/10.1080/09537287.2020.1768450
    Ivanov, D., & Dolgui, A. (2022). Stress testing supply chains and creating viable ecosystems. Operations Management Research, 15, 475–486. https://doi.org/10.1007/s12063-021-00194-z
    Kirkpatrick, D. L. (1975). Evaluating training programs: Tata McGraw-Hill Education.
    Kline, R. B. (2015). Principles and practice of structural equation modeling(4th ed.). New York: The Guilford Press.
    Kshetri, N. (2018). 1 Blockchain’s roles in meeting key supply chain management objectives. International Journal of Information Management, 39, 80–89. https://doi.org/10.1016/j.ijinfomgt.2017.12.005
    Lee, H. L., Padmanabhan, V., & Whang, S. (1997). Information distortion in a supply chain: The bullwhip effect. Management Science, 43(4), 546–558. https://doi.org/10.1287/mnsc.43.4.546
    Lefcourt, H. M., von Baeyer, C. L., Ware, E. E., & Cox, D. J. (1979). The Multidimensional-Multiattributional Causality Scale: The development of a goal specific locus of control scale. Canadian Journal of Behavioural Science, 11(4), 286–304.
    Leiner, D. J., & Quiring, O. (2008). What interactivity means to the user: Essential insights into and a scale for perceived interactivity. Journal of Computer-Mediated Communication, 14(1), 127–155. https://doi.org/10.1111/j.1083-6101.2008.01434.x
    Linnenbrink, E. A., & Pintrich, P. R. (2002). Motivation as an enabler for academic success. School Psychology Review, 31(3), 313–327. https://doi.org/10.1080/02796015.2002.12086158
    Lo, C. K. (2023). What is the impact of ChatGPT on education? A rapid review of the literature. Education Sciences, 13(4), 410. https://doi.org/10.3390/educsci13040410
    Lu, C. (2021). Research on bullwhip effect management in supply chain based on system dynamics. Journal of Physics: Conference Series, 1910(1), 012034. https://doi.org/10.1088/1742-6596/1910/1/012034
    Machuca, J. A. D., & Barajas, R. P. (2004). The impact of electronic data interchange on reducing bullwhip effect and supply chain inventory costs. Transportation Research Part E: Logistics and Transportation Review, 40(3), 209–228.
    Makransky, G., & Lilleholt, L. (2018). A structural equation modeling investigation of the emotional value of immersive virtual reality in education. Educational Technology Research and Development, 66(5), 1141–1164. https://doi.org/10.1007/s11423-018-9581-2
    Mandler, G., & Sarason, S. B. (1952). A study of anxiety and learning. Journal of Abnormal and Social Psychology, 47(2S), 166–173. https://doi.org/10.1037/h0062855
    Mariani, M., & Dwivedi, Y. K. (2024). Generative artificial intelligence in innovation management: A preview of future research developments. Journal of Business Research, 175, 114542. https://doi.org/10.1016/j.jbusres.2024.114542
    Maslach, C., Jackson, S. E., & Leiter, M. P. (1997). Maslach Burnout Inventory: Third Edition. In C. P. Zalaquett, & R. J. Wood (Eds.), Evaluating STRESS: A book of Resources (pp. 91-218). Scarecrow Education.
    Maslach, C., & Jackson, S. E. (1981). The measurement of experienced burnout. Journal of Occupational Behaviour, 2(2), 99–113. https://doi.org/10.1002/job.4030020205
    Maslach, C., & Leiter, M. P. (2008). Early predictors of job burnout and engagement. Journal of Applied Psychology, 93(3), 498–512. https://doi.org/10.1037/0021-9010.93.3.498
    May, R. W., Bauer, K. N., & Fincham, F. D. (2015). School burnout: Diminished academic and cognitive performance. Learning and Individual Differences, 42, 126–131. https://doi.org/10.1016/j.lindif.2015.07.015
    Mayer, R. E. (2019). Thirty years of research on online learning. Applied Cognitive Psychology, 33(2), 152–159. https://doi.org/10.1002/acp.3482
    Melchor, P. J. M., Lomibao, L. S., & Parcutilo, J. O. (2023). Exploring the potential of AI integration in mathematics education for Generation Alpha—Approaches, challenges, and readiness of Philippine tertiary classrooms: A literature review. Journal of Innovations in Teaching and Learning, 3(1), 39–44.
    Meng, Q., & Zhang, Q. (2023). The influence of academic self-efficacy on university students’ academic performance: The mediating effect of academic engagement. Sustainability, 15(7), 5767. https://doi.org/10.3390/su15075767
    Montenegro-Rueda, M., Fernández-Cerero, J., Fernández-Batanero, J. M., & López-Meneses, E. (2023). Impact of the implementation of ChatGPT in education: A systematic review. Computers, 12(8), 153. https://doi.org/10.3390/computers12080153
    Owens, M., Stevenson, J., Hadwin, J. A., & Norgate, R. (2012). Anxiety and depression in academic performance: An exploration of the mediating factors of worry and working memory. School Psychology International, 33(4), 433–449. https://doi.org/10.1177/0143034311427433
    Park, Y., & Jo, I.-H. (2019). Factors that affect the success of learning analytics dashboards. Educational Technology Research and Development, 67(6), 1547–1571. https://doi.org/10.1007/s11423-019-09693-0
    Pekrun, R. (2006). The control-value theory of achievement emotions: Assumptions, corollaries, and implications for educational research and practice. Educational Psychology Review, 18(4), 315–341. https://doi.org/10.1007/s10648-006-9029-9
    Perera, T., & Rupasinghe, T. D. (2015). Teaching supply chain simulation - From beginners to professionals. In Proceedings of the 2015 Winter Simulation Conference (pp. 3549–3553). IEEE. https://doi.org/10.1109/WSC.2015.7408514
    Peterson, C. (1993). Helpless behavior. Behaviour Research and Therapy, 31(3), 289–295. https://doi.org/10.1016/0005-7967(93)90027-R
    Pintrich, P. R., & Schunk, D. H. (2002). Motivation in education: Theory, research, and applications (2nd ed.). Merrill Prentice Hall.
    Pintrich, P. R. (2003). A motivational science perspective on the role of student motivation in learning and teaching contexts. Journal of Educational Psychology, 95(4), 667–686. https://doi.org/10.1037/0022-0663.95.4.667
    Plass, J. L., Homer, B. D., & Kinzer, C. K. (2015). Foundations of Game Based Learning. Educational Psychologist, 50(4), 258–283. https://doi.org/10.1080/00461520.2015.1122533
    Popenici, S. A. D., & Kerr, S. (2017). Exploring the impact of artificial intelligence on teaching and learning in higher education. Research and Practice in Technology Enhanced Learning, 12(22). https://doi.org/10.1186/s41039-017-0062-8
    Queiroz, M. M., & Wamba, S. F. (2019). Blockchain adoption challenges in supply chain: An empirical investigation of the main drivers in India and the USA. International Journal of Information Management, 46, 70–82. https://doi.org/10.1016/j.ijinfomgt.2018.11.021
    Rahman, M. H., Rahman, M. A., & Talapatra, S. (2020). The bullwhip effect: Causes, intensity, and mitigation. Production & Manufacturing Research, 8(1), 406–426. https://doi.org/10.1080/21693277.2020.1862722
    Rejeb, A., Rejeb, K., Appolloni, A., Treiblmaier, H., & Iranmanesh, M. (2024). Exploring the impact of ChatGPT on education: A web mining and machine learning approach. The International Journal of Management Education, 22, 100932. https://doi.org/10.1016/j.ijme.2024.100932
    Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General and Applied, 80(1), 1–28. https://doi.org/10.1037/h0092976
    Salanova, M., Schaufeli, W., Martínez, I., & Bresó, E. (2010). How obstacles and facilitators predict academic performance: The mediating role of study burnout and engagement. Anxiety, Stress & Coping, 23(1), 53–70. https://doi.org/10.1080/10615800802609965
    Salmela-Aro, K., Muotka, J., Alho, K., Hakkarainen, K., & Lonka, K. (2016). School burnout and engagement profiles among digital natives in Finland: A person-oriented approach. European Journal of Developmental Psychology, 13(6), 704–718. https://doi.org/10.1080/17405629.2015.1107542
    Salmela-Aro, K., & Upadyaya, K. (2014). School burnout and engagement in the context of demands–resources model. British Journal of Educational Psychology, 84(1), 137–151. https://doi.org/10.1111/bjep.12018
    Sarason, I. G. (1984). Stress, anxiety, and cognitive interference: Reactions to tests. Journal of Personality and Social Psychology, 46(4), 929–938. https://doi.org/10.1037/0022-3514.46.4.929
    Sarstedt, M., Ringle, C. M., & Hair, J. F. (2021). Partial least squares structural equationmodeling. In C. Homburg, Klarmann, M., Vomberg, A. (Ed.), Handbook of Market Research (pp. 587-632). Switzerland AG: Springer Nature.
    Schaufeli, W. B., & Bakker, A. B. (2004). Job demands, job resources, and their relationship with burnout and engagement: A multi-sample study. Journal of Organizational Behavior, 25(3), 293–315. https://doi.org/10.1002/job.248
    Schaufeli, W. B., Salanova, M., González-Romá, V., & Bakker, A. B. (2002). The measurement of engagement and burnout: A two sample confirmatory factor analytic approach. Journal of Happiness Studies, 3(1), 71–92.
    Schulman, P., Castellon, C., & Seligman, M. E. P. (1989). Assessing explanatory style: The content analysis of verbatim explanations and the Attributional Style Questionnaire. Behaviour Research and Therapy, 27(5), 505–512. https://doi.org/10.1016/0005-7967(89)90084-3
    Schunk, D. H. (1984). Self-efficacy perspective on achievement behavior. Educational Psychologist, 19(1), 48–58. https://doi.org/10.1080/00461528409529281
    Sweeney, P. D., Anderson, K., & Bailey, S. (1986). Attributional style in depression: A meta-analytic review. Journal of Personality and Social Psychology, 50(5), 974–991. https://doi.org/10.1037/0022-3514.50.5.974
    Taber, K. S. (2018). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273–1296. https://doi.org/10.1007/s11165-016-9602-2
    Tang, C. S., Veelenturf, L. P., & van Donselaar, K. H. (2020). Bullwhip effect in supply chains: A review of methods, causes and mitigation strategies. International Journal of Production Research, 58(1), 1–17. https://doi.org/10.1080/00207543.2019.1675910
    Tayie, S. (2005). Research Methods and Writing Research Proposals. Center for Advancement of Postgraduate Studies and Research in Engineering Sciences, Faculty of Engineering-Cario University(CAPSCU): Pathways to Higher Education
    Tzafilkou, K., Perifanou, M., & Economides, A. A. (2021). Development and validation of a students’ remote learning attitude scale (RLAS) in higher education. Education and Information Technologies, 26, 6925–6952. https://doi.org/10.1007/s10639-021-10586-0
    Vanany, I., Syamil, A., & Widyarto, A. R. (2016). Teaching supply chain management using an innovative practical game. International Journal of Technology, 7(5), 852–860.
    Vrije Universiteit Amsterdam. (n.d.). Distribution logistics and supply chain management: Test questions & answer. tudeerSnel. Retrieved May 5, 2025, from https://www.studeersnel.nl/nl/document/vrije-universiteit-amsterdam/distribution-logistics-and-supply-chain-management/test-questions-answer/143214
    Wang, L., & Li, W. (2024). The impact of AI usage on university students’ willingness for autonomous learning. Behavioral Sciences, 14(10), 956. https://doi.org/10.3390/bs14100956
    Warr, P., & Downing, J. (2000). Learning strategies, learning anxiety and knowledge acquisition. British Journal of Psychology, 91(3), 311–333. https://doi.org/10.1348/000712600161853
    Weiner, B. (1985). An attributional theory of achievement motivation and emotion. Psychological Review, 92(4), 548–573. https://doi.org/10.1037/0033-295X.92.4.548
    Wilson, T. D., Damiani, M., & Shelton, N. (2002). Improving the academic performance of college students with brief attributional interventions. In J. Aronson (Ed.), Improving academic achievement (pp. 89–108). Academic Press.
    Wolters, C. A., Fan, W., & Daugherty, S. G. (2013). Examining achievement goals and causal attributions together as predictors of academic functioning. The Journal of Experimental Education, 81(3), 295–321. https://doi.org/10.1080/00220973.2012.700498
    Wu, P.-H., Hwang, G.-J., Milrad, M., Ke, H.-R., & Huang, Y.-M. (2012). An innovative concept map approach for improving students’ learning performance with an instant feedback mechanism. British Journal of Educational Technology, 43(2), 217–232. https://doi.org/10.1111/j.1467-8535.2010.01167.x
    Yang, H.-J., & Farn, C. K. (2005). An investigation the factors affecting MIS student burnout in technical-vocational college. Computers in Human Behavior, 21(6), 917–932. https://doi.org/10.1016/j.chb.2004.03.001
    Yang, Y., Lin, J., Liu, G., & Zhou, L. (2021). The behavioural causes of bullwhip effect in supply chains: A systematic literature review. International Journal of Production Economics, 236, 108120. https://doi.org/10.1016/j.ijpe.2021.108120
    Zhang, Y., Yao, Z., & Wang, J. (2024). The influence of academic self-efficacy on learning engagement in online education in China: The mediating role of effort. Journal of Contemporary Educational Research, 8(10), 61–68.
    Zhao, X., Xiong, Y., Yu, Y., & Wang, L. (2018). Bullwhip effect mitigation of green supply chain optimization in electronics industry. Journal of Cleaner Production, 180, 888–912. https://doi.org/10.1016/j.jclepro.2018.01.134
    Zheng, L., Bhagat, K. K., Zhen, Y., & Zhang, X. (2020). The effectiveness of the flipped classroom on students’ learning achievement and learning motivation: A meta-analysis. Educational Technology & Society, 23(1), 1–15.
    Zimmerman, B. J. (2000). Self-efficacy: An essential motive to learn. Contemporary Educational Psychology, 25(1), 82–91. https://doi.org/10.1006/ceps.1999.1016

    無法下載圖示 校內:2030-06-24公開
    校外:2030-06-24公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE