| 研究生: |
顏景傳 Yen, Ching-Chuan |
|---|---|
| 論文名稱: |
具表面輻射之逆熱傳導問題 Inverse Heat Conduction Problems with Surface Radiation |
| 指導教授: |
吳志陽
Wu, Chih-Yang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 87 |
| 中文關鍵詞: | 積分方程式 、週期性熱擾動 、表面輻射 、雙曲線熱傳導 、非傅立葉效應 |
| 外文關鍵詞: | hyperbolic heat conduction, periodic thermal disturbance, surface radiation, Non-Fourier effect, integral equation |
| 相關次數: | 點閱:126 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本文的目的為研究在有限平板之雙曲線熱傳導的正、逆算問題受表面輻射的影響。其中,表面溫度的非線性積分方程可用拉氏轉換導出,再以數值方法求解。首先考慮在邊界表面的一端具有脈衝或週期振盪式邊界熱通量的正算問題。以週期振盪式邊界熱通量為例,表面輻射不僅使溫度降低,而且造成表面溫度非對稱振盪。接著利用溫度的積分解,由一邊界的溫度逆算另一邊界的熱通量。發現量測溫度加誤差的逆算結果,隨著時間經過逐漸變差,此量測誤差效應在有表面輻射時更加明顯。本文也探討邊界熱通量週期、振幅和平板厚度對逆算結果的影響。
Abstract
The objective of this work is to investigate the effects of the surface radiation on the direct and inverse problems of the hyperbolic heat conduction in a finite slab. The non-linear integral equation for the surface temperature derived by using the Laplace transform is solved numerically. First, the direct problems with pulse and periodic on-off boundary heat flux at one of the boundary surface are considered. The surface radiation not only lowers the temperature, but also causes the nonsymmetrical oscillation of the surface temperature for a case with periodic on-off boundary heat flux. Next, the integral solution for the temperature is used to estimate the boundary heat flux from the temporal temperature distribution at the other boundary. The inverse results obtained from the measured temperature with error get worse as time passes. The effect of measurement is obvious for the cases with surface radiation. The effects of the period, the amplitude and the thickness are also investigated.
參考文獻
1. N. V. Shumakov, "A Method for the Experimental Study of the Process of Heating a Solid Body," Soviet Physic-Technical Physics(Translated by In-Stitute of Physics), vol. 2, pp. 771-778, 1957.
2. D. M. Trujillo and H. R. Busby, Practical Inverse Analysis in Engineering, CRC press Boca Raton, New York, 1997.
3. H. Haario, Theory and Applications of Inverse Problems, Longman Scientific & Technical, New York, 1988.
4. O. M. Alifanov, Inverse Heat Transfer Problems, Springer Verlag, New York, 1994.
5. J. V. Beck, B Blackwell and C. R. St Clair, Inverse Heat Conduction Problems: Ill-Posed Problems, Wiley Interscience, New York, 1985.
6. K. Kurpisz and A. J. Nowak, Inverse Thermal Problems, Computational Mechanics Inc., Billeriica, Massachusetts, 1995.
7. M. N. , and D. Y. Tzou, "On the Wave Theory in Heat Conduction," J. Heat Transfer, vol. 116, pp. 526-535, 1994.
8. P. Vernotte, "Les Panadoxes de la Theorie Continue de l' equation de la Chaleur," Comptes Rendus, vol. 246, pp. 3154-3155, 1958.
9. Y. Taitel, "On the Parabolic, Hyperbolic and Discrete Formulation of the Heat Conduction Equation," Int. J. Heat Mass Transfer, vol. 15, pp. 369-371, 1972.
10. D. E. Glass, M. N. , and D. S. McRae, "On the Numerical Solution of Hyperbolic Heat Condition," Numer. Heat Transfer, vol. 8, pp. 497-504, 1985.
11. C.-Y. Wu, "Integral Equation Solution for Hyperbolic Heat Conduction with Surface Radiation," Int. Comm. Heat Mass Transfer, vol. 15, pp. 365-374, 1988.
12. C.-Y. Wu, "Hyperbolic Heat Conduction with Surface Radiation and Reflection," Int. J. Heat Mass Transfer, vol. 32, pp. 1585-1587, 1989
13. A. Kar, C. L. Chan, J. Mazumder, "Comparative Studies on Non-linear Hyperbolic and Parabolic Heat Conduction for Various Boundary Conditions: Analytic and Numerical Solutions," J. Heat Transfer, vol. 114, pp. 14-20, 1992.
14. D. W. Tang, and N. Araki, "The Wave Characteristics of Thermal Conduction in Metallic Films Irradiated by ultra-short Laser Pulses," J. Phys. D: Appl. Phys. vol. 29, pp. 2527-2533, 1996.
15. G. F. Carey and M. Tsai, "Hyperbolic Heat Transfer with Reflection," Numer. Heat Transfer, vol. 5, pp. 309-327, 1982.
16. J. R. Torczynski, D. Gerthsen and T. Roesgen, "Schlieren Photography of Second-Sound Shock Waves in Superfluid Helium," Physics Fluids, vol. 27, pp. 2418-2423, 1984.
17. J. R. Torczynski, "On the Interaction of Second Sound Shock Waves and Vorticity in Superfluid Helium," Physics Fluids, vol. 27, pp. 2636-2644, 1984.
18. W. W. Yuen, and S. C. Lee, "Non-Fourier Heat Conduction in a Semi-infinite Solid subjected to Oscillatory Surface Thermal Disturbances," J. Heat Transfer, vol. 111, pp.178-181, 1989.
19. D. E. Glass, M. N. and B. Vick, "Non-Fourier Effects on Transient Temperature Resulting from Periodic on-off Heat Flux," Int. J. Heat Mass Transfer, vol. 30, pp. 1623-1631, 1987.
20. D. W. Tang, and N. Araki, "Non-Fourier Heat Conduction in a Finite Medium under Periodic Surface Thermal Disturbance," Int. J. Heat Mass Transfer, vol. 39, pp. 1585-1590, 1996.
21. B. Abdel-Hamid, "Modeling Non-Fourier Heat Conduction with Periodic Thermal Oscillation using the Finite Integral Transform," Appl. Math. Modeling, vol. 23, pp.899-914, 1999.
22. 黃川展, 平板雙曲線熱傳導之邊界熱通量估算, 國立成功大學機械工程研究所碩士論文, 2001.