簡易檢索 / 詳目顯示

研究生: 陳盈真
Chen, Ying-Jen
論文名稱: 半導體產業閒置物料的關聯分析
Association Analysis of the Idle Materials for Semiconductor Industry
指導教授: 翁慈宗
Wong, Tzu-Tsung
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業與資訊管理學系碩士在職專班
Department of Industrial and Information Management (on the job class)
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 41
中文關鍵詞: 關聯分析FP-growth演算法物料管理潛在顧客
外文關鍵詞: association analysis, FP-growth algorithm, material management, potential customer
相關次數: 點閱:166下載:33
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來半導體公司持續擴廠中,伴隨著所需要的廠房設備及機台物料也日益增加,為避免機台及物料造成不必要的耗損,且尋找與撿料也花費諸多時間,連帶庫存品持續積壓過高,導致撿料人員在時間與成本上的浪費。本研究主在探討該如何以最短的時間撿料。此外,對於新廠房的機台和物料的持續增加,而造成舊廠房滯留的閒置物料,該如何有效被推薦給使用者加以利用。

    實際使用69種類別之物料,約13,560筆領料單資訊,透過分出課別並利用關聯分析找出關鍵物料,依FP-growth演算法得知相關聯的物料放置一起,省下約10分鐘-15分鐘,可以加速撿料的時間,表示此結果可以提供給檢料人員進行物料管理,讓公司可以縮減人事成本前提下,採取主動出擊方式推薦給相關使用者選用並找到比較屬於需求的物料,除了減少閒置物料的管理、有效率的領料,更可降低庫存水位之目標。

    Semiconductor companies have continued to expand their factories in recent years, and the spending amount on the required plant equipment and machine materials is thus increasing. In order to avoid unnecessary waste on those resources, the continuous backlog of associated inventory is generally high, which leads to the waste of time and cost in picking materials. This study is aimed at reducing inventory cost that can be achieved by proper material recommendation for users and good layout of materials for inventory managers.

    Sixty-nine key categories of materials for semiconductor companies are considered in this study, and 13,560 material requisition forms are collected for analyzing their usage associations. The instances are divided into four subsets based on the department of material requisition. The ten association rules with the highest lift found by the FP-growth for each department are analyzed to filter the departments for material recommendation. The associations among materials are also used to reallocate the store position of each material so that storekeepers can pick up necessary materials efficiently.

    摘要 i 誌謝 vi 目錄 vii 表目錄viii 圖目錄ix 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 2 第三節 研究範圍與限制 3 第四節 研究流程 3 第二章 文獻探討 5 第一節 物料管理 5 第二節 潛在顧客 6 第三節 關聯分析 7 第四節 小結 11 第三章 研究方法 12 第一節 研究方法流程 12 第二節 資料蒐集與前置處理 13 第三節 關聯分析 15 第四節 結果之評估 18 第四章 實驗結果 20 第一節 資料前置處理 20 第二節 水課資料集 22 第三節 氣化課資料集 24 第四節 電課資料集 26 第五節 機械課資料集 28 第六節 綜合研析 30 第五章 結論與建議 34 第一節 研究發現 34 第二節 閒置物料管理之建議 35 第三節 未來研究建議 36 參考文獻 37

    中文文獻

    王建元(2012)。應用資料探勘技術於軌道運輸系統之維修物料管理。國立高雄第一科技大學運籌管理碩士論文。

    王慧華(2019)。顧客價值與商品關聯規則之研究-以小型電商為例。私立淡江大學企業管理學系碩士論文。

    平野裕之(2001)。庫存管理。書泉出版社。第三版。

    朱劍平(2019)。AN公司存貨管理改進研究。吉林大學管理學系碩士論文。

    岡上友太郎、櫻井多賀司(2004)。庫存管理實務入門:最適庫存與管理要點剖析。博志文化。初版。

    陳香如(2011)。結合分群法及ABC分析於庫存管理之改善-以IC設計為例。國立交通大學管理學院資訊管理學程。

    陳垂呈(2006)。有效率探勘關聯規則之演算法。科學與工程技術期刊,2(4), 83-91.

    趙彬、元曉遠(2017)。基於BIM+技術的施工企業物料集成管理研究。項目管理技術。Vol.2。70-75。

    簡禎富、許嘉裕(2014)。資料挖礦與大數據分析。前程文化。初版。

    英文文獻

    Agrawal, R. and Srikant, R. (1994). Fast algorithms for mining association rules in large database. Proceedings of the 20th International Conference on Very Large Data Bases, 487-499.

    Berry, M. J. and Linoff, G. S. (1997). Data Mining Techniques: For Marketing, Sales, and Customer Relationship Management. John Wiley & Sons, Inc.

    Han, J., Pei, J., and Yin, Y. (2000). Mining frequent patterns without candidate generation. ACM Sigmod Record, Vol.29, 1-12.

    Han, J., Pei, J., Yin, Y., and Mao, R. (2004). Mining frequent patterns without candidate generation: A frequent-pattern tree approach. Data Mining and Knowledge Discovery, 8(1), 53-87.

    Hand, D. J., Mannila, H., and Smyth, P. (2001). Principles of Data Mining. MIT Press.

    Harrington, P. (2013). Machine Learning in Action. Manning Publications.

    Heaton, J. (2016). Comparing dataset characteristics that favor the Apriori, Eclat and FP-growth frequent itemset mining algorithms. SoutheastCon 2016, 1-7.

    Hoque, A. S., Mondal, S. K., Zaman, T. M., Barman, P. C., and Bhuiyan, M. A. A. (2011). Implication of association rules employing FP-growth algorithm for knowledge discovery. 14th International Conference on Computer and Information Technology, 514-519.

    Hunyadi, D. (2011). Performance comparison of Apriori and FP-growth algorithms in generating association rules. Proceedings of the 5th European conference on European computing conference, 376-381.

    Izang, A. A., Okoro, U. R., Olarewaju, T. B., Fasanu, T. D., and Adeyinka, A. (2018). Automated market basket analysis system. International Journal of Computer Applications, 180(39), 44-51.

    Kamis, A., Che Rus, R., Rahim, M. B., Nur Yunus, F. A., Zakaria, N., and Mohd Affandi, H. (2017). Exploring green skills: a study on the implementation of green skills among secondary school students. International Journal of Academic Research in Business and Social Sciences, 7(12), 327-345.

    Kendall, S. D. (2006). Customer service from the customer's perspective. Customer Service Delivery: Research and Best Practices, 3-21.

    Mayilvaganan, M. and Kalpanadevi, D. (2014). Comparison of classification techniques for predicting the performance of students academic environment. 2014 International Conference on Communication and Network Technologies, 113-118.

    Nandy, A. (2018). Association rule mining with Eclat on a Malaysian retail store. International Journal of Research in Science and Technology, Vol.no.8, 32-49.

    Peter, W. T., Mathew, J., Wong, K., Lam, R., and Ko, C. N. (2014). Engineering Asset Management - Systems, Professional Practices and Certification. Springer.

    Puccinelli, N. M., Goodstein, R. C., Grewal, D., Price, R., Raghubir, P., and Stewart, D. (2009). Customer experience management in retailing: understanding the buying process. Journal of Retailing, 85(1), 15-30.

    Sheth, J. N., Mittal, B., and Newman, B. I. (1999). Customer Behavior: Consumer Behavior and Beyond. Dryden Press.

    Shen, Y., Liu, J., and Shen, J. (2010). The further development of weka base on positive and negative association rules. 2010 International Conference on Intelligent Computation Technology and Automation, 811-814.

    Srivastava, S. (2014). Weka: a tool for data preprocessing, classification, ensemble, clustering and association rule mining. International Journal of Computer Applications, 88(10), 26-29.

    Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kanfmann.

    Zeng, N. and Xiao, H. (2020). Inferring implications in semantic maps via the Apriori algorithm. Lingua, Vol.239, 1-12.

    下載圖示
    校外:立即公開
    QR CODE