簡易檢索 / 詳目顯示

研究生: 林宏昌
Lin, Hong-Chang
論文名稱: 量子分子動力學理論之研究
Study on Quantum Molecular Dynamics Theory
指導教授: 黃吉川
Hwang, Chi-Chuan
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 186
中文關鍵詞: 分子動力學量子分子動力學
外文關鍵詞: molecular dynamics, quantum molecular dynamics
相關次數: 點閱:81下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 不論是奈米科技或是生醫科技,計算化學為其研究與預測的一個重要快速捷徑,故開發計算化學也成為一項熱門的研究。本文著重於完整的原子-分子系統的架構建立,大致歸類為三大方案,量子化學、動力學與蒙地卡羅;利用原子核與電子的相互運動關係又可再做細部的分類,整個架構包含了量子化學、量子分子動力學、分子動力學、量子蒙地卡羅與蒙地卡羅,如此一來,原子-分子系統架構圖將可以充分表達出各種計算領域間的相互關聯。
    最後我們介紹從頭起算法之Hartree-Fock計算並介紹現今幾個著名的量化軟體。

    No matter nano-technology or bio-technology, computational chemistry provides a shortcut for investigation and prediction. Therefore, the development of the computational chemistry becomes a hot investigation. This paper focuses on the framework of the system which is set up by atoms and molecules. Generally, it could be divided into three parts, that is quantum chemistry, dynamics and Monte Carlo. Furthermore, it could be classified more detailed by the relative motions between nuclei and electrons. It includes quantum chemistry, quantum molecular dynamics, molecular dynamics, quantum Monte Carlo and Monte Carlo. Thus, the framework of the system described above would use to express the relation among the various computational methodologies in detail. Finally, we introduce ab initio calculation method and some famous software of quantum chemistry.

    目錄...........................................................................I 圖目錄.......................................................................III 符號表(第一章).................................................................1 第一章 原子-分子系統之計算方案................................................2 1.1 量子化學方案..............................................................4 1.1.1 波恩-歐本海默近似.......................................................5 1.1.2 電子運動主導之系統.....................................................12 1.1.3 原子核運動主導之系統...................................................15 1.1.4 電子運動與原子核運動等同系統...........................................20 1.2 動力學方案...............................................................21 1.2.1 Hellmann-Feynman理論...................................................22 1.2.2 量子分子動力學.........................................................24 1.2.3 分子動力學.............................................................26 1.3 蒙地卡羅方案.............................................................27 1.3.1 蒙地卡羅...............................................................27 1.3.2 量子蒙地卡羅...........................................................28 符號表(第二章)................................................................29 第二章 量子分子動力學(一):Hartree-Fock理論模型..............................30 2.1 反對稱或鮑利不相容原理...................................................30 2.2 自旋軌域(spin orbital)與空間軌域(spatial orbital)........................32 2.3 Hartree乘積..............................................................35 2.4 Slater行列式.............................................................37 2.5 Hartree-Fock近似.........................................................43 2.6 變分法...................................................................48 2.7 Hartree-Fock方程.........................................................51 2.8 基底集合.................................................................65 第三章 量子分子動力學(二):其他力場模型......................................70 3.1 半經驗力場模型...........................................................70 3.2 經驗力場模型.............................................................71 第四章 相關軟體簡介..........................................................72 第五章 結論與建議............................................................85 參考文獻......................................................................87 附錄A.........................................................................91 附錄B........................................................................135 附錄C........................................................................164 自述.........................................................................186

    [1]M. Born and R. Oppenheimer, “Zur Quantentheorie der Molekeln.”, Ann. Phys. (Leipzig), Vol. 84, 457, 1927
    [2]Szabo Ostlund, “Modern Quantum Chemistry- Introduction to Advanced Electronic Structure Theory”, McGRAW-HILL
    [3]H. Hellmann, Einführung in die Quantumchemie (Deuticke, Leipzig), 285, 1937
    [4]R. P. Feynman, “Forces in Molecules.”, Phys. Rev., Vol. 56, 340, 1939
    [5]Mella M, Casalegno M, Morosi G, “Positron and positronium chemistry by quantum Monte Carlo. VI. The ground state of LiPs, NaPs, e(+)Be, and e(+)Mg.”, J CHEM PHYS, Vol. 117, 1450-1456, 2002
    [6]Bonaccorsi E, Merlino S, Pasero M, “Microsommite: crystal chemistry, phase transitions, Ising model and Monte Carlo simulations.”, PHYS CHEM MINER, Vol. 28, 509-522, 2001
    [7]Ogren P, Davis B, Guy N, “Curve fitting, confidence intervals and envelopes, correlations, and Monte Carlo visualizations for multilinear problems in chemistry: A general spreadsheet approach.”, J CHEM EDUC, Vol. 78, 827-836, 2001
    [8]Zamuner B, Dupoirieux F, “Numerical simulation of soot formation in a turbulent flame with a Monte-Carlo PDF approach and detailed chemistry.”, COMBUST SCI TECHNOL, Vol. 158, 407-438, 2000
    [9]Mella M, Morosi G, Bressanini D, “Positron and positronium chemistry by quantum Monte Carlo. V. The ground state potential energy curve of e(+)LiH.”, J CHEM PHYS, Vol. 113, 6154-6159, 2000
    [10]Falcioni M, Deem MW, “Library design in combinatorial chemistry by Monte Carlo methods.”, PHYS REV E, Vol. 61, 5948-5952, 2000
    [11]Candido L, Hai GQ, “Correlation energy of coupled double electron layers.”, MICROELECTR J., Vol. 34, 569-570, 2003
    [12]Koike S, Yanagisawa T, Yamaji K, “Variational Monte Carlo study of the superconducting condensation energy on the dependence of epsilon(p)-epsilon(d) in the two-dimensional d-p model.”, PHYSICA C, Vol. 388, 65-67, 2003
    [13]Yanagisawa T, Miyazaki M, Koikegami S, “Inhomogeneous d-wave state and lattice distortions in the three-band Hubbard model of high-T-c cuprates.”, PHYSICA C, Vol. 388, 72-73, 2003
    [14]Miyazaki M, Yamaji K, Yanagisawa T, “Inhomogeneous superconductivity coexisting with SDW stripes in the two-dimensional Hubbard model.” PHYSICA C, Vol. 388, 82-83, 2003
    [15]Yamaji K, Miyazaki M, Yanagisawa T, “Parameter dependence of the superconducting condensation energy of the two-dimensional Hubbard model.”, PHYSICA C, Vol. 388, 86-87, 2003
    [16]Plekhanov E, Sorella S, Fabrizio M, “Increasing d-wave superconductivity by on-site repulsion.”, PHYS REV LETT, Vol. 90, 187004, 2003
    [17]Praena J, Buendia E, Galvez FJ, “Simple correlated wave functions for the ground and some excited states of sd shell nuclei.”, PHYS REV C, Vol. 67, 044301, 2003
    [18]Yanagisawa T, Miyazaki M, Koikegami S, “Lattice distortions, incommensurability, and stripes in the electronic model for high-T-c cuprates.”, PHYS REV B, Vol. 67, 132408, 2003
    [19]Mikhailov ID, Betancur FJ, Escorcia RA, “Shallow donors in semiconductor heterostructures: Fractal dimension approach and the variational principle.”, PHYS REV B, Vol. 67, 115317, 2003
    [20]Galvez FJ, Buendia E, Sarsa A, “Excited states of beryllium isoelectronic series from explicitly correlated wave functions.”, J CHEM PHYS, Vol. 118, 6858-6867, 2003
    [21]Brualla L, Fantoni S, Sarsa A, “Spin-orbit induced backflow in neutron matter with auxiliary field diffusion Monte Carlo method.”, PHYS REV C, Vol. 67, 065806, 2003
    [22]Jakowski J, Chalasinski G, Gallegos J, “Characterization of ArnO- clusters from ab initio and diffusion Monte Carlo calculations.”, J CHEM PHYS, Vol. 118, 2748-2759, 2003
    [23]Auer BM, McCoy AB, “Using diffusion Monte Carlo to evaluate the initial conditions for classical studies of the photodissociation dynamics of HCl dimer.”, J PHYS CHEM A, Vol. 107, 4-12, 2003
    [24]Palestri P, Mastrapasqua M, Pacelli A, “A drift-diffusion/Monte Carlo simulation methodology for Si1-xGexHBT design.”, IEEE T ELECTRON DEV, Vol. 49, 1242-1249, 2002
    [25]Colletti L, Pederiva F, Lipparini E, “Investigation of excitation energies and Hund's rule in open shell quantum dots by diffusion Monte Carlo.”, EUR PHYS J B, Vol. 27, 385-392, 2002
    [26]Viel A, Patel MV, Niyaz P, “Importance sampling in rigid body diffusion Monte Carlo.”, COMPUT PHYS COMMUN, Vol. 145, 24-47, 2002
    [27]Sarsa A, Boronat J, Casulleras J, “Quadratic diffusion Monte Carlo and pure estimators for atoms.”, J CHEM PHYS, Vol. 116, 5956-5962, 2002
    [28]Hwang CO, Given JA, Mascagni M, “The simulation-tabulation method for classical diffusion Monte Carlo.”, J COMPUT PHYS, Vol. 174, 925-946, 2001
    [29]van Mourik T, Price SL, Clary DC, “Diffusion Monte Carlo simulations on uracil-water using an anisotropic atom-atom potential model.”, FARADAY DISCUSS, Vol. 118, 95-108, 2001
    [30]Ovcharenko I, Lester WA, Xiao CY, “Fixed node diffusion monte carlo characterization of Cu-doped Si clusters.”, ABSTR PAP AM CHEM S, Vol. 221, 271, 2001
    [31]Sorella S, Capriotti L, “Green function Monte Carlo with stochastic reconfiguration: An effective remedy for the sign problem.”, PHYS REV B, Vol. 61, 2599-2612, 2000
    [32]Bakker BLG, Polikarpov MI, Veselov AI, “Pauli potential and green-function Monte-Carlo method for many-Fermion systems.”, FEW-BODY SYST, Vol. 25, 101-113, 1998
    [33]Sorella S, “Green function Monte Carlo with stochastic reconfiguration.”, PHYS REV LETT, Vol. 80, 4558-4561, 1998
    [34]Buonaura MC, Sorella S, “Numerical study of the two-dimensional Heisenberg model using a Green function Monte Carlo technique with a fixed number of walkers.”, PHYS REV B, Vol. 57, 11446-11456, 1998
    [35]Cheon T, “Green function Monte Carlo method for excited states of quantum system.”, PROG THEOR PHYS, Vol. 96, 971-977, 1996
    [36]Boninsegni M, “Ground state of a frustrated quantum antiferromagnet: Fixed-node green function Monte Carlo study.”, PHYS LETT A, Vol. 216, 313-320, 1996
    [37]Boninsegni M, “Ground state of a triangular quantum antiferromagnet: Fixed-node Green-function Monte Carlo study.”, PHYS REV B, Vol. 52, 15304-15311, 1995
    [38]Lopez GE, “Fourier path integral Monte Carlo in the grand canonical ensemble.”, CHEM PHYS LETT, Vol. 375, 511-516, 2003
    [39]Miller TF, Clary DC, “Torsional path integral Monte Carlo method for calculating the absolute quantum free energy of large molecules.”, J CHEM PHYS, Vol. 119, 68-76, 2003
    [40]Capriotti L, Cuccoli A, Fubini A, “Path integral Monte Carlo for dissipative many-body systems.”, PHYS STATUS SOLIDI B, Vol. 237, 23-38, 2003
    [41]Ando K, Sumi H, “Path-integral Monte Carlo calculation of reaction-diffusion equation.”, J CHEM PHYS, Vol. 118, 8315-8320, 2003
    [42]Trigger SA, Ebeling W, Filinov VS, “Internal energy of high-density hydrogen: Analytic approximations compared with path integral Monte Carlo calculations.”, J EXP THEOR PHYS+, Vol. 96, 465-479, 2003
    [43]Hoffmann J, Nielaba P, “Phase transitions and quantum effects in pore condensates: A path integral Monte Carlo study.”, PHYS REV E, Vol. 67, 036115, 2003
    [44]Martonak R, Santoro GE, Tosatti E, “Quantum annealing by the path-integral Monte Carlo method: The two-dimensional random Ising model.”, PHYS REV B, Vol. 66, 094203, 2002
    [45]Cho AE, Doll JD, Freeman DL, “Wavelet formulation of path integral Monte Carlo.”, J CHEM PHYS, Vol. 117, 5971-5977, 2002
    [46]Shevkunov SV, “A dense hydrogen plasma modeled by the path integral-Monte Carlo method.”, J EXP THEOR PHYS+, Vol. 94, 943-965, 2002
    [47]Gordillo MC, Ceperley DM, “Two-dimensional H-2 clusters: A path-integral Monte Carlo study.”, PHYS REV B, Vol. 65, 174527, 2002
    [48]謝從卿教授 譯, 潘可傳 博士審定, “量子化學Quantum chemistry.”, 安和出出版社
    [49]J. C. Slater, Phys. Rev, Vol. 61, 126, 1930
    [50]S. F. Boys, Proc. Roy. Soc., Vol. A200, 542, 1950
    [51]S. F. Boys, Proc. Roy. Soc., Vol. A201, 125, 1950
    [52]S. Huzinaga, (ED.), “gaussian basis sets for molecular calculation.”, Elsevier, Amsterdam, 1984.
    [53](a)first-row: W. J. Hehre, R. F. Stewart and J. A. Pople, J. Chem. Phys., Vol. 51, 2657, 1969; (b)second-row: W. J. Hehre, R. Ditchfield, R. F. Stewart and J. A. Pople, ibid, Vol. 52, 2769, 1970; (c)third-row, main group: W. J. Pietro, B. A. Levi, W. J. Hehre and R. F. Stewart, Inorg. Chem., Vol. 19, 2225, 1980; (d)fourth-row, main group: W. J. Pietro, R. F. Hout, Jr., E. S. Blurock, W. J. Hehre, D. J. DeFrees and R. F. Stewart, ibid, Vol. 20, 3650, 1981; (e)first and second-row transition metals: W. J. Pietro and W. J. Hehre, J. Comput. Chem., Vol. 4, 241, 1983
    [54](a)first-row: J. S. Binkley, J. A. Pople and W. J. Hehre, J. Am. Chem. Soc., Vol. 102, 939, 1980; (b)second-row: M. S. Gordon, J. S. Binkley, J. A. Pople, W. J. Pietro and W. J. Hehre, ibid., Vol. 104, 2797, 1982

    下載圖示 校內:2004-08-29公開
    校外:2005-08-29公開
    QR CODE