簡易檢索 / 詳目顯示

研究生: 蔡濱祥
Tsai, Bing-Siang
論文名稱: 尖晶石系(MgxZn1-x)(In2-yGay)O4:Eu3+,Tb3+螢光粉體製備及其光致發光特性研究
Sythesis and Photo-Luminescent properties of (MgxZn1-x)(In2-yGay)O4:Eu3+,Tb3+ phosphors
指導教授: 張炎輝
Chang, Yen-Hwei
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 143
中文關鍵詞: 螢光粉體光致發光
外文關鍵詞: phosphor, photoluminescence, MgGa2O4
相關次數: 點閱:76下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文主要以開發新型的氧化物系螢光材料並研究其特性為重點,在主體晶格選擇上以尖晶石結構的MgGa2O4為基礎,分別添加稀土金屬離子Eu3+與Tb3+作為活化劑發光中心,並將主體成份的改變與採用不同製程比較,可將本研究分為四大部分:(1)擬溶膠-凝膠法製備MgGa2O4:Eu3+、(2) 擬溶膠-凝膠法製備MgxZn1-xGa2O4:Eu3+、(3) 擬溶膠-凝膠法與固相反應法製備MgIn2-xGaxO4:Eu3+及(4) 擬溶膠-凝膠法製備MgGa2O4:Tb3+等系列螢光粉體,並針對其光致發光特性進行研究。
      由實驗結果顯示,利用溶膠凝膠法製備的MgGa2O4:Eu3+螢光粉體,在600℃即形成MgGa2O4,並且在600~900℃之間皆為穩定的MgGa2O4單一相。而在394nm光源的激發下,MgGa2O4:Eu3+ 發出612nm的紅光屬於Eu3+離子的電偶極躍遷(5D07F2),顯示Eu3+離子在晶格中佔據非對稱中心位置,而光譜亦有濃度消淬的現象發生。此外,以900℃煆燒5小時的MgGa2O4:5%Eu3+粉體則具有最佳的發光強度。
    將Zn離子的導入MgGa2O4結構中以取代Mg離子,對粉體結晶性有顯著的提升作用,但發光強度卻隨之下降。在MgxZn1-xGa2O4:Eu3+中,其激發光譜明顯受到晶格場影響而變化,但發光特性則與MgGa2O4:Eu3+相似。分別在394與464nm光源下激發,均發現MgGa2O4:5%Eu3+具有較好的發光強度,顯示出在高Mg含量之下,螢光粉體具有較高的發光效率。
      在第三部份,藉由將In離子導入MgGa2O4之結構中以取代Ga離子,發現使用擬溶膠凝膠法或固相反應法均要在1300℃才有尖晶石結構之MgIn2-xGaxO4形成。在發光特性方面,MgIn2-xGaxO4:Eu3+的激發光譜顯示出異常現象,完全沒有Eu3+-O2-交互作用而產生的電荷轉移吸收帶的出現,僅在467nm附近有Eu3+離子的內層軌域吸收峰。在467nm光源激發下MgIn2-xGaxO4:Eu3+則發出615nm的亮紅光,同樣屬於5D07F2電偶極躍遷,但其強度則遠較MgxZn1-xGa2O4:Eu3+來的高。在此系列中發現以MgIn1.8Ga0.2O4:5%Eu3+之成份,具有最佳發光強度。
      而在最後部份,則不同於Eu3+活化的螢光粉體以屬於4f內軌域直接激發的方式發光;MgGa2O4:Tb3+螢光粉體由於Tb3+離子之4f-5d躍遷吸收與晶格吸收波長的重疊,導致主體晶格與發光離子間發生能量轉移,而使Tb3+離子以間接激發方式發光,在晶格吸收帶附近251nm光源激發下,MgGa2O4:Tb3+螢光粉體只發出550nm的綠光,屬於Tb3+的5D47F5的電子躍遷。
      在本研究中所製備的不同螢光粉體,以MgGa2O4:5%Eu3+具有最佳的發光顏色,非常接近National Television System Committee(NTSC)標準紅光,而MgIn1.8Ga0.2O4:5%Eu3+螢光粉體則具有最大之發光強度。

     The object of this study is to search new oxide based phosphors. The spinel crystallite, MgGa2O4, was selected as the host material and two rare earth ions, Eu3+ and Tb3+, were introduced as activators. With the substitution of matrix components and 2 kinds of synthesis processes employed, this study could be devided into four parts:(1)MgGa2O4:Eu3+ synthesized by sol-gel process, (2)MgxZn1-xGa2O4:Eu3+ synthesized by sol-gel process, (3) MgIn2-xGaxO4:Eu3+ synthesized bt sol-gel and solid-state reaction processes, (4) MgGa2O4:Tb3+ synthesized by sol-gel process. By using Thermal Analysis, XRD, SEM, TEM and PL spectra, the characterization and photo-luminescent properties of prepared phosphors were well investigated.
     The experimental results demonstrated that the MgGa2O4:Eu3+ begins to crystallize around 600℃ and forms stable spinel phase in the range of 600-900℃.Under the excitation of 394 nm, the calcined powders revealed red-emitting at 612nm (5D07F2) , and the powders prepared at 900℃ exhibited the best luminescence intensity. The MgGa2O4:Eu3+ phosphor also shows concentration quenching at about 5~6mol%.
     With the addition of Zn into MgGa2O4 crystallite, the crystallinity of MgxZn1-xGa2O4:Eu3+ powders gradually increased, but the luminescence intensity decreased. Under any wavelength excitation, the MgxZn1-x Ga2O4:5%Eu3+ exhibited similar emission behavior as MgGa2O4 and also emitted red light at 612nm.
     For MgIn2-xGaxO4:Eu3+ crystallites, by using the sol-gel process or solid-stste reaction to stnthesize the phosphors,the spinel phase only could form at above 1300℃. Distinct from typical Eu3+-activated phosphors, the extraordinary excitation spectrum shows only intense f-f transition of Eu3+ ions around 467nm without a charge transfer band. Under excitation, the obtained powders emitted bright red light at 615nm. The sample MgIn1.8Ga0.2O4:5%Eu3+ was found to have the best emission intensity.
     In the last section, there existed energy transfer effect between host and activators, and resulted in the in-direct excitation of Tb3+ ions. Under the excitation of host absorption band at 251 nm, the MgGa2O4:Tb3+ revealed only green emission of Tb3+ ions at 550nm without any emission of host.
     Among the all synthesized phosphor powders in this study, the MgGa2O4:5% Eu3+ phosphor revealed excellent color performance which is almost near to NTSC red color, but the MgIn1.8Ga0.2O4:5%Eu3+ phosphor was found to have the best emission intensity.

    摘 要 I Abstract III 目 錄 V 表目錄 VIII 圖目錄 IX 第一章 緒 論 1 1-1 前言 1 1-2 螢光材料發展現況與未來方向 2 1-3 研究動機與目的 2 第二章 理論基礎與文獻回顧 6 2-1 發光定義(definition of luminescence) 6 2-2 螢光材料簡介 6 2-3 發光機制簡介, 8 2-3-1螢光(fluorescence)與磷光(phosphorescence) 8 2-3-2 激發源種類與應用 8 2-4 固態材料中的光致發光 9 2-4-1 本質型發光(intrinsic luminescence) 9 2-4-2 外質型發光(extrinsic luminescence) 9 2-4-2-1 非侷限型(unlocalized type)發光材料 10 2-4-2-2 侷限型(localized type)發光材料 10 2-5 發光原理 10 2-5-1 組態座標(configuration coordination) 11 2-5-2 史托克位移(Stokes shift) 11 2-5-3 能量轉移(Energy transfer) 12 2-6 螢光體的組成與選擇 12 2-7 影響發光的因素,, 13 2-8 稀土金屬離子的發光特性- 14 2-9 尖晶石(spinel)結構介紹- 14 第三章 實驗方法與步驟 27 3-1 螢光粉體之製備 27 3-1-1 擬溶膠-凝膠法製程 27 3-1-2 固相反應法 (solid-state reaction) 28 3-2 化學藥品 29 3-3 光學特性分析 29 3-3-1螢光特性量測 29 3-3-2吸收光譜(Absorption Spectrum) 30 3-4 其他相關性質分析 30 3-4-1 示差掃描熱量分析(DSC)與熱差/熱重分析(DTA-TGA) 30 3-4-2 傅立葉轉換紅外線光譜分析(FT-IR) 30 3-4-3 X光繞射分析(X-ray diffraction, XRD) 30 3-4-4 掃描式電子顯微鏡(SEM)分析與EDS成份分析 31 3-4-5 穿透式電子顯微鏡(TEM)分析 31 第四章 結果與討論 38 4-1 擬溶膠-凝膠法合成之MgGa2O4:Eu3+ 38 4-1-1 熱分析與結晶行為 38 4-1-2 傅立葉轉換紅外線光譜(FT-IR)分析 39 4-1-3 X光繞射(XRD)分析 40 4-1-3-1 Eu摻雜濃度對結構的影響 40 4-1-3-2 煆燒溫度對結構的影響 40 4-1-4 TEM微結構觀察 41 4-1-5 吸收光譜 (absorption spectrum) 41 4-1-6 光致發光特性 (photo-luminescence properties) 41 4-1-6-1 激發與發射光譜 (excitation and emission spectra) 41 4-1-6-2 煆燒溫度對發光強度的影響 44 4-1-6-3 Eu3+之摻雜濃度對發光強度的影響 44 4-1-7 光致發光的衰變行為與殘光時間 45 4-1-7-1 摻雜濃度對殘光時間的影響 45 4-1-7-2 煆燒溫度對殘光時間的影響 45 4-1-8 結 論 46 4-2 擬溶膠-凝膠法合成之Mgx Zn1-xGa2O4:Eu3+ 64 4-2-1 熱分析與結晶行為 64 4-2-2 X光繞射(XRD)結構分析 64 4-2-3 TEM微結構與表面型態分析 65 4-2-4 EDX成份分析 65 4-2-6 吸收光譜 (absorption spectra) 65 4-2-7 光致發光特性 (photo-luminescence properties) 66 4-2-7-1 激發與發射光譜 (excitation and emission spectra) 66 4-2-7-2 Mg/Zn比例對MgxZn1-xGa2O4:Eu發光強度的影響 67 4-2-7-3 衰變行為與殘光時間 67 4-2-8 結 論 68 4-3 擬溶膠-凝膠法與固相反應法合成之MgIn2-xGaxO4:Eu3+ 81 4-3-1 熱分析與結晶行為 81 4-3-2 X光繞射(XRD)結構分析 81 4-3-2-1 In/Ga 比例對MgIn2-xGaxO4:Eu3+結晶結構的影響 81 4-3-2-2 煆燒溫度對MgIn2-xGaxO4:Eu3+結構的影響 82 4-3-3 SEM微結構與表面型態分析 83 4-3-3-1 Eu3+摻雜濃度的影響 83 4-3-3-2 In/Ga比例的影響 83 4-3-3-3 煆燒溫度與時間的影響 84 4-3-4 吸收光譜 (absorption spectra) 84 4-3-5 光致發光特性 (photo-luminescence properties) 85 4-3-5-1 激發與發射光譜 (excitation and emission spectra) 85 4-3-5-2 煆燒溫度對發光強度與發光光譜的影響 86 4-3-5-3 Mg劑量比對發光特性的影響 86 4-3-5-4 In/Ga比例對發光強度與發光光譜的影響 86 4-3-5-5 Eu3+摻雜濃度對發光強度與發光光譜的影響 87 4-3-5-6 結構對發光強度與發光光譜的影響 87 4-3-5-7 衰變行為與殘光時間 87 4-3-6 結 論 88 4-4 擬溶膠-凝膠法合成之MgGa2O4:Tb3+ 112 4-4-1 X光繞射(XRD)結構分析 112 4-4-1-1 Tb摻雜濃度對結構的影響 112 4-4-1-2 煆燒溫度對結構的影響 112 4-4-2 SEM表面型態分析 113 4-4-3 吸收光譜 (absorption spectra) 113 4-4-4 光致發光特性 (photo-luminescence properties) 113 4-4-4-1 激發與發射光譜 (excitation and emission spectra) 113 4-4-4-2 煆燒溫度對發光強度的影響 115 4-4-4-3 Tb3+摻雜濃度對發光強度的影響 115 4-4-4-4 衰變行為與殘光時間 115 4-4-5 結 論 116 4-5 綜合討論 130 4-5-1 合成與基本特性方面 130 4-5-2 發光特性方面 130 第五章 總結論 134 參考文獻 135 作者自述 142

    1.張德安,“電漿平面顯示器之簡介”,物理雙月刊 21卷1期,1999年4月,p.294。
    2.熊麒,“全彩電激發光平面顯示技術與應用”,光訊 第85期,2000年8月,p.31。
    3.鄭武輝,“電漿顯示器(PDP)螢光化學品介紹及製備技術”,化工資訊 1997年7月,p.27。
    4.L. van Pieterson, S. Soverna, and A. Meijerink, “On the Nature of the Luminescence of Sr2CeO4” J. Electrochem. Soc. 147 (2000) 4688.
    5.H. Matsui, C. N. Xu, T. Watanabe, M. Akiyama, and X. G. Zheng, “Long Lasting Phosphorescence from Eu2+ Doped Sr-Alumina” J. Electrochem. Soc. 147 (2000)4692.
    6.S. H. Cho, S. H. Kwon, J. S. Yoo, C. W. Oh, J. D. Lee, K. J. Hong, and S. J. Kwon, “Cathodoluminescent Characteristics of a Spherical Y2O3:Eu Phosphor Screen for Field Emission Display Application” J. Electrochem. Soc. 147 (2000) 3143.
    7.K. Y. Suh, Y. S. Kim, S. Y. Park, and H. H. Lee, “Metal-Aided Electrochemical Etching of Silicon for Ambient Red to Blue Photoluminescence” J. Electrochem. Soc. 148 (2001) C439.
    8.M. Flynn and A. H. Kitai, “ZnGa2O4:Mn phosphors for Thin-Film Electroluminescent Displays Exhibiting Improved Brightness” J. Electrochem. Soc. 148 (2001) H149.
    9.S. J. Lee, J. E. Jang, Y. W. Jin, G. S. Park, S. H. Park, N. H. Kwon, Y. J. Park, J. E. Jung, N. S. Lee, J. B. Yoo, J. H. You, and J. M. Kim, “Structure and Luminescence Properties of the ZnS:Cu, Al Phosphor for Low Voltage Excitation” J. Electrochem. Soc. 148 (2001) H139.
    10.楊素華,“螢光粉在發光上的應用”,科學發展 358期,2002年10月,p.67。
    11.劉如熹、紀喨勝,“紫外光發光二極體用螢光粉介紹”,(2003)。
    12.劉如熹、王健源、石景仁,“白光發光二極體之螢光材料介紹”,光訊 第91期2001年8月,p.30。
    13.D.A. Steigerwald, J.C. Bhat, D. Collins, R.M. Fletcher, M.O. Holcomb, M.J. Ludowise, P.S. Martin, and S.L. Rudaz, “Illumination with solid state lighting technology” IEEE J. Sel Top. Quant. 8 (2002) 310.
    14.S. Shionoya, and W. M. Yen, “Phosphor Handbook”, CRC press (1999).
    15 S. Itoh, H. Toki, Y. Sato, K. Morimoto, and T. Kishino, “The ZnGa2O4 Phosphor for Low Voltage Blue Cathodoluminescence” J. Electrochem. Soc. 138 (1991) 1509.
    16.S. Itoh, M. Yokoyama, and K. Morimoto, “Poisonous gas effects on the emission of oxide-coated cathodes” J. Vac. Sci. Technol. A 5 (1987) 3430.
    17.S. Itoh, T. Kimizuka, and T. Tonegawa, “Degradation Mechanism for Low- Voltage Cathodoluminescence of Sulfide Phosphors” J. Electrochem. Soc. 136 (1989) 1819.
    18.C. F. Yu, and P. Lin, “Luminescent Characteristics of ZnGa2O4: Mn Phosphor Thin Films Grown by Radio-Frequency Magnetron Sputtering” Jpn. J. Appl. Phys. v35 (1996) 5726.
    19.K. N. Kim, H.K. Jung, H. D. Park, and D. Kim, “High luminance of new green emitting phosphor, Mg2SnO4:Mn” J. Lumin. 99 (2002) 169.
    20.L. D. Carlos, V. de Zea Bermudez, and R. A. Sá Ferreira, “Multi-wavelength europium-based hybrid phosphors” J. Non-Cryst. Solids 247 (1999) 203.
    21.P. Guo, F. Zhao, G. Li, F. Liao, S. Tian, and X. Jing, “Novel phosphors of Eu3+, Tb3+ or Bi3+ activated Gd2GeO5” J. Lumin. 105 (2003) 61.
    22.L. Ozawa, Chemical Review, “Cathode Ray Tube Phosphors” v103 n10 (2003) 3835.
    23.E. Danielson, J.H. Golden, E.W. McFarland, C.M. Reaves, W.H. Weinberg, and X.D. Wu, “A combinatorial approach to the discovery and optimization of luminescent materials” Nature 389 (1997) 944.
    24.Z.G. Wei, L.D. Sun, C.S. Liao, and C.H. Yan, “Fluorescence intensity and color purity improvement in nanosized YBO3:Eu” Appl. Phys. Lett. v80 n8 (2002) 1447.
    25.Z. Yu, X. Huang, W. Zhuang, X. Cui, and H. Li, “Crystal structure transformation and luminescent behavior of the red phosphor for plasma display panels” J. Alloy Compd. 390 (2005) 220.
    26 J. Zhang, Z. Zhang, Z. Tang, Y. Lin, and Z. Zheng, “Luminescent properties of Y2O3:Eu synthesized by sol-gel processing” J. Mater. Process Tech. 121 (2002) 265.
    27.J. M. Nedelec, C. Mansuy, and R. Mahiou, “Sol-gel derived YPO4 and LuPO4 phosphors, a spectroscopic study” J. Mol. Struct. 651-653 (2003) 165.
    28.J. Li, and M. Kuwabara, “Preparation and luminescent properties of Eu-doped BaTiO3 thin films by sol-gel process” Sci. and Tech. of Adv. Mater. 4 (2003) 143.
    29.Y. Li, X. Duan, H. Liao, and Y. Qian, “Self-Regulation Synthesis of Nanocrystalline ZnGa2O4 by Hydrothermal Reaction” Chem. Mater. 10 (1998) 17.
    30.M. Hirano, "Hydrothermal synthesis and characterization of ZnGa2O4 spinel fine particles” J. Mater. Chem. 10 (2000) 469.
    31.M. Hirano, M. Imai, and M. Inagaki, “Preparation of ZnGa2O4 Spinel Fine Particles by the Hydrothermal Method” J. Am. Ceram. Soc. v83 n4 (2000) 977.
    32.A.C. Tas, P.J. Majewski, and F. Aldinger, “Chemical synthesis of crystalline, pure, or Mn-doped ZnGa2O4 powders at 90ºC” J. Mater. Res. v17 n6 (2002) 1425.
    33.H.K. Jung, D.S. Park, and Y. C. Park, “Preparation and characterization of ZnGa2O4:Mn phosphors by multistage precipitation method ” Mat. Res. Bull. v34 n1 (1999) 43.
    34.D. K. Williams, B. Bihari, B. M. Tissue, and J. M. McHale, “Preparation and Fluorescence Spectroscopy of Bulk Monoclinic Eu3+:Y2O3 and Comparison to Eu3+:Y2O3 Nanocrystals” J. Phys. Chem. B 102 (1998) 916.
    35.W.T. Hsu, W.H. Wu, and C.H. Lu, “Synthesis and luminescent properties of nano-sized Y3Al5O12:Eu3+ phosphors” Mat. Sci. Eng. B 104 (2003) 40.
    36.D.R.Vij, “Luminescence in Solids” Plenum press, New York (1998).
    37.楊俊英著,“電子產業用螢光材料之應用調查”,工研院 民國81年。
    38.陳昱霖,”柘榴石(Y3Al5O12)螢光體之合成與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國90年。
    39.徐修生,”硫化鋅摻錳螢光粉之製備與性質研究”,國立成功大學材料科學及工程學系碩士論文,民國91年。
    40.Aleksander Jablonski (1898-1980): Born in Voskresenovka, Ukraine. Started studying physics at Kharkov University and continued after the 1st World War at Warsaw under S. Pienkowski. He received his PhD in 1930. In 1935 he suggested the famous diagram, commonly known under his name, which makes it possible to explain both the kinetics and spectra of fluorescence, phosphorescence and delayed fluorescence.
    41.K S. Luslick, “Sonochemistry”, Science 23 (1990) 1439.
    42.A.H. Kitai, “Solid State Luminescence”, Chapman & Hall press, Cambridge (1993).
    43.B. Henderson, and G.F. Imbusch, “Optical Spectroscopy of Inorganic Solids”, Clarendon, Oxford (1989).
    44.B. DiBartolo, “Energy Transfer Process in Condensed Matter”, Plenum, New York (1984).
    45.G. Blasse, “Luminescence of inorganic solids: From isolated centres to concentrated systems” Prog. Solid State Chem., 18 (1988) 79.
    46.G. Blasse, and B. C. Grabmaier, “Luminescence Material” , Springer-Verlag Telos (1994).
    47.P. Atkins, L. Jones, “Chemistry molecules, Matter, and Change” 3rd edition, (1997).
    48.G. Blasse, “Handbook on the Physics and Chemistry of Rare Earths” Vol.4, North-Holland (1979) p.237.
    49.T. Hoshina, “Luminescence of Rare Earth Ions”, Sony Research Center Rep. (1983).
    50.G. Adachi, “Rare Earths-Their Properties and Applications”, Gihodo (1980) p.173.
    51.K. E. Sickafus, and J. M. Wills, “Structure of spinel” J. Am. Ceram. Soc. v82 n12 (1999) 3279.
    52.J. E. Weindenborner, N. R. Stemple, and Y. Okaya, “Cation distribution and oxygen parameter in magnesium gallate, MgGa2O4” Acta Cryst. 20 (1966) 761.
    53.J. J. Brown, J. Electrochem. Soc. 3 (1967) 245.
    54.A.H. Kitai, “Solid State Luminescence”, Chapman & Hall press, Cambridge (1993).
    55.R.C. Ropp, “Luminescence and the solid state”, Elsevier Science Publishers, The Netherland (1991).
    56.C. W. W. Hoffman, and J. J. Brown, “Compound formation and Mn2+-activated luminescence in the binary systems” J. Inorg. Nucl. Chem. v30 (1968) 63.
    57.L.P. Sosman, and T. Abritta, “Optical spectroscopy of MgGa2O4:Co2+” Solid State Commun. v82 n10 (1992) 801.
    58.L.P. Sosman, A. D. Tavares, P.S. Silva, and T. Abritta , “Optical Spectroscopy of MgGa2O4:Fe3+” Phys. Status Solidi A 176 (1999) 1085.
    59.T. Suzuki, G. S. Murugan, Y. Ohishi, “Spectroscopic properties of a novel near-infrared tunable laser material Ni:MgGa2O4 ” J. Lumin. 113 (2005) 265.
    60.R.D. Shannon, “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides” Acta Cryst. A32 (1976) 751.
    61.A. Ishizumi, Y. Tagucji, A. Yamamoto, and Y. Kanemitsu, “Luminescence properties of ZnO and Eu3+-doped ZnO nanorods” Thin Solid Films 486 (2005) 50.
    62.L. Sun, C. Yan, C. Liu, C. Liao, D. Li, and J. Yu, “Study of the optical properties of Eu3+-doped ZnS nanocrystals” J. Alloy Compd. 275-277 (1998) 234.
    63.B.S. Tsai, Y.H. Chang, and Y.C. Chen, “Nanostructured red-emitting MgGa2O4:Eu3+ phosphors” J. Mater. Res., v19 n5 (2004) 1504.
    64.M. Kakihana, T. Nagumo, M. Okamoto, and H. Kakihana, “Coordination structures for uranyl carboxylate complexes in aqueous solution studied by IR and carbon-13 NMR spectra” J. Phys. Chem. 91 (1987) 6128.
    65.A. Ortiz, J.C. Alonso, E. Andrade, and C. Urbiola, “Structural and Optical Characteristics of Gallium Oxide Thin Films Deposited by Ultrasonic Spray Pyrolysis” J. Electrochem. Soc. 148 (2001) F26.
    66.J.R. Ferraro, “Low Frequency Vibrations of Inorganic and Coordination Compounds” Plenum, New York, (1971) p.72.
    67.G. K. Williamson and W.H. Hall, “X-ray line broadening from field aluminium and wolfram” Acta. Metall. 1 (1953) 22.
    68.D. Scherrer, Nachr. Ges. Wiss. Goett. 26 (1918) 98.
    69.G. Blasse, “On the Eu3 + Fluorescence of Mixed Metal Oxides. IV. The Photoluminescent Efficiency of Eu3 + -Activated Oxides” J. Chem. Phys. 45 (7) (1966) 2356.
    70.B.R. Judd, “Optical Absorption Intensities of Rare-Earth Ions” Phys. Rev. 127 (1962) 750.
    71.G.S. Ofelt, “Intensities of Crystal Spectra of Rare-Earth Ions” J. Chem. Phys. 37 (1962) 511.
    72.S. Polizzi, M. Battagliarin,, M. Bettinelli, A. Speghini, and G. Gagherazzi, Investigation on lanthanide-doped Y2O3 nanopowders obtained by wet chemical synthesis” J. Mater. Chem. 12 (2002) 742.
    73.W. J. L. Oomen, and A. M. A. van Dongen, “Europium (III) in oxide glasses : Dependence of the emission spectrum upon glass composition” J. Non-Cryst. Solids 111 (1989) 205.
    74.G. Blasse, Philips Res. Rep. 24 (1969) 131.
    75.M. Inokuti, and F. Hirayama, “Influence of Energy Transfer by the Exchange Mechanism on Donor Luminescence” J. Chem. Phys. 43 (1965) 1978.
    76.Y. Nakanishi, A. Wakahara, H. Okada, A. Yoshida, T. Ohshima, and H. Itoh, “Effect of Alloy Composition on Photoluminescence Properties of Europium Implanted AlGaInN” Phys. Stat. Sol. (c) v0 n1 (2002) 461.
    77.T. Fujiwara, A. Wakahara, Y. Nakanishi, A. Yoshida,, T. Oshima, and T. Kamiya, “Photoluminescence properties of Eu-implanted AlxGa1-xN (0 x 1)” Phys. Stat. Sol. (c) v2 n7 (2005) 2805.
    78.R. Schmechel,, H. Winkler, L. Xaomao, M. Kennedy, M. Kolbe, A. Benker, M. Winterer, R. A. Fischer, H. Hahn, and H. von Seggern, “Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments” Scripta Mater. 44 (2001) 1213.
    79.S. Oshio, K. Kitamura, T. Shigeta, S. Horii, T. Matsuoka, S. Tanaka, H. Kobayashi, “Firing Technique for Preparing a BaMgAl10O17:Eu2+ Phosphor with Controlled Particle Shape and Size” J. Electrochem. Soc. 146 (1) (1999) 392.
    80.S. Oshio, K. Kitamura, T. Shigeta, S. Horii, T. Matsuoka, T. Kanda, Process. Int. Display Workshop (1997) 621.
    81.T Moriga, T Sakamoto, Y Sato, A.H.K. Haris, R. Suenari, and I. Nakabayashi, “Crystal Structures and Electrical and Optical Properties of MgIn2−xGaxO4Solid Solutions ” J. Solid State Chem. 142 (1999) 206.
    82.S.E. Dali, M. Jayachandran, and M. J. Chockalingam, “New transparent electronic conductor, MgIn2O4 spinel” J. Mater. Sci. Lett. 18 (1999) 915.
    83.S.E. Dali, V.V.S.S. Sai Sundar, M. Jayachandran, M.J. Chockalingam, “Synthesis and characterization of AIn(2)O(4) indates, A = Mg, Ca, Sr, Ba” J. Mater. Sci. Lett. 17 (1998) 619.
    84.Y. C. Kang, S. B. Park, I. W. Lenggoro, and K. Okuyama, “Morphology Control of Multicomponent Oxide Phosphor Particles Containing High Ductility Component by High Temperature Spray Pyrolysis” J. Electrochem. Soc. 146 (1999) 2744.
    85.H. S. Nakwa and L. S. Rohwer, “Handbook of Luminescence, Display Materials, and Devices v2, Inorganic Display Materials” American Scientic Publishers (2003).
    86.L. Zhou, J. Shi, and M. Gong, “Red phosphor SrY2O4:Eu3+ synthesized by the sol-gel method” J. Lumin. 113 (2005) 285.
    87.R.P. Rao, “Growth and characterization of Y2O3:Eu3+ phosphor films by sol-gel process” Solid State Commun. 99(6) (1996) 439.
    88.S.K. Shi, and J.Y. Wang, “Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles” J. Alloy Compd. 327 (2001) 82.
    89.T. Igarashi, M. Ihara, T. Kusunoki, and K. Ohno, “Relationship between optical properties and crystallinity of nanometer Y2O3:Eu phosphor” Appl. Phys. Lett. 76 (2000) 1549.
    90.B. S. Tsai, Y. H. Chang, and Y. C. Chen, “Synthesis and Luminescent Properties of MgIn2-xGaxO4:Eu3+ Phosphors” Electrochem. Solid-State Lett. 8 (7) (2005) H55.
    91.F. Shi, J. Meng, and Y. Ren, and Q. Su, “Structure, luminescence and magnetic properties of AgLnW2O8 (Ln = Eu, Gd, Tb and Dy) compounds” J. Phys. Chem. Solids 121 (1996) 236.
    92.M. Yu, J. Lin, Z. Wang, J. Fu ,S. Wang, H.J. Zhang, and Y.C. Han, “Fabrication, Patterning, and Optical Properties of Nanocrystalline YVO4:A (A = Eu3+, Dy3+, Sm3+, Er3+) Phosphor Films via Sol-Gel Soft Lithography” Chem. Mater. 14 (2002) 2224.
    93.X. Su, B. Yan, and H. Huang, “In situ co-precipitation synthesis and luminescence of GdVO4: Eu3+ and YxGd1-xVO4: Eu3+ microcrystalline phosphors derived from the assembly of hybrid precursors” J. Alloy Compd. 399 (2005) 251.

    下載圖示 校內:立即公開
    校外:2005-10-11公開
    QR CODE