簡易檢索 / 詳目顯示

研究生: 沈家儀
Shan, Jia-Yi
論文名稱: 應用TALEN技術引發阿拉伯芥葉綠體rpoB基因之突變
Application of the TALEN technology to induce the mutations of chloroplast rpoB gene in Arabidopsis
指導教授: 張清俊
Chang, Ching-Chun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 生物科技研究所
Institute of Biotechnology
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 89
中文關鍵詞: 葉綠體基因編輯TALENsrpoB gene
外文關鍵詞: chloroplast rpoB gene, transcription activator-like effector nuclease, TALEN
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 基因槍轟擊法是葉綠體基因改造中最主要使用的技術,可將表現載體送入葉綠體中,再藉由篩選與在生來獲得葉綠體轉殖植物。然而,以基因槍轟擊法來獲得轉殖植物花費高,且篩選與在生的過程相當耗時。因此本研究應用 Transcription activator-like effectors nucleases (TALENs) 之基因編輯技術特異性修飾阿拉伯芥葉綠體編碼的 rpoB 基因。構築兩組以不同啟動子表現重組 TALEN 基因的表現載體,分別是由 rbcS 啟動子來調控基因表現,另一組為由雌激素誘導表現的啟動子調控基因表現,利用農桿菌媒介花序法轉殖阿拉伯芥,已獲得7株由 rbcS 啟動子來調控基因表現的T0 阿拉伯芥轉殖株 (RbcS-M 品系),並且以 PCR 分析可以同時偵測到 TALEN-L 與 TALEN-R 外源基因的存在。已獲得3株由雌激素誘導表現的啟動子調控基因表現的T0 阿拉伯芥轉殖株 (pER8-M 品系),並且以 PCR 分析可以同時偵測到 TALEN-L 與 TALEN-R 外源基因的存在。然而,以西方墨點轉印法分析,目前無法檢測到TALEN 蛋白的表達。但在外表性狀的觀察中,一些轉基因的阿拉伯芥轉殖株在早期生長階段顯示與未轉基因擬南芥的表型差異。

    The major method of the plastid DNA modify was the biolistic bombardment delivering expression vectors into plastid. The transplastomic plants were obtained by selection and regeneration process. However, biolistic bombardment to obtain the transplastomic plants was costly, and selection and regeneration process was time-consuming. In this study, apply transcription activator like effector nuclease (TALENs) editing technology to site-specifically modify the plastid rpoB gene. Two pairs of nuclear TALENs expression vectors, one driven by rbcS promoter, the other driven by estrogen-inducible promoter. Agrobacteria-mediated floral dip method was applied to transform Arabidopsis. Seven rbcS promoter-regulated transgenic Arabidopsis lines (RbcS-M) which PCR test positive were obtained. Three chemical-inducible promoter regulated transgenic Arabidopsis lines which PCR test positive were obtained. However, the expression of TALEN proteins was not detectable by Western blot analysis so far. Some transgenic Arabidopsis lines showed phenotypic difference with untransgenic Arabidopsis in early growth stage.

    中文摘要 I 英文摘要 II 誌謝 VI 目錄 VII 表目錄 X 圖目錄 XI 縮寫表 XIII 一、研究背景 1 1-1 葉綠體基因工程技術的發展 1 1-2 Transcription activator-like effector nucleases (TALENs) 4 1-3 DNA雙股斷裂修補機制 6 1-4 rpoB 基因 8 1-5 研究目的 9 二、材料與方法 11 2-1 實驗材料 11 2-2 構築質體 11 2-3 構築表現載體所使用的方法 20 2-4 阿拉伯芥種子的播種 26 2-5 構築轉形阿拉伯芥所使用的方法 27 2-6 確認外源基因是否嵌入轉基因阿拉伯芥基因體 29 2-7 偵測 TALENs 蛋白質的表現量 31 三、結果 35 3-1 構築植物表現載體 35 3-2 獲得表現 TALEN 的阿拉伯芥轉殖品系 36 3-3 確認外源基因是否嵌入轉基因阿拉伯芥的基因體 37 3-4 轉基因阿拉伯芥的外表型態觀察 39 3-5 偵測 TALENs 蛋白質的表現 41 四、討論 43 4-1 探討轉基因阿拉伯芥的外表現型態 43 4-2 探討轉基因阿拉伯芥的白化外表現型存續 44 4-3 葉綠體 DNA 的修復機制 46 4-4 影響阿拉伯芥轉殖株中 TALEN 重組蛋白質表現量的因子 47 參考文獻 49 圖表 59

    王紫萱、易自力,卡那霉素在植物轉基因中的應用及其抗性基因的生物安全性評價,中國生物工程雜誌,9-13,2003。

    涂晉敏,應用創傷弧菌藍螢光蛋白於植物科學研究,國立成功大學熱帶植物科學研究所碩士論文,2014。

    蘇源霖,轉殖似轉錄激活因子蛋白和酸酶 (TALEN) 來改變菸草葉綠體 DNA 序列之研究,國立成功大學生物科技研究所碩士論文,2016。

    Allen, G. C., Flores-Vergara, M. A., Krasynanski, S., Kumar, S. and Thompson, W. F. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nature Protocols 1, 2320-2325, 2006.

    Allison, L. A., Simon, L. D. and Maliga, P. Deletion of rpoB reveals a second distinct transcription system in plastids of higher plants. The European Molecular Biology Organization Journal 15, 2802-2809, 1996.

    Bacman, S. R., Williams, S. L., Pinto, M., Peralta, S. and Moraes, C. T. Specific elimination of mutant mitochondrial genomes in patient-derived cells by mitoTALENs. Nature Medicine 19, 1111-1113, 2013.

    Bendich, A. J. Why do chloroplasts and mitochondria contain so many copies of their genome? Bioessays 6, 279-282, 1987.

    Bitinaite, J., Wah, D. A., Aggarwal, A. K. and Schildkraut, I. FokI dimerization is required for DNA cleavage. Proceedings of the National Academy of Sciences of the United States of America 95, 10570-10575, 1998.

    Boch, J., Scholze, H., Schornack, S., Landgraf, A., Hahn, S., Kay, S., Lahaye, T., Nickstadt, A. and Bonas, U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509-1512, 2009.

    Bock, R. Engineering plastid genomes: methods, tools, and applications in basic research and biotechnology. Annual Review of Plant Biology 66, 211-241, 2015.

    Bock, R. and Khan, M. S. Taming plastids for a green future. Trends in Biotechnology 22, 311-318, 2004.

    Bock, R. Plastid biotechnology: prospects for herbicide and insect resistance, metabolic engineering and molecular farming. Current Opinion in Biotechnology 18, 100-106, 2007.

    Boesch, P., Weber-Lotfi, F., Ibrahim, N., Tarasenko, V., Cosset, A., Paulus, F., Lightowlers, R. N. and Dietrich, A. DNA repair in organelles: Pathways, organization, regulation, relevance in disease and aging. Biochimica et Biophysica Acta 1813, 186-200, 2011.

    Boynton, J. E., Gillham, N. W., Harris, E. H., Hosler, J. P., Johnson, A. M., Jones, A. R., Randolph-Anderson, B. L., Robertson, D., Klein, T. M. and Shark, K. B. Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240, 1534-1538, 1988.

    Briggs, A. W., Rios, X., Chari, R., Yang, L., Zhang, F., Mali, P. and Church, G. M. Iterative capped assembly: rapid and scalable synthesis of repeat-module DNA such as TAL effectors from individual monomers. Nucleic Acids Research 40, e117, 2012.

    Bunting, S. F. and Nussenzweig, A. End-joining, translocations and cancer. Nature Reviews Cancer 13, 443-454, 2013.

    Cao, J., Combs, C. and Jagendorf, A. T. The chloroplast-located homolog of bacterial DNA recombinase. Plant and Cell Physiology 38, 1319-1325, 1997.

    Cermak, T., Doyle, E. L., Christian, M., Wang, L., Zhang, Y., Schmidt, C., Baller, J. A., Somia, N. V., Bogdanove, A. J. and Voytas, D. F. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Research 39, e28, 2011.

    Cerutti, H., Ibrahim, H. Z. and Jagendorf, A. T. Treatment of pea (Pisum sativum L.) protoplasts with DNA-damaging agents induces a 39-kilodalton chloroplast protein immunologically related to Escherichia coli RecA. Plant Physiology 102, 155-163, 1993.

    Cerutti, H., Johnson, A. M., Boynton, J. E. and Gillham, N. W. Inhibition of chloroplast DNA recombination and repair by dominant negative mutants of Escherichia coli RecA. Molecular and Cellular Biology 15, 3003-3011, 1995.

    Char, S. N., Unger-Wallace, E., Frame, B., Briggs, S. A., Main, M., Spalding, M. H., Vollbrecht, E., Wang, K. and Yang, B. Heritable site-specific mutagenesis using TALENs in maize. Plant Biotechnology Journal 13, 1002-1010, 2015.

    Christian, M., Qi, Y., Zhang, Y. and Voytas, D. F. Targeted mutagenesis of Arabidopsis thaliana using engineered TAL effector nucleases. G3: Genes, Genomes, Genetics 3, 1697-1705, 2013.

    Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F., Tibebu, R., Davison, S., Ray, E. E., Daulhac, A., Coffman, A., Yabandith, A., Retterath, A., Haun, W., Baltes, N. J., Mathis, L., Voytas, D. F. and Zhang, F. Improving cold storage and processing traits in potato through targeted gene knockout. Plant Biotechnology Journal 14, 169-176, 2015.

    Daniell, H., Khan, M. S. and Allison, L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends in Plant Science 7, 84-91, 2002a.

    Daniell, H. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology 20, 581-586, 2002b.

    Day, A. and Goldschmidt-Clermont, M. The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnology Journal 9, 540-553, 2011.

    De Block, M., Schell, J. and Van Montagu, M. Chloroplast transformation by Agrobacterium tumefaciens. The European Molecular Biology Organization Journal 4, 1367-1372, 1985.

    Demple, B. and Harrison, L. Repair of oxidative damage to DNA: enzymology and biology. Annual Review of Biochemistry 63, 915-948, 1994.

    Dueva, R. and Iliakis, G. Alternative pathways of non-homologous end joining (NHEJ) in genomic instability and cancer. Translational Cancer Research 2, 163-177, 2013.

    Dürrenberger, F., Thompson, A. J., Herrin, D. L. and Rochaix, J. D. Double strand break-induced recombination in Chlamydomonas reinhardtii chloroplasts. Nucleic Acids Research 24, 3323-3331, 1996.

    Edlinger, B. and Schlögelhofer, P. Have a break: determinants of meiotic DNA double strand break (DSB) formation and processing in plants. Journal of Experimental Botany 62, 1545-1563, 2011.

    Gaj, T., Gersbach, C. A. and Barbas, C. F. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends in Biotechnology 31, 397-405, 2013.

    Hajdukiewicz, P. T., Allison, L. A. and Maliga, P. The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. The European Molecular Biology Organization Journal 16, 4041-4048, 1997.

    Haun, W., Coffman, A., Clasen, B. M., Demorest, Z. L., Lowy, A., Ray, E., Retterath, A., Stoddard, T., Juillerat, A., Cedrone, F., Mathis, L., Voytas, D. F. and Zhang, F. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal 12, 934-940, 2014.

    Hong, J. P., Byun, M. Y., An, K., Yang, S. J., An, G. and Kim, W. T. OsKu70 is associated with developmental growth and genome stability in rice. Plant Physiology 152, 374-387, 2010.

    Hou, B. K., Zhou, Y. H., Wan, L. H., Zhang, Z. L., Shen, G. F., Chen, Z. H. and Hu, Z. M. Chloroplast transformation in oilseed rape. Transgenic Research 12, 111-114, 2003.

    Inada, H., Kusumi, K., Nishimura, M. and Iba, K. Specific expression of the chloroplast gene for RNA polymerase (rpoB) at an early stage of leaf development in rice. Plant and Cell Physiology 37, 229-232, 1996.

    Inouye, T., Odahara, M., Fujita, T., Hasebe, M. and Sekine, Y. Expression and complementation analyses of a chloroplast-localized homolog of bacterial RecA in the moss Physcomitrella patens. Biosciences, Biotechnology and Biochemistry 72, 1340-1347, 2008.

    Jefferson, R. A., Kavanagh, T. A. and Bevan, M. W. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. The European Molecular Biology Organization Journal 6, 3901-3907, 1987.

    Kusnadi, A. R., Nikolov, Z. L. and Howard, J. A. Production of recombinant proteins in transgenic plants: Practical considerations. Biotechnology and Bioengineering 56, 473-484, 1997.

    Kwon, T., Huq, E. and Herrin, D. L. Microhomology-mediated and nonhomologous repair of a double-strand break in the chloroplast genome of Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America 107, 13954-13959, 2010.

    Lee, S. M., Kang, K., Chung, H., Yoo, S. H., Xu, X. M., Lee, S. B., Cheong, J. J., Daniell, H. and Kim, M. Plastid transformation in the monocotyledonous cereal crop, rice (Oryza sativa) and transmission of transgenes to their progeny. Molecules and Cells 21, 401-410, 2006.

    Li, D., Tang, N., Fang, Z., Xia, Y. and Cao, M. Co-Transfer of talens Construct Targeted for Chloroplast Genome and Chloroplast Transformation Vector Into Rice Using Particle Bombardment. Journal of Nanoscience and Nanotechnology 16, 12194 -12201, 2016.

    Li, T., Huang, S., Jiang, W. Z., Wright, D., Spalding, M. H., Weeks, D. P. and Yang, B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Research 39, 359-372, 2011.

    Li, T., Liu, B., Spalding, M. H., Weeks, D. P. and Yang, B. High-efficiency TALEN-based gene editing produces disease-resistant rice. Nature Biotechnology 30, 390-392, 2012.

    Little, M. C. and Hallick, R. B. Chloroplast rpoA, rpoB, and rpoC genes specify at least three components of a chloroplast DNA-dependent RNA polymerase active in tRNA and mRNA transcription. The Journal of Biological Chemistry 263, 14302-14307, 1988.

    Lor, V. S., Starker, C. G., Voytas, D. F., Weiss, D. and Olszewski, N. E. Targeted mutagenesis of the tomato PROCERA gene using transcription activator-like effector nucleases. Plant Physiology 166, 1288-1291, 2014.

    Manova, V. and Gruszka, D. DNA damage and repair in plants-from models to crops. Frontiers in Plant Science 6, 885, 2015.

    Mitchell, D. L. and Nairn, R. S. The biology of the (6-4) photoproduct. Photochemistry and Photobiology 49, 805-819, 1989.

    Nakazato, E., Fukuzawa, H., Tabata, S., Takahashi, H. and Tanaka, K. Identification and expression analysis of cDNA encoding a chloroplast recombination protein REC1, the chloroplast RecA homologue in Chlamydomonas reinhardtii. Biosciences, Biotechnology and Biochemistry 67, 2608-2613, 2003.

    Newman, S. M., Harris, E. H., Johnson, A. M., Boynton, J. E. and Gillham, N. W. Nonrandom distribution of chloroplast recombination events in Chlamydomonas reinhardtii: evidence for a hotspot and an adjacent cold region. Genetics 132, 413-429, 1992.

    Nishizawa-Yokoi, A., Cermak, T., Hoshino, T., Sugimoto, K., Saika, H., Mori, A., Osakabe, K., Hamada, M., Katayose, Y., Starker, C., Voytas, D. F. and Toki, S. A defect in DNA ligase4 enhances the frequency of TALEN-mediated targeted mutagenesis in rice. Plant Physiology 170, 653-666, 2016.

    Obembe, O. O., Popoola, J. O., Leelavathi, S. and Reddy, S. V. Advances in plant molecular farming. Biotechnology Advances 29, 210-222, 2011.

    Odom, O. W., Baek, K. H., Dani, R. N. and Herrin, D. L. Chlamydomonas chloroplasts can use short dispersed repeats and multiple pathways to repair a double-strand break in the genome. The Plant Journal 53, 842-853, 2008.

    Outchkourov, N. S., Peters, J., de Jong, J., Rademakers, W. and Jongsma, M. A. The promoter-terminator of chrysanthemum rbcS1 directs very high expression levels in plants. Planta 6, 1003-1012, 2003.

    Rajeevkumar, S., Anunanthini, P. and Sathishkumar, R. Epigenetic silencing in transgenic plants. Frontiers in Plant Science 6, 693, 2015.

    Reddy, P., Ocampo, A., Suzuki, K., Luo, J., Bacman, S. R., Williams, S. L., Sugawara, A., Okamura, D., Tsunekawa, Y., Wu, J., Lam, D., Xiong, X., Montserrat, N., Esteban, C. R., Liu, G. H., Sancho-Martinez, I., Manau, D., Civico, S., Cardellach, F., Del Mar O'Callaghan, M., Campistol, J., Zhao, H., Campistol, J. M., Moraes, C. T. and Izpisua Belmonte, J. C. Selective elimination of mitochondrial mutations in the germline by genome editing. Cell 161, 459-469, 2015.

    Römer, P., Hahn, S., Jordan, T., Strauss, T., Bonas, U. and Lahaye, T. Plant pathogen recognition mediated by promoter activation of the pepper Bs3 resistance gene. Science 318, 645-648, 2007.

    Rowan, B. A., Oldenburg, D. J. and Bendich, A. J. RecA maintains the integrity of chloroplast DNA molecules in Arabidopsis. The Journal of Experimental Botany 61, 2575-2588, 2010.

    Sawai, S., Ohyama, K., Yasumoto, S., Seki, H., Sakuma, T., Yamamoto, T., Takebayashi, Y., Kojima, M., Sakakibara, H., Aoki, T., Muranaka, T., Saito, K. and Umemoto, N. Sterol side chain reductase 2 is a key enzyme in the biosynthesis of cholesterol, the common precursor of toxic steroidal glycoalkaloids in potato. The Plant Cell 26, 3763-3774, 2014.

    Schubert, D., Lechtenberg, B., Forsbach, A., Gils, M., Bahadur, S. and Schmidt, R. Silencing in Arabidopsis T-DNA transformants: the predominant role of a gene-specific RNA sensing mechanism versus position effects. Plant Cell 16, 2561-2572, 2004.

    Sikdar, S. R., Serino, G., Chaudhuri, S. and Maliga, P. Plastid transformation in Arabidopsis thaliana. Plant Cell Reports 18, 20-24, 1998.

    Singh, S. K., Roy, S., Choudhury, S. R. and Sengupta, D. N. DNA repair and recombination in higher plants: insights from comparative genomics of Arabidopsis and rice. BioMed Central Genomics 11, 443, 2010.

    Tamura, K., Adachi, Y., Chiba, K., Oguchi, K. and Takahashi, H. Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. The Plant Journal 29, 771-781, 2002.

    Tungsuchat-Huang, T. and Maliga, P. Visual marker and Agrobacterium-delivered recombinase enable the manipulation of the plastid genome in greenhouse-grown tobacco plants. The Plant Journal 21, 401-410, 2012.

    Walker, J. M. Gradient SDS Polyacrylamide Gel Electrophoresis. Methods in Molecular Biology 1, 57-61, 1984.

    Wang, H. H., Yin, W. B. and Hu, Z. M. Advances in chloroplast engineering. Journal of Genetics and Genomics 36, 387-398, 2009.

    Wang, M., Liu, Y., Zhang, C., Liu, J., Liu, X., Wang, L., Wang, W., Chen, H., Wei, C., Ye, X., Li, X. and Tu, J. Gene editing by co-transformation of TALEN and chimeric RNA/DNA oligonucleotides on the rice OsEPSPS gene and the inheritance of mutations. Public Library of Science One 10, e0122755, 2015.

    Wang, M., Wang, Q. and Zhang, B. An efficient grafting technique for recovery of transgenic cotton plants. Methods in Molecular Biology 958, 161-164, 2013.

    Wang, Y., Cheng, X., Shan, Q., Zhang, Y., Liu, J., Gao, C. and Qiu, J. L. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nature Biotechnology 32, 947-951, 2014.

    Ward, J. F. Molecular mechanisms of radiation-induced damage to nucleic acids. Advances in Radiation Biology 5, 277, 1975.

    Wendt, T., Holm, P. B., Starker, C. G., Christian, M., Voytas, D. F., Brinch-Pedersen, H. and Holme, I. B. TAL effector nucleases induce mutations at a pre-selected location in the genome of primary barley transformants. Plant Molecular Biology 83, 279-285, 2013.

    West, C. E., Waterworth, W. M., Jiang, Q. and Bray, C. M. Arabidopsis DNA ligase IV is induced by gamma-irradiation and interacts with an Arabidopsis homologue of the double strand break repair protein XRCC4. The Plant Journal 24, 67-78, 2000.

    Yoshikura, H. Suppression of focus formation by bovine papillomavirus-transformed cells by contact with non-transformed cells: involvement of sugar(s) and phosphorylation. International Journal of Cancer 44, 885-891, 1989.

    Zhang, X., Henriques, R., Lin, S. S., Niu, Q. W. and Chua, N. H. Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nature Protocols 1, 641-646, 2006.

    Zhang, Y., Zhang, F., Li, X., Baller, J. A., Qi, Y., Starker, C. G., Bogdanove, A. J. and Voytas, D. F. Transcription activator-like effector nucleases enable efficient plant genome engineering. Plant Physiology 161, 20-27, 2013.

    Zuo, J., Niu, Q. W. and Chua, N. H. Technical advance: An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. The Plant Journal 24, 265-273, 2000.

    無法下載圖示 校內:2022-09-13公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE