簡易檢索 / 詳目顯示

研究生: 柯孟昀
Ko, Meng-Yun
論文名稱: EP2與EP4受體致效劑對於PMA前處理HEL細胞 之影響
The effect of EP2、EP4 agonists on PMA-pretreated human erythroleukemia cells
指導教授: 簡偉明
Kan, Wai-Ming
學位類別: 碩士
Master
系所名稱: 醫學院 - 藥理學研究所
Department of Pharmacology
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 90
中文關鍵詞: 前列腺素
外文關鍵詞: PGE2, EP4, PKC, HEL, EP2
相關次數: 點閱:71下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   Human erythroleukemia (HEL) 細胞經PMA處理後會分化成類單核球/巨噬細胞 (monocyte/ macrophage like cells) 之貼壁細胞。然而HEL細胞經phorbol ester (PMA) 處理一天後再投予EP2或EP4致效劑,則這些細胞會進一步分化成類棘狀細胞 (dendritic cells; DC)。在棘狀細胞的鑑定中,EP2及EP4致效劑會促使棘狀細胞專一性標記CD83表現增加,其表現約為單獨投予PMA之2倍,然而在HLA-DR 的表現上,只有EP2致效劑會促使其表現增加約為單獨投予PMA之1.6倍。在功能性分析上,EP2及EP4致效劑所誘導出的棘狀細胞其細胞吞噬能力較低,顯示所誘導出的細胞為成熟之棘狀細胞。而在細胞訊息傳遞之研究中發現,投予MEK抑制劑U0126、PD98059皆能抑制EP2/EP4致效劑誘導CD83表現,並且反轉EP2/EP4致效劑誘導細胞吞噬能力的降低,以及抑制EP2致效劑誘導ERK1/2磷酸化,因此可知EP2/EP4誘導棘狀細胞的生成具MEK 依賴性。已知EP2及EP4受體主要與Gs蛋白質作用而促使細胞內cAMP 的作用,然而在投予PKA抑制劑H89後發現,H89並不能抑制EP2誘導CD83表現增加或ERK1/2磷酸化,顯示EP2誘導棘狀細胞形成無PKA依賴性。而投予PI3-Kinase(PI3K)抑制劑LY294002、Wortmannin亦得相同結果。而在投予PKC抑制劑Ro318425以及Gö6976中發現,Ro318425能明顯抑制EP2致效劑所誘導CD83表現增加及ERK1/2磷酸化,而classical PKC抑制劑Gö6976卻無此作用,已知HEL 細胞在PMA長時間刺激下會促使classical PKC的down-regulated,因此排除classical PKC的參與。在PKC磷酸化分析中發現EP2致效劑能夠誘導PKC-δ Ser-643及Thr-505 位置磷酸化,且此磷酸化現象可被Ro318425 所抑制,因此可以證實PKC-δ在其中扮演著重要的角色。

      綜合上述實驗結果可以得知,EP2/EP4致效劑主要經由具PKC-δ依賴性的MEK 路徑而誘導棘狀細胞形成。

      Human erythroleukemia (HEL) cells differentiate into monocytic/ macrophage-like cells after phorbol ester (PMA) treatment. In our finding, EP2 and EP4 agonists promoted dendrite outgrowth in PMA-pretreated HEL cells.EP2 and EP4 agonists induced a 2 fold increase in the expression of DC specific surface maker CD83 in these differentiated cells. However, only EP2 agonist could induce a 1.6 fold increase in the expression of HLA-DR. In functional analysis, EP2 and EP4 agonists reduced the phagocytic activity on PMA treated HEL cells, which is characteristic of maturated dendritic cells. In the study of signal transduction involved in EP2 receptor mediated dendrite formation, we found that MEK inhibitors, U0126 and PD98059, reduced the expression of CD83 and ERK1/2 phosphorylation induced by EP2 agonist. Moreover, they reversed EP2 agonist reduced phagocytotic activity. It’s well known that EP2/EP4 receptors were coupled to Gs protein and induce intracellular cAMP formation. However, PKA inhibitor H89 has no effect on EP2 agonist induced increase in CD83 expression and ERK1/2 phosphorylation, while PI3 Kinase inhibitors Wortmannin and LY294002 faled also. We suggested that EP2 agonist promoted DC formation was PKA- and PI3K- independent. A genernal PKC inhibitor,
    Ro318425 was found to inhibit EP2 agonist induced CD83 expression and ERK1/2 phosphorylation, while classical PKC inhibitor Gö6976 failed. It suggested that classical PKCs were not involved in EP2 receptor signaling in our system. Furthermore, EP2 agonist promotes PKC-δ Ser-643 and Thr-505 phosphorylation, which can be abolished by Ro318425. PKC-δ may plays an important role in EP2 agonist induced DC formation.
     
      In conclusion, EP2/EP4 agonists induced DC differentiation in PMA-pretreated HEL cells via a PKC-δ dependent MEK activation signaling pathway.

    中文摘要......................... 4 英文摘要......................... 6 縮寫表........................... 7 壹、緒論......................... 8 貳、實驗材料及方法............... 16 參、實驗結果與討論............... 38 肆、討論......................... 47 伍、參考文獻..................... 52 陸、圖表......................... 57

    1.Banchereau J. and Steinman RM. Dendritic Cells and the Control of Immunity. Nature 392, 245-251, 1998.
    2.Pierre P., Turley SJ., Gatti E., Hull M., Meltzer J., Mirza A., Inaba K., Steinman RM. and Mellman I. Developmental Regulation of MHC class II Transport in Mouse Dendritic Cells. Nature 388, 787-792, 1997.
    3.Faries MB., Bedrosian I., Xu S., Koski G., Roros JG., Moise MA., Nguyen HQ., Eegels FC., Cohen PA. and Czerniecki BJ. Calcium Signaling Inhibits Interleukin-12 Production and Activates CD83+ Dendritic Cells that Induce Th2 Cell Development. Blood 98, 2489-2497, 2001.
    4.Warren MK., Rose WL., Cone JL., Rice WG. and Turpin JA. Differential Infection of CD34+ Cell-Derived Dendritic Cells and Monocyte-Tropic HIV-1 Strains. J. Immunol. 158, 5035-5042, 1997.
    5.Smyth MJ., Godfrey DI. and Trapani JA. A Fresh Look at Tumor Immunosurveillance and Immunotherapy. Nature Immunology 2, 293-299, 2001.
    6.Biragyn A. and Kwak LW. Designer Cancer Vaccines Are Still in Fashion. Nature Medicine 6, 966-968, 2000.
    7.Nestle FO. Dendritic Cell Vaccination for Cancer Therapy. Oncogene 19, 6673-6679, 2000.
    8.Hart DJ. Dendritic Cells: Unique Leukocyte Populations Which Control the Primary Immune Response. Blood 90, 3245-3287, 1997.
    9.Shortman K. and Liu YJ. Mouse and Human Dendritic Cell Subtypes. Nature Immunology. 2, 151-161, 2002.
    10.Despars G. and O’ Neill HC. A Role for Niches in the Developmant of A Multiplicity of Dendritic Cell Subsets. Exp. Hematol. 32, 235-243, 2004.
    11.Davis TA., Saini AA., Blair PJ., Levine BL., Craighead N., Harian DM., June CH., and Lee KP. Phorbol Easters Induce Differentiation of Human CD34+ Hemopoietic Progenitors to Dendritic Cells: Evidence for Protein Kinase C-Mediated Signaling. Blood 160, 3689-3697, 1998.
    12.Lindner I., Kharfan-Dabaja MA., Ayala E., Kolonias D., Carlson LM., Beazer-Barclay Y., Scherf U., Hnatyszyn JH. and Lee KP. Induced Dendritic Cell Differentiation of Chronic Myeloid Leukemia Blasts Is Associated with Down-Regulation of BCR-ABL. J. Immunol. 171, 1780-1791, 2003.
    13.Ramadan G., Schmidt RE., and Schubert J. In Vitro Generation of Human CD86+ Dendritic Cells from CD34+ Haematopoietic Progenitors by PMA and in Serum-Free Medium. Clin. Exp. Immunol. 125, 237-244, 2001.
    14.Blandine de SV., Isabelle FV., Massacrier C., Gaillard C., Vanbervliet B., Aït-Yahia S., Banchereau J., Liu YJ., Lebecque S. and Caux C. The Cytokine Profile Expressed by Human Dendritic Cells Is Dependent on Cell Subtype and Mode of Activation. J. Immunol. 160, 1666-1676, 1998.
    15.Mellman I. and Steinman RM. Cell 106, 255-258, 2001.
    16.Yanagawa Y. and Onoé K. CCR7 Ligands Induce Rapid Endocytosis in Mature Dendritic Cells with Concomitant Up-Regulation of Cdc42 and Rac Activities. Blood 101, 4923-4929, 2003.
    17.MacDonald KA., Munster DJ., Clark GJ., Dzionek A., Schmitz J. and Hart DN. Characterization of Human Blood Dendritic Cell Subsets. Blood 100, 4512-4520, 2002.
    18.Yanagawa Y. and Onoé K. CCR7 Ligands Induce Rapid Endocytosis in Mature Dendritic Cells with Concomitant Up-Regulation of Cdc42 and Rac Activities. Blood 101, 4923-4929, 2003.
    19.Inaba K., Turley S., Iyoda T., Yamaide F., Shimoyama S., Sousa CR., Germain RN., Mellman I, and Steinman RM. The Formation of Immunogenic Major Histocompatibility Compartments of Dendritic Cells Is Regulated by Inflammatory Stimuli. J. Exp. Med. 191, 927-936, 2000.
    20.Richard, P. P. et al. Prostaglandins as modulators of immunity. Trends in immunology 23(3), 144-150, 2002.
    21.Ruggeri, P. et al. Polyamine metabolism in prostaglandin-E2-treated human T lymphocytes. Immunopharmacol. Immunotoxicol. 22, 117–129, 2000.
    22.Cosme, R. et al. Prostanoids in human colonic mucosa: effects of inflammation on PGE(2) receptor expression. Hum. Immunol. 61, 684–696, 2000.
    23.Hilkens, C. M. et al. Modulation of T-cell cytokine secretion by accessory-cell-derived products. Eur. Respir. J. Suppl. 22, 90s–94s, 1996.
    24.Bloom, D. et al. Prostaglandin E2 enhancement of interferon-γ production by antigen-stimulated type 1 helper T cells. Cell. Immunol. 194, 21–27, 1999.
    25.Harizi, H. et al. Dendritic cells issued in vitro from bone marrow produce PGE(2) that contributes to the immunomodulation induced by antigen-presenting cells. Cell. Immunol. 209, 19–28, 2001.
    26.Kalinski, P. et al. Dendritic cells, obtained from peripheral-blood precursors in the presence of PGE2, promote Th2 responses. Adv. Exp. Med. Biol. 417, 363–367, 1997.
    27.莊惠評,“鑑別前列腺環素致效劑對於PMA誘導HEL細胞分化特性影響之研究”,國立成功大學碩士論文,2004.
    28.Watabe, A., Sugimoto, Y., Honda, A., Irie, A., Namba, T., Negishi, M., Ito, S., Narumiya, S., Ichikawa, A.. Cloning and expression of cDNA for a mouse EP1 subtype of prostaglandin E receptor. J. Biol. Chem. 268, 20175–20178, 1993.
    29.Sugimoto, Y., Namba, T., Honda, A., Hayashi, Y., Negishi, M., Ichikawa, A., Narumiya, S.. Cloning and expression of a cDNA for mouse prostaglandin E Receptor EP3 subtype. J. Biol. Chem. 267, 6463–6466, 1992.
    30.Honda, A., Sugimoto, Y., Namba, T., Watabe, A., Irie, A., Negishi, M., Narumiya, S., Ichikawa, A.. Cloning andvexpression of a cDNA for mouse prostaglandin E receptor EP2 subtype. J. Biol. Chem. 268, 7759–7762, 1993.
    31.Regan, J.W., Bailey, T.J., Pepperl, D.J., Pierce, K.L., Bogardus, A.M., Donello, J.E., Fairbairn, C.E., Kedzie, K.E., Woodward, D.F., Gil, D.W.. Cloning of a novel human prostaglandin receptor with characteristics of the pharmacologically defined EP2 subtype. Mol. Pharmacol. 46, 213–220, 1994.
    32.Toh H., Ichikawa A., and Narumiya S.. Molecular evolution of receptors for eicosanoids. FEBS Lett. 361, 17-21, 1995.
    33.Daniel W. Gil. et al.. A single amino-acid substitution in the EP2 prostaglandin receptor confers responsiveness to prostacyclin analogs. Mol. Pharmacol. 54, 584-590,1998.
    34.Martin P. HEL Cells: A New Human Erythroleukemia Cell Line with Spontaneous and Induced Globin Expression. Science 216, 1233-1235, 1982.
    35.Tsuji T., Waga I., Tezuka K., Kamada M., Yatsunami K. and Kodama H. Integrin β2(CD18)-Mediated Cell Proliferation of HEL Cells on a Hematopoietic-Supportive Bone Marrow Stromal Cell Line, HESS-5 Cells. Blood 91, 1263-1271, 1998.
    36.Long MW., Heffner CH., Williams JL., Peters C., and Prochownik EV. Regulation of Megakaryocyte Phenotype in Human Erythroleukemia Cells. J. Clin. Invest. 85, 1072-1084, 1990.
    37.Sheth S. B. et al. Distribution of prostaglandin IP and EP receptor subtypes and isoforms in platelets and human umbilical artery smooth muscle cells. Biritish J. Haema.. 102, 1204-1211, 1998.
    38.Feoktistov, I., Breyer, R. M., Biaggioni, I. Prostanoid Receptor with a Novel Pharmacological Profile in Human Erythroleukemia Cells. Biochem. Pharmacol. 54, 917-926, 1997.
    39.Papayannopoulou T., Yokochi T., Nakamoto B. and Martin P. The Surface Antigen Profile of HEL Cells. Globin Gene Expression and Hematopoietic Differentiation, 277-292, 1983.
    40.Papayannopoulou T., Yokochi T., Chait A., and Kannagi R. Human Erythroleukemia Cell Line(HEL) Undergoes a Drastic Macrophage-Like Shift With TPA. Blood 62, 832-845, 1983.
    41.Papayannopoulou T., Nakamoto B., Kurachi S., Tweeddale M. and Messner H. Surface Antigenic Profile and Globin Phenotype of Two New Human Erythroleukemia Lines: Characterization and Interpretataions. Blood 72, 1029-1038, 1988.
    42.Berthier R., Chapel A., Schweitzer A., and Andrieux A. β2 Integrins mediate adherent phenotype of human erythroblastic cell lines after phorbol 12-myristate 13-acetate induction. Biochem. J. 309, 491-497, 1995.
    43.Auwerx JH., Chait A., Wolfbauer G.. and Deeb SS. Loss of Copper-Zinc Superoxide Dismutase Gene Expression in Differentiated Cells of Myelo-Monocytic Origin. Blood 74, 1807-1810, 1989.
    44.Berlanga O., Bobe R., Becker M., Murphy G., Leduc M., Bon C., Barry FA., Gibbins JM., Garcia P., Frampton J. and Watson SP. Expression of the Collagen Receptor Glycoprotein VI During Megakaryocyte Differentiation. Blood 96, 2740-2745, 2000.
    45.Yeo E., Furie BC. and Furie B. PADGEM Protein in Human Erythroleukemia Cells. Blood 73, 722-728, 1989.
    46.Zauli G., Bassini A., Catani L., Gibellini D., Celeghini C., Borgatti P., Caramelli E., Guidotti L. and Capitani S. PMA-Induced Megakaryocytic Differentiation of HEL Cells is Accompanied by Striking Modifications of Protein Kinase C Catalytic Activity and Isoform Composition at the Nuclear Level. Br. J. Haematol. 92, 530-536, 1996.
    47.Jiang F., Jia Y., and Cohen I. Fibronectin- and Protein Kinase C-Mediated Activation of ERK/MARK are Essential for Proplateletlike Formation. Blood 99, 3579-3584, 2002.
    48.A. Besse, F. Trimoreau, J.L. Faucher, V. Praloran, Y. Denizot. Biochimica et Biophysica Acta 1450 , 444-451, 1999.
    49.F. Ushikubi, M. Hirata, S. Narumiya. J. Lipid Mediators Cell Signalling 12, 343-359, 1995.
    50.David F. W. et al.. British Journal of Pharmacology 142, 737–748, 2004.
    51.Silvano C. et al. PMA-induced megakaryocytic of HEL cells is accompanied by striking modifications of protein kinase C catalytic activity and isoform composition at the nuclear level. British Journal of Haematology 92, 530-536, 1996.
    52.Philip J. S. Stork and John M. Schmitt. Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. TRENDS in Cell Biology 12(6), 258-266, 2002.
    53.Mario C. and Filippo R. Effect of prostaglandin E2 on PMA-induced macrophage differentiation. Prostaglandins and other lipid mediators 75, 13-24, 2005.
    54.Philip C. et al. Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem. J. 351, 95-105, 2000.

    下載圖示 校內:2006-08-13公開
    校外:2006-08-13公開
    QR CODE