簡易檢索 / 詳目顯示

研究生: 鄭元鈞
Jeng, Yuan-jiun
論文名稱: 糖尿病病患體內toll-like receptors 引發之先天免疫反應
The Toll-like receptors induced innate immune response in diabetes patients
指導教授: 謝奇璋
Shieh, Chi-chang
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 55
中文關鍵詞: 免疫缺陷糖尿病細胞激素
外文關鍵詞: Diabetes mellitus, immunodeficiency, Toll-like receptors, ROS, GSK3, BCG
相關次數: 點閱:99下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 糖尿病 (diabetes mellitus, DM) 世界上是最常見的代謝性疾病。糖尿病病患的先天免疫反應比正常人差,容易受到疾病感染。在先天免疫系統中Toll-like receptors (TLRs),負責偵測病原並調控血球細胞激素(cytokine)分泌。近來研究發現glycogen synthase kinase 3 (GSK3)可以負向調控TLR誘發的激素反應。糖尿病患的先天免疫缺陷可能的調控有關,然而目前對其調控機制並不明瞭。為了探究其機制,我們從正常人及第一、第二型糖尿病患(T1DM, T2DM)抽出全血,再以五種TLR agonists與Mycobacterium bovis bacillus Calmette-Gurin (BCG)刺激周邊白血球誘發免疫細胞激素反應。藉由偵測不同細胞激素(IL-12,IL-1β, IL-6, TNF-α, IFN-γ and IL-10)濃度,評估正常人與糖尿病患的免疫反應。我們發現T1DM病患,其白血球產生的較少,而T2DM病患的白血球受到TLR4 agonist刺激所誘發的IL-1β, IL-6, TNF-α, IFN-γ and IL-10也都比正常人少。DM病患的白血球受BCG刺激誘發的細胞激素也較正常人少。糖尿病患免疫力低落顯然是由於體內白血球分泌細胞激素功能受損,導致免疫系統異常。另外,胰島素可同樣降低T1DM與T2DM體內IL-1β的生成。顯示IL-1β的改變並未受到的T2DM的胰島素拮抗影響。DM病患的細胞激素分泌降低可能是受到病患的血糖過高症所影響。我們進一步藉由觀察THP-1細胞的GSK3在高糖濃度的環境下,受lipopolysaccharide (LPS)引發的磷酸化情形,研究高血糖症是否影響TLR的訊息傳遞。我們發現在高糖環境下,有無LPS刺激都可誘發GSK3的磷酸化。而在高糖環境下,胰島素則可以促進LPS誘發的GSK3的磷酸化。我們同樣發現在高糖環境下reactive oxygen species (ROS)的生成也會增加。這些結果顯示,糖尿病患的高血糖症可能導致TLR誘發細胞激素的反應異常,進而導致先天免疫系統的缺失。

    Diabetes mellitus (DM) is one of the most common metabolism diseases in the world. Previously, we found that DM patients were susceptible to Mycobacterium tuberculosis infection and innate immune responses may be defective in DM patients. Toll-like receptors (TLRs) can recognize pathogens and can induce cytokine production to initiate innate immune responses. Resent studies indicated that TLR-induced cytokine production is negatively regulated by glycogen synthase kinase 3 (GSK3), which is a critical component in glucose metabolism. However, the innate immune defects and the influence of TLR-signaling in DM patients are not fully understood. In this study, we used five different TLR agonists and Mycobacterium bovis bacillus Calmette-Gurin (BCG) to induce cytokine production in peripheral blood isolated from normal volunteers and patients with type I or type II DM to investigate the influence of DM in TLR-induced cytokine production. IL-12,IL-1β, IL-6, TNF-α, IFN-γ and IL-10 were measured. Leukocytes from Type I DM patients showed decreased IL-12 production after TLR agonist stimulation. TLR4 induced cytokine productions were defective in leukocytes isolated from type II DM patients, except for IL-12 production. Moreover, innate immune cytokine productions induced by BCG were decreased and insulin can down-regulate IL-1β production in leukocytes from both type 1 DM and type 2 DM patients. These findings suggested that hyperglycemia, the common feature of type I and type II DM, may be the cause of inhibited innate immune cytokine production in patients. We further investigated GSK3β phosphorylation after lipopolysaccharide (LPS) in THP-1cells cultured in high glucose condition to mimic the hyperglycemia. We found that the phosphorylation of GSK3β was increased in high glucose condition with or without LPS stimulation. Moreover, LPS induced GSK3β phosphorylation was promoted by insulin in high glucose condition. We also found that LPS-induced reactive oxygen species (ROS) production was increased in high glucose condition with or without insulin stimulation. These findings suggest that defective TLR-induced cytokine production may be due to hyperglycemia in diabetes patients.

    ABSTRACT I 中文摘要 III 誌謝 IV TABLE OF CONTENTS V LIST OF ABBREVIATIONS VIII 1. INTRODUCTION 1 1.1 Diabetes mellitus 1 Type 1 diabetes mellitus 1 Type 2 diabetes mellitus 1 1.2 Innate immunity 2 1.3 Cytokines in innate immunity 3 1.4 The role of toll-like receptor in innate immunity 4 TLRs and their specific ligands 5 MyD88-dependent signaling pathway 6 MyD88-independent signaling pathway 6 1.5 Diabetes, toll-like receptor and glycogen synthase kinase 3 (GSK3) 7 1.6 The aim of this study 8 2. MATERIALS AND METHODS 10 2.1 Patients and healthy donors 10 2.2 Peripheral blood mononuclear cells (PBMC) isolation 10 2.3 BCG culture 10 2.4 Cell culture 11 2.5 Toll-like receptor agonists and BCG stimulation of PBMCs 11 2.6 Human IL-12 enzyme-linked immunoassay (ELISA) 12 2.7 Multiple cytokine assay by Luminex beadlyte suspension array system 12 2.8 High glucose stimulated THP-1 cells and human PBMCs 13 2.9 LPS stimulation of THP-1cells for GSK3 phosphorylation 14 2.10 Western blot 14 2.11 ROS production assay 15 3. RESULT 17 3.1 The cytokine responses of leukocytes induced by TLR agonists were decreased in DM patients 17 3.2 The cytokine production of leukocytes induced by BCG were decreased in DM patients. 18 3.3 The GSK3 phosphporylation induced by LPS in THP-1 cells was enhanced by high glucose concentration. 19 3.4 High glucose concentration enhanced ROS production of human monocytes and THP-1 cells 21 DISCUSSION 23 4.1 The TLRs-induced cytokine responses were defective in DM patients. 24 4.2 The cytokine responses of leukocytes induced by BCG were decreased in DM patients. 25 4.3 GSK3β phosphorylation was regulated by insulin signaling and high glucose 27 4.4 High glucose enhanced the ROS production of monocytes may result in chronic inflammation 28 CONCLUSION 30 REFERENCE LIST 31 RESULTS 41 Figure 1. 41 Figure 2. 45 Figure 3. 49 Figure 4. 52 Figure 5. 53 Figure 6. 54 Figure 7. 55

    Akira, S., Takeda, K. & Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol 2, 675-680.
    Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. (2001). Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738.
    Anderson, M. S. & Bluestone, J. A. (2005). THE NOD MOUSE: A Model of Immune Dysregulation. Annual Review of Immunology 23, 447-485.
    Bach, J. F. (1994). Insulin-dependent diabetes mellitus as an autoimmune disease. Endocrine Reviews 15, 516-542.
    Bagchi, A., Herrup, E. A., Warren, H. S., Trigilio, J., Shin, H. S., Valentine, C. & Hellman, J. (2007). MyD88-Dependent and MyD88-Independent Pathways in Synergy, Priming, and Tolerance between TLR Agonists. The Journal of Immunology 178, 1164-1171.
    Barnea, M., Madar, Z. & Froy, O. (2008). Glucose and insulin are needed for optimal defensin expression in human cell lines. Biochemical and Biophysical Research Communications 367, 452-456.
    Bionaz, M. & Loor, J. J. (2007). mTOR, AMPK, and insulin receptor signaling networks in the bovine mammary gland during the lactation cycle. FASEB J 21, 1109-1114.
    Buller, C. L., Loberg, R. D., Fan, M. H., Zhu, Q., Park, J. L., Vesely, E., Inoki, K., Guan, K. L. & Brosius Iii, F. C. (2008). A GSK-3/TSC2/mTOR pathway regulates glucose uptake and GLUT1 glucose transporter expression. American Journal of Physiology- Cell Physiology 295, 836-843.
    Ceriello, A., Taboga, C., Tonutti, L., Quagliaro, L., Piconi, L., Bais, B., Da Ros, R. & Motz, E. (2002). Evidence for an Independent and Cumulative Effect of Postprandial Hypertriglyceridemia and Hyperglycemia on Endothelial Dysfunction and Oxidative Stress Generation Effects of Short-and Long-Term Simvastatin Treatment.Am Heart Assoc.106, 1211-1218.
    Coban, C., Ishii, K. J., Kawai, T., Hemmi, H., Sato, S., Uematsu, S., Yamamoto, M., Takeuchi, O., Itagaki, S. & Kumar, N. (2005). Toll-like receptor 9 mediates innate immune activation by the malaria pigment hemozoin C. Coban and KJ Ishii contributed equally to this work. Rockefeller Univ Press 201,19-25.
    De Benedetti, F., Massa, M., Pignatti, P., Albani, S., Novick, D. & Martini, A. (1994). Serum soluble interleukin 6 (IL-6) receptor and IL-6/soluble IL-6 receptor complex in systemic juvenile rheumatoid arthritis. Journal of Clinical Investigation 93, 2114-2119.
    de Souza, L. F., Barreto, F., da Silva, E. G., Andrades, M. E., Guimaraes, E. L. M., Behr, G. A., Moreira, J. C. F. & Bernard, E. A. (2007). Regulation of LPS stimulated ROS production in peritoneal macrophages from alloxan-induced diabetic rats: Involvement of high glucose and PPARγ. Life Sciences 81, 153-159.
    de Souza, L. F., Jardim, F. R., Sauter, I. P., de Souza, M. M. & Bernard, E. A. (2008). High glucose increases RAW 264.7 macrophages activation by lipoteichoic acid from Staphylococcus aureus. Clinica Chimica Acta.
    Dejkhamron, P., Menon, R. K. & Sperling, M. A. (2007). Childhood diabetes mellitus: Recent advances & future prospects. INDIAN JOURNAL OF MEDICAL RESEARCH 125, 231-237.
    Delamaire, M., Maugendre, D., Moreno, M., Le Goff, M. C., Allannic, H. & Genetet, B. (1997). Impaired Leucocyte Functions in Diabetic Patients. Diabetic Medicine 14, 29-34.
    Diebold, S. S., Kaisho, T., Hemmi, H., Akira, S. & Reis e Sousa, C. (2004). Innate Antiviral Responses by Means of TLR7-Mediated Recognition of Single- Stranded RNA. American Association for the Advancement of Science, 303, 1529-1531.
    Dokken, B. B. & Henriksen, E. J. (2006). Chronic selective glycogen synthase kinase-3 inhibition enhances glucose disposal and muscle insulin action in prediabetic obese Zucker rats. American Journal of Physiology- Endocrinology And Metabolism 291, 207-213.
    Dugo, L., Collin, M. & Thiemermann, C. (2007). GLYCOGEN SYNTHASE KINASE 3 [beta] AS A TARGET FOR THE THERAPY OF SHOCK AND INFLAMMATION. Shock 27, 113-123.
    Flynn, J. L. (1993). An essential role for interferon gamma in resistance to Mycobacterium tuberculosis infection. Journal of Experimental Medicine 178, 2249-2254.
    Frame, S. & Cohen, P. (2001). GSK3 takes centre stage more than 20 years after its discovery. BIOCHEMICAL JOURNAL-LONDON- 359, 1-16.
    Froy, O., Hananel, A., Chapnik, N. & Madar, Z. (2007). Differential effect of insulin treatment on decreased levels of beta-defensins and Toll-like receptors in diabetic rats. Mol Immunol 44, 796-802.
    Gual, P., Gremeaux, T., Gonzalez, T., Marchand-Brustel, Y. L. & Tanti, J. F. (2003). MAP kinases and mTOR mediate insulin-induced phosphorylation of Insulin Receptor Substrate-1 on serine residues 307, 612 and 632. Diabetologia 46, 1532-1542.
    Harries, A. D., Billo, N. & Kapur, A. (2009). Links between diabetes mellitus and tuberculosis: should we integrate screening and care? Transactions of the Royal Society of Tropical Medicine and Hygiene 103, 1-2.
    Hayashi, F., Smith, K. D., Ozinsky, A., Hawn, T. R., Yi, E. C., Goodlett, D. R., Eng, J. K., Akira, S., Underhill, D. M. & Aderem, A. (2001). The innate immune response to bacterial flagellin is mediated by Toll-like receptor 5. Nature 410, 1099-1103.
    Heil, F., Ahmad-Nejad, P., Hemmi, H., Hochrein, H., Ampenberger, F., Gellert, T., Dietrich, H., Lipford, G., Takeda, K. & Akira, S. (2003). The Toll-like receptor 7 (TLR7)-specific stimulus loxoribine uncovers a strong relationship within the TLR7, 8 and 9 subfamily. European Journal of Immunology 33, 2987-2997.
    Heil, F., Hemmi, H., Hochrein, H., Ampenberger, F., Kirschning, C., Akira, S., Lipford, G., Wagner, H. & Bauer, S. (2004). Species-Specific Recognition of Single-Stranded RNA via Toll-like Receptor 7 and 8, pp. 1526-1529: American Association for the Advancement of Science.
    Hemmi, H. & Akira, S. (2002). A Novel Toll-Like Receptor that Recognizes Bacterial DNA. Microbial DNA and Host Immunity 4, 39-47.
    Hemmi, H., Kaisho, T., Takeuchi, O., Sato, S., Sanjo, H., Hoshino, K., Horiuchi, T., Tomizawa, H., Takeda, K. & Akira, S. (2002). Small anti-viral compounds activate immune cells via the TLR7 MyD88? dependent signaling pathway. Nature Immunology 3, 196-200.
    Ho, F. M., Liu, S. H., Liau, C. S., Huang, P. J. & Lin-Shiau, S. Y. (2000). High Glucose-Induced Apoptosis in Human Endothelial Cells Is Mediated by Sequential Activations of c-Jun NH2-Terminal Kinase and Caspase-3. Am Heart Assoc, 101, 2618-2624:.
    Huang, H. Q., Wang, Z., Jiang, Z. & Chen, H. Z. (2008). [Endothelin-1 overexpression inhibits rat pulmonary arterial microvascular smooth muscle cell apoptosisvia Akt/PKB pathway]. Zhonghua Xin Xue Guan Bing Za Zhi 36, 551-555.
    Hurme, M. & Santtila, S. (1998). IL-1 receptor antagonist (IL-1Ra) plasma levels are co-ordinately regulated by both IL-1Ra and IL-1 I genes. Eur J Immunol 28, 2598-2602.
    Inoguchi, T., Li, P., Umeda, F., Yu, H. Y., Kakimoto, M., Imamura, M., Aoki, T., Etoh, T., Hashimoto, T. & Naruse, M. (2000). High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C--dependent activation of NAD (P) H oxidase in cultured vascular cells. Diabetes 49, 1939-1948.
    Jin, M. S. & Lee, J. O. (2008). Structures of the Toll-like Receptor Family and Its Ligand Complexes. Immunity 29, 182-191.
    Joshi, N., Caputo, G. M., Weitekamp, M. R. & Karchmer, A. W. (1999). Infections in Patients with Diabetes Mellitus. New England Journal of Medicine 341, 1906-1912.
    Kaidanovich-Beilin, O. & Eldar-Finkelman, H. (2006). Long-Term Treatment with Novel Glycogen Synthase Kinase-3 Inhibitor Improves Glucose Homeostasis in ob/ob Mice: Molecular Characterization in Liver and Muscle. Journal of Pharmacology and Experimental Therapeutics 316, 17-24.
    Kanczkowski, W., Ziegler, C. G., Zacharowski, K. & Bornstein, S. R. (2008). Toll-Like Receptors in Endocrine Disease and Diabetes. Neuroimmunomodulation 15, 54-60.
    Kang, B. P. S., Frencher, S., Reddy, V., Kessler, A., Malhotra, A. & Meggs, L. G. (2003). High glucose promotes mesangial cell apoptosis by oxidant-dependent mechanism. American Journal of Physiology- Renal Physiology 284, 455-466.
    Kaufmann, S. H. E., Xing, Z., Wang, J., Croitoru, K. & Wakeham, J. (1998). Protection by CD4 or CD8 T Cells against Pulmonary Mycobacterium bovis Bacillus Calmette-Guerin Infection. Am Soc Microbiol 66, 5537-5542:.
    Kawai, T. & Akira, S. (2006). Innate immune recognition of viral infection. Nature Immunology 7, 131-137.
    Kawai, T. & Akira, S. (2007). TLR signaling, pp. 24-32: Elsevier.
    Kawasaki, E., Matsuura, N. & Eguchi, K. (2006). Type 1 diabetes in Japan. Diabetologia 49, 828-836.
    Kipmen-Korgun, D., Bilmen-Sarikcioglu, S., Altunbas, H., Demir, R. & Korgun, E. T. (2009). Type-2 diabetes down-regulates glucose transporter proteins and genes of the human blood leukocytes. Scandinavian Journal of Clinical and Laboratory Investigation 24, 1-9.
    Koziel, H. & Koziel, M. J. (1995). Pulmonary complications of diabetes mellitus. Pneumonia. Infect Dis Clin North Am 9, 65-96.
    Kuehn, R., Loehler, J., Rennick, D., Rajewsky, K. & Muller, W. (1993). Interleukin-10-Deficient Mice Develop Chronic Enterocolitis. CELL-CAMBRIDGE MA- 75, 263-263.
    Locksley, R. M., Killeen, N. & Lenardo, M. J. (2001). The TNF and TNF Receptor Superfamilies: Integrating Mammalian Biology. Cell 104, 487-501.
    Lorini, R., De Amici, M., d'Annunzio, G., Vitali, L. & Scaramuzza, A. (1995). Low serum levels of tumor necrosis factor-alpha in insulin-dependent diabetic children. Horm Res 43, 206-209.
    Lund, J., Sato, A., Akira, S., Medzhitov, R. & Iwasaki, A. (2003). Toll-like Receptor 9-mediated Recognition of Herpes Simplex Virus-2 by Plasmacytoid Dendritic Cells. Rockefeller Univ Press 198, 513-520:.
    Magram, J., Connaughton, S. E., Warrier, R. R., Carvajal, D. M., Wu, C. Y., Ferrante, J., Stewart, C., Sarmiento, U., Faherty, D. A. & Gately, M. K. (1996). IL-12-deficient mice are defective in IFN production and type 1 cytokine responses. Immunity 4, 471-481.
    Martin, M., Rehani, K., Jope, R. S. & Michalek, S. M. (2005). Toll-like receptor-mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nat Immunol 6, 777-784.
    Martin, M., Rehani, K., Jope, R. S. & Michalek, S. M. (2005). Toll-like receptor? mediated cytokine production is differentially regulated by glycogen synthase kinase 3. Nature Immunology 6, 777-784.
    Mohanty, P., Hamouda, W., Garg, R., Aljada, A., Ghanim, H. & Dandona, P. (2000a). Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 85, 2970-2973.
    Mohanty, P., Hamouda, W., Garg, R., Aljada, A., Ghanim, H. & Dandona, P. (2000b). Glucose Challenge Stimulates Reactive Oxygen Species (ROS) Generation by Leucocytes. Endocrine Soc 85, 2970-2973
    Molbak, A. G., Christau, B., Marner, B., Borch-Johnsen, K. & Nerup, J. (1994). Incidence of insulin-dependent diabetes mellitus in age groups over 30 years in Denmark. Diabet Med 11, 650-655.
    Mowat, A. & Baum, J. (1971). Chemotaxis of polymorphonuclear leukocytes from patients with diabetes mellitus. N Engl J Med 284, 621-627.
    Nagabhushanam, V., Solache, A., Ting, L.-M., Escaron, C. J., Zhang, J. Y. & Ernst, J. D. (2003). Innate Inhibition of Adaptive Immunity: Mycobacterium tuberculosis-Induced IL-6 Inhibits Macrophage Responses to IFN-γ. J Immunol 171, 4750-4757.
    Ohno, Y., Aoki, N. & Nishimura, A. (1993). In vitro production of interleukin-1, interleukin-6, and tumor necrosis factor-alpha in insulin-dependent diabetes mellitus. J Clin Endocrinol Metab 77, 1072-1077.
    Ohtani, M., Nagai, S., Kondo, S., Mizuno, S., Nakamura, K., Tanabe, M., Takeuchi, T., Matsuda, S. & Koyasu, S. (2008). Mammalian target of rapamycin and glycogen synthase kinase 3 differentially regulate lipopolysaccharide-induced interleukin-12 production in dendritic cells. Blood 112, 635-643.
    Ozinsky, A., Underhill, D. M., Fontenot, J. D., Hajjar, A. M., Smith, K. D., Wilson, C. B., Schroeder, L. & Aderem, A. (2000). The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proceedings of the National Academy of Sciences 97, 13766.
    Pai, R. K., Pennini, M. E., Tobian, A. A. R., Canaday, D. H., Boom, W. H. & Harding, C. V. (2004). Prolonged Toll-Like Receptor Signaling by Mycobacterium tuberculosis and Its 19-Kilodalton Lipoprotein Inhibits Gamma Interferon-Induced Regulation of Selected Genes in Macrophages Editor: FC Fang. Infection and Immunity 72, 6603-6614.
    Palladino, M. A., Johnson, T. A., Gupta, R., Chapman, J. L. & Ojha, P. (2007). Members of the Toll-Like Receptor Family of Innate Immunity Pattern-Recognition Receptors Are Abundant in the Male Rat Reproductive Tract. Biology of Reproduction 76, 958.
    Rao, R., Hao, C. M., Redha, R., Wasserman, D. H., McGuinness, O. P. & Breyer, M. D. (2007). Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat-fed C57BL/6J mice. Diabetologia 50, 452-460.
    Rehani, K., Wang, H., Garcia, C. A., Kinane, D. F. & Martin, M. (2009). Toll-Like Receptor-Mediated Production of IL-1Ra Is Negatively Regulated by GSK3 via the MAPK ERK1/2. J Immunol 182, 547-553.
    Rother, K. I. (2007). Diabetes Treatment--Bridging the Divide. New England Journal of Medicine 356, 1499-1501.
    Schroder, M. & Bowie, A. G. (2005). TLR3 in antiviral immunity: key player or bystander? Trends in Immunology 26, 462-468.
    Shahbazian, D., Roux, P. P., Mieulet, V., Cohen, M. S., Raught, B., Taunton, J., Hershey, J. W. B., Blenis, J., Pende, M. & Sonenberg, N. (2006). The mTOR/PI3K and MAPK pathways converge on eIF4B to control its phosphorylation and activity. The EMBO Journal 25, 2781-2791.
    Srivastava, A. K. & Pandey, S. K. (1998). Potential mechanism (s) involved in the regulation of glycogen synthesis by insulin. Molecular and Cellular Biochemistry 182, 135-141.
    Takeda, K. & Akira, S. (2005). Toll-like receptors in innate immunity. International Immunology 17, 1-14.
    Trinchieri, G., Pflanz, S. & Kastelein, R. A. (2003). The IL-12 Family of Heterodimeric Cytokines New Players in the Regulation of T Cell Responses. Immunity 19, 641-644.
    VanHeyningen, T. K. (1997). IL-6 produced by macrophages infected with Mycobacterium species suppresses T cell responses. The Journal of Immunology 158, 330-337.
    Woodgett, J. R. & Ohashi, P. S. (2005). GSK3: an in-Toll-erant protein kinase? Nature Immunology 6, 751-752.
    Wu, H., Wang, H., Xiong, W., Chen, S., Tang, H. & Han, D. (2008). Expression patterns and functions of Toll-like receptors in mouse Sertoli cells. Endocrinology 149, 4402-4412.
    Yamamoto, M., Takeda, K. & Akira, S. (2004). TIR domain-containing adaptors define the specificity of TLR signaling. Molecular Immunology 40, 861-868.
    Zhang, H. H., Lipovsky, A. I., Dibble, C. C., Sahin, M. & Manning, B. D. (2006). S6K1 Regulates GSK3 under Conditions of mTOR-Dependent Feedback Inhibition of Akt. Molecular Cell 24, 185-197.

    下載圖示 校內:2010-02-11公開
    校外:2010-02-11公開
    QR CODE