| 研究生: |
陳俊良 Chen, Chun-Liang |
|---|---|
| 論文名稱: |
含電雙層效應之水潤滑-彈液動潤滑分析 EHL Analysis of Water Lubrication Problems-Consideration of Electric Double Layer Effect |
| 指導教授: |
李旺龍
Li, Wang-Long |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 136 |
| 中文關鍵詞: | 電雙層效應 、非等向邊界滑移條件 、雷諾方程式 、彈液動潤滑理論 、水潤滑 |
| 外文關鍵詞: | electric double layer, Reynolds equation, anisotropic boundary slip condition, elastohydrodynamic lubrication, water lubrication |
| 相關次數: | 點閱:156 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來環保意識的抬頭,針對廢棄潤滑油所造成的汙染逐漸受到重視,其中一個解決辦法是尋求機油的潔淨替代品,其中若能以水溶液作為媒介流體來代替機油,則可以大幅降低對環境的污染。
水溶液本身的黏度表現不佳,但水溶液的離子特性有助於形成電雙層,而電雙層的存在則會為水流體提供電黏度的特性。傳統的電雙層現象模型解是在半無限幾何條件下推導而來,但在兩物體接觸的過程中,其間距逐漸縮小,也逐漸無法滿足推導過程中對半無限幾何的假設。因此,本篇研究致力於建立不受限於邊界電位與半無限幾何條件之電雙層模型,並將電黏度的效應與邊界滑移條件考慮其中,對傳統雷諾方程式執行進一步的修正,推導出適合用於接觸學上之修正型雷諾方程式。
研究結果發現電雙層效應越強,其引發的電黏度也隨之增強。邊界滑移條件的存在雖然會降低該方向的壓力黏度項,但對於該方向之電黏度卻有提升的效果。而在接觸區域內,水溶液流體視黏度由電黏度項主導,因此水流體的黏度表現有大幅提升的現象。但由於水流體本身黏度低落,即使考慮到電黏度的貢獻後,液膜厚度之尺度仍舊被壓在奈米級,接觸體之間具有更高的機會發生干涉,造成破壞。水流體仍不適合作為工業用油的替代品。但電雙層之電黏度效果顯著,未來可搜尋本身流體黏度較高且具有電雙層現象之對象再進行更進一步的研究。
The classical solution for electric double layer known as Debye-Hückel solution and nonlinear Poisson-Boltzmann solution is derived with the assumption of semi-infinite space. When it comes to contacting mechanics, two objects is getting close to each other. In this process, the assumption of semi-infinite space is gradually invalid. The classical solution of EDL is malfunctioned. In this research, we developed a numerical solution for EDL with ion conservation rule instead of semi-infinite space assumption. On the other hand, we modified the Reynolds equation with consideration of electro-viscosity induced by EDL and anisotropic boundary slip condition. In the end, the property of water solution as lubricant is analyzed in elastohydrodynamic lubrication theory by using finite element method to solve modified Reynolds equation.
As a result, it surprisingly shows that the electro-viscosity in water solution is quite effective and occurrence of slip condition is help to improve the electro-viscosity. One more issue needed to understand is that we assumed electrical conductivity is constant in this study. The electrical conductivity increases with the decrease of the film thickness. The increased conductivity weakens the electro-viscosity. The apparent viscosity of water solution is overestimated without consideration of variation of conductivity.
[1] Li W. L. (2005), “Effects of electrodouble layer (EDL) and surface roughness on lubrication theory”, Tribology Letters, Vol. 20, pp. 53-61.
[2] Wong P. L., Huang P., Meng Y. (2002), “The effect of the electric double layer on a very thin water lubricating film”, Tribology Letters, Vol. 14, pp. 197-203.
[3] Li D. (2001), “Electro-viscous effects on pressure-driven liquid flow in microchannel”, Colloids and Surfaces, Vol 195, pp. 35-57.
[4] Jing D., Pan Y., Wang X. (2017), “The non-monotonic overlapping EDL-induced electroviscous effect with surface charge-dependent slip and its size dependence”, International Journal of Heat and Mass Transfer, Vol. 113, pp. 32-39.
[5] Li W. L., Jin Z. (2008), “Effects of electrokinetic slip flow on lubrication theory”, Journal of Engineering Tribology, Vol. 222, pp. 109-120.
[6] Masliyah J. H., Bhattacharjee S. (2005), Electrokinetic and Colloid Transport Phenomena, John Wiley & Sons, Inc.
[7] Helmholtz H. (1853), “Ueber einige Gesetze der Ver Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche”, Annalen der Physik und Chemie, Vol. 165, pp. 211-233.
[8] Hunter R. J. (1981), Zeta potential in colloid science: principles and applications, Academic Press.
[9] Hiemenz P. C., Rajagopalan R. (1977), Principles of colloid and surface chemistry”, CRC Press.
[10] Qu W., Li D. (1999), “A Model for Overlapped EDL Fields”, Journal of Colloid and Interface Science, pp.397-407.
[11] Ren C. L., Li D. (2005), “Improved understanding of the effect of electrical double layer on pressure-driven flow in microchannels”, Analytica Chimica Acta, Vol. 531, pp. 15-23.
[12] Ban H., Lin B., Song Z. (2010), “Effect of electrical double layer on electric conductivity and pressure drop in a pressure-driven microchannel flow”, Biomicrofluidics 4, 014104.
[13] Dowson D. (1979), History of tribology, Longman Group Limited.
[14] Navier C. L. (1823), “Mémoire sur les lois du mouvement des fluides”, Royale Academie des Sciences, France 6, pp. 389-440.
[15] Reynolds O. (1884), “On the action” and “On the friction of journals”, Report of the Fifty-Fourth Meeting of the British Association for the Advancement of Science, Montral, 622 & 895.
[16] Reynolds O. (1886), “On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil”, Royal Society of London, 3rd series, pp. 1-19.
[17] Tao L. N. (1959), “General solution of Reynolds equation for a journal bearing of finite width”, Quaterly of Applied Mathematics, Vol. 17, pp. 129-136.
[18] Shukla J. B. (1970), “The optimum one-dimensional magneto-hydrodynamic slider bearing”, Journal of Lubrication Technology, Vol. 92, pp. 530-534.
[19] Michell A. G. (1950), Lubrication - its principles and practice, Blackie & Son.
[20] Granick S., Zhu Y., and Lee H. (2003), “Slippery question about complex fluids flowing past solids”, Nature Materials, Vol. 42, pp. 89-109.
[21] Vinogradova O. I. (1999), “Slippage of water over hydrophobic surfaces”, International Journal of Mineral Processing, Vol. 56, pp. 31-60.
[22] Navier C. L. (1823), “Mémoire sur les lois du mouvement des fluides”, Royale Academie des Sciences, France 6, pp. 389-440.
[23] Li W. L., Chu H. M., Chen M. D. (2006), “The partially wetted bearing – extended Reynolds equation”, Tribology International, Vol. 39, pp. 1428-1435.
[24] Choo J. H., Glovnea E. P., Forrest A. K., and Spikes H. A. (2007), “A low friction bearing based on liquid slip at the wall”, Journal of Tribology, Vol. 129, pp. 611-620.
[25] Chen C. Y., Chen Q . D., and Li W. L. (2013), ”Characteristics of Journal Bearings with Anisotropic Slip”, Tribology International, Vol. 61, pp. 144-156.
[26] Grubin A. N., Vinogradova I. E. (1949), Investigation of the contact of machine components, Central Scientific Research Institute for Technology and Mechanical Engineering.
[27] Petrusevich A. I. (1951), “Fundamental conclusions from the contact-hydrodynamic theory of lubrication”, Izv. Akad. Nauk., SSSR(OTN), Vol. 2, pp. 209-233.
[28] Johnson K. L. (1985), Contact Mechanics, Cambridge University Press.
[29] Dowson D. (1995), “Elastohydrodynamic and micro-elastohydrodynamic lubrication”, Elsevier Science S.A., Wear, Vol. 190, pp. 125-138.
[30] Roelands C. J. A. (1966), Correlational aspects of the viscosity-temperature-pressure relationship of lubricating oils, TU Delft, Delft University of Technology.
[31] Habchi W., Eyheramendy D., Vergne P., and Morales-Espejel G. (2008), “A full-system approach of the elastohydrodynamic line/point contact problem”, Journal of tribology-transactions of the ASME, Vol. 130, 021501.
[32] Fillot N., Doki-Thonon T., Habchi W. (2009), “The Full-System Approach for Elastohydrodynamic Lubrication”, Excerpt from the Proceeding of COMSOL Conference 2009 Milan.
[33] Virdee S., Wang F., Xu H., and Jin Z. (2003), “Elastohydrodynamic lubrication analysis of a functionally graded layered bearing surface, with particular reference to cushion form bearing’ for artificial knee joints”, Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 217, pp. 191-198.
[34] Fujino T., Iwamoto K., Tanaka K., and Shima M. (2007), “Stress distribution of coated film with a range of coated film thickness and elastic properties under a single EHL operating condition”, Tribology International, Vol. 40, pp. 1638-1648.
[35] Fujino T., Iwamoto K., Tanaka K., and Abe M. (2010), “Guideline of design on coated film with a gradient layer under elastohydrodynamic lubrication conditions”, Proceedings of the Institution of Mechanical Engineers, Part J: Jornal of Engineering Tribology, Vol. 224, pp. 899-915.
[36] Wang Z., Yu C., and Wang Q. (2015), “Model for Elastohydrodynamic Lubrication of Multilayered Materials”, Journal of Tribology, Vol. 137, 011501.
[37] Chen Q. D., Jao H. C., Chu L. M., and Li W. L. (2016), “Effect of Anisotropic Slip on the Elastohydrodynamic Lubrication of Circular Contacts”, Journal of Tribology, Vol. 138, 031502.
[38] Rice C. L., Whitehead R. (1965), “Electrokinetic Flow in a Narrow Cylindrical Capillary”, The Journal of Physical Chemistry, pp.4017-4024.
[39] Levine S., Marriott J. R., Neale G., Epstein N. (1975), “Theory of electrokinetic Flow in Fine Cylindrical Capillaries at High Zeta-potential”, Journal of Colloid and Interface Science, Vol. 52, pp. 136-149.
[40] Zuo Q., Lai T., Huang P. (2012), “The effect of the electric double layer on very thin thermal elastohydrodynamic lubricating film”, Springer Science+Business Media, Vol. 45, pp. 455-463.
[41] Chu L. M., Li W. L., Hsu H. C., Tsai J. S. (2012), “Effects of electric double layer on pure squeeze motion of circular contacts – an elastohydrodynamic lubrication model”, Advanced Materials Research, Vol. 486, pp. 497-502.
[42] Mondal S., De S. (2016), “Pressure driven transport of neutral macro-solute in microchannel with porous wall at high surface potential”, International Journal of Heat and Mass Transfer, Vol. 104, pp. 574-583.
[43] Bhattacharjee S., Mondal M., De S. (2017), “Effects of overlapping electric double layer on mass transport of a macro-solute across porous wall of a micro/nanochannel for power law fluid”, Electrophoresis, Vol 38, pp. 1301-1309.
[44] Wiese G. R., Healy T. W. (1975), “Coagulation and electrokinetic behavior of TiO2 and Al2O3 colloidal dispersions”, Journal of Colloid and Interface Science, Vol. 51, pp. 427-433.
[45] Wiese G. R., James R. O., Healy T. W. (1971), “Discreteness of charge and solvation effects in cation adsorption at the oxide/water interface”, Discussions of the Faraday Society, Vol. 52, pp. 302-311.
[46] H. C. Jao, K. M. Chang, L. M. Chu, W. L. Li (2016), “A lubrication theory for anisotropic slips and flow rheology”, Society of Tribologists and Lubrication Engineers, Vol. 59, pp. 252-266.
[47] Chu L. M., Chen C. Y., Tee C. K., Chem Q. D., Li W. L. (2014), “Elastohydrodynamic lubrication analysis for transversely isotropic coating layer”, Journal of Tribology, Vol. 136, pp. 031502.
[48] Park H. M., Lee W. M. (2008), “Helmholtz-Smoluchowski velocity for viscoelastic electroosmotic flows”, Journal of Colloid and Interface Science, Vol. 317, pp. 631-636.
[49] Wu S. R. (1986), ”A penalty formulation and numerical approximation of the Reynolds-Hertz problem of elastohydrodynamic lubrication”, International Journal of Engineering Science, Vol. 24, pp. 1001-1013
[50] Hamrock B. J., Schmid S. R., Jacobson B. O. (1991), Fundamentals of fluid film lubrication (2nd edition), CRC Press.
[51] Barus C. (1893), “Isothermals, isopiestics and isometrics relative to viscosity”, Am. Journal of Science, pp. 87-96.
[52] Dowson D., Higginson G. R. (1966), Elasto-hydrodynamic lubrication: the fundamentals of roller and gear lubrication, Pergamon Press.
[53] Healy T. W., White L. R. (1978), “Ionizable surface group model of aqueous interfaces”, Advances in Colloid and Interface Science, Vol. 9, pp. 303-345.
[54] Ahmed S. M. (1965), “Studies of the dissociation of oxide surfaces at the liquid-solid interface”, Canadian Journal of Chemistry, Vol. 44, pp.1663-1670.
[55] Liu Y., Liu M. (2017), “Conductive carboxylated styrene butadiene rubber composites by incorporation of polypyrrole-wrapped halloysite nanotubes”, Composites Science and Technology, Vol. 143, pp. 56-66.
[56] Sze A., Erickson D., Ren L., Li D. (2003), “Zeta-potential measurement using the Smoluchowski equation and the slope of the current-time relationship in electroosmotic flow”, Journal of Colloid and Interface Science, Vol. 261, pp. 402-410.
[57] Boulangé-Petermann L., Doren A., Baroux B., Bellon-Fontaine M. (1995), “Zeta potential measurements on passive metals”, Journal of Colloid and Interfacial Science, Vol. 171, pp. 179-186
[58] Douglas E., Goldsack F., Raymond F. (1977), “The viscosity of concentrated electrolyte solutions. I. Concentration dependence at fixed temperature”, Canadian Journal of Chemistry, Vol. 55, pp. 1062-1072.
[59] Schirru M. (2017), Development of an ultrasonic sensing technique to measure lubricant viscosity in engine journal bearing in-situ, Springer International Publishing.
[60] Zuo Q., Lai T., Huang P. (2012), “The effect of the electric double layer on very thin thermal elastohydrodynamic lubricating film”, Springer Internation Publishing, Vol. 45, pp. 455-463.