簡易檢索 / 詳目顯示

研究生: 徐曉秋
Hsu, Hsiao-Chiu
論文名稱: 以有機金屬氣相磊晶技術成長非極性氮化鎵材料及光電元件之研究
Investigation of Nonpolar GaN-based Epitaxial Growth and Optoelectronic Devices by Metalorganic Vapor Phase Epitaxy Technique
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 博士
Doctor
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 141
中文關鍵詞: 非極性氮化鎵有機金屬氣相磊晶
外文關鍵詞: Nonpolar, GaN, MOVPE
相關次數: 點閱:83下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文的主要目的是利用機金屬氣相磊晶技術進行研究及改善非極性a面氮化鎵薄膜生長在r面藍寶石的光電特性,研究內容包含改善磊晶品質及表面、光學及元件特性等。首先,我們研究了利用插入不同緩衝層來改善a面氮化鎵磊晶品質,研究成果發現a面氮化鎵磊晶品質可藉由在藍寶石基板上插入一層氮化矽薄膜及低五三比成長的氮化鎵緩衝層後被改善。另外,利用改善兩階段磊晶過程的成長條件,可在r面藍寶石基板上成長出表面平坦無坑洞的a面氮化鎵薄膜。其兩階段磊晶包含第一階段在高溫及高五三比的環境下行程的三維成核成長,以及第二階段降低五三比的二維成長。其粗糙度的均方根值可由原本的11.82奈米降低到1.54奈米,在(1120)面上沿著c-/m-軸方向掃描得到的X射線繞射曲線之半高全寬值可由1174/2473 arcsec降低到703/1409 arcsec。爾後,我們利用選擇性蝕刻缺陷法研究a面氮化鎵薄膜的表面缺陷。在磷酸與硫酸比例為1:3的條件下,可以成功觀察到氮化鎵薄膜上不同的缺陷型態。其蝕刻坑密度可藉由量測原子力顯微鏡成像,得到其值為 6.1 × 108 cm-2¬¬¬。藉由X 射線光電子光譜中觀察可以發現原本被破壞的氮化鎵表面在經過化學酸處理後會被再更新,證實選擇性蝕刻缺陷法可應用在改善氮化鎵光電元件的表面。
    在本論文中,我們研究了兩種能有效改善a面氮化鎵之磊晶品質的方法,第一種方法是在有機金屬氣相沉積反應器中,直接蝕刻品質較差的a面氮化鎵薄膜後,再立刻成長一層磊晶品質較好的氮化鎵薄膜,其光學特性及缺陷密度都因為這個方法而有所改善。這個方法提供了一個快速及簡便的方式來改善a面氮化鎵的磊晶品質。第二種方法為利用單邊側向磊晶成長法降低a面氮化鎵的缺陷密度。藉由陰極發光光譜圖及X-射線繞射曲線觀察在不同三甲基鎵的流量下,會影響聚合後的氮化鎵磊晶品質及缺陷分布,在本實驗中得到的最佳三甲基鎵的流量為 8.33 mmole‧min-1。聚合後的氮化鎵薄膜經過穿隧式電子顯微鏡觀後可得其缺陷密度可有效降低3-4個次方。我們利用了Will-Hall-analysis 及電子穿隧對比影像來觀察基面堆疊缺陷密度,其值分別為 1.12 × 104 cm-1 以及 2.62 × 104 cm-1,顯示這兩種方法對於觀察基面堆疊缺陷密度上,提供了快速且準確的方式。
    在a面氮化銦鎵氮化鎵多重量子井研製方面,我們發現可藉由揷入一層銦含量漸變式多重量子井結構來改善其光學特性。其光激發極化率在一般多重量子井結構及銦含量漸變式多重量子結構分別是44.8% 及 61.5% 。在變溫的光極化率的曲線中可發現,銦含量漸變式多重量子結構的極化率隨溫度下降速率較慢,證明了其量子井中的非輻射複合中心能有效地被降低。本論文亦研究在利用單邊側向磊晶成長法成長後的a面氮化鎵基板上直接堆疊氮化鎵氮化銦鎵多重量子井結構的結構及光學特性。 在穿隧電子顯微鏡的觀察下,其前3對氮化鎵氮化銦鎵多重量子井具有良好的界面,最主要都是貢獻自我們利用了單邊單邊側向磊晶成長改善了a面氮化鎵磊晶品質,然而當多重量子井成長4對之後,其內部應力增加使得缺陷在多重量子井中衍生,進而影響多重量子井磊晶結構,代表該成長條件需要再加以改善。然而,變溫光激發光譜及光極化率的結果顯示,因為多重量子井成長在利用單邊側向磊晶成長的基板上,其光學特性有顯著的提升,其光極化率不會因為溫度提升而改變。
    最後,插入漸變銦含量的多重量子井可以直接應用在氮化鎵發光二極體上,其光輸出功率相較於有固定銦含量的多重量子井結構的發光二極體提升了23%,證明漸變銦含量多重量子井結構不但可作為電子發射層也可當作良好的應力釋放層。而我們也研究了利用單邊側向成長法製備的a面氮化鎵金屬-半導體-金屬紫外光光檢測器,並研究材料表面缺陷對元件的影響。首先,在1伏的偏壓下,其元件特性可達到高光暗電流比 (~103),高光響應率(~1 A/W),以高紫外對可見光的抑制比 (~103)。另外,可觀察到當氮化鎵基面堆疊缺陷方向與元件金屬電極相互平行時,其元件因缺陷的影響較大而有較高的內部增益效應。這些實驗結果提供了未來在製備光檢測器上更多的資訊並指出將a面氮化鎵材料應用於各式光檢測器上具有極大的潛力。

    The main purpose of this dissertation is to investigate and improve the crystalline quality, surface characteristics, and optical property for nonpolar a-plane GaN film grown on r-plane sapphire. First, the effect of the insertion of different buffer layer was investigated to improve crystal quality of a-plane GaN by adjusting growth conditions. The film quality is improved by inseritng SiNx interlayer and GaN buffer layer with low V/III ratio prior to fully coalesced a-plane GaN. Then, the two-step growth conditions of a-plane GaN on r-plane sapphire by metalorganic vapor phase epitaxy (MOVPE) technique have been optimized, which is the formation of the three dimensional (3D) nucleation layer at high temperature and high V/III ratio and then lowering the V/III ratio for the two dimensional (2D) growth. The root-mean-square roughness of the overlaying GaN is reduced from 11.82 to 1.54 nm. The full width at half maximum (FWHM) value of its X-ray diffraction (XRD) omega scan on (1120) on-plane along c-/m-direction was also decreased from 1174/2473 to 703/1409 arcsec. Furthermore, the surface defect of a-plane GaN was evaluated by using the defect-selective etching (DSE) technique. It appears that the different types of dislocations in a-plane GaN surface can be determined from observing the various sizes of etch pits using a 1:3 ratio of H3PO4 / H2SO4¬ etching solution. The etch pits density (EPD) of etched-GaN is approximately 6.1 × 108 cm-2¬¬¬, as calculated by atomic force microscope (AFM). The X-ray photoelectron spectroscopy (XPS) spectra of Ga 3d core-level shows that the damage surface was refreshed after chemical treatment. Wet-chemical etching is a viable process to improve the surface and structure properties of a-plane GaN related devices.
    We demonstrated two approaches to improve the crystalline quality of a-plane GaN film. One is a simple method to improve the crystalline quality of a-plane GaN film by re-growth on a-plane GaN template etched in situ in a MOVPE reactor. The X-ray diffraction (XRD) omega FWHM, transmission electron microscope (TEM) images, and photoluminescence (PL) spectra demonstrate that the overgrown on in situ etched porous GaN template could serve as a simple, accelerated process for the improvement of a-plane GaN crystalline quality. Another approach is an effective method to improve the crystalline quality of a-plane GaN film by using one-sidewall-seed epitaxial lateral overgrowth (OSELOG) approach. Moreover, the cathodoluminescence (CL) and XRD is used to investigate the defect distribution in the OSELOG-GaN samples by varying the growth rate via re-calibrating the TMGa flow rate. The results conclude that the growth rate plays an important role during the coalescence step. The TEM image shows that the dislocation density of OSELOG-GaN-template is 3–4 orders of magnitude lower than that in the as-grown region. Final, two approaches, which are modified Will-Hall-analysis (WH analysis) and the electron channeling contrast imaging (ECCI) technique, are used to observe the basal-plane stacking faults (BSFs) density in OSELOG-GaN-template. The values of BSFs density from the WH analysis and ECCI calculation are 1.12 × 104 cm-1 and 2.62 × 104 cm-1, respectively. These results show that two approaches are very straightforward for the calculations of BSFs density.
    The crystal quality of a-plane InGaNGaN MQWs is further improved by inserting the step-stage MQW structure before the active region. The XRD and temperature-dependent PL data shows the crystal quality is improved when increasing the pair of the step-stage MQW. Then, the degree of polarization (DoP) of conventional MQW and 13 pairs step-stage MQW are 44.8% and 61.5% at room temperature, respectively. The temperature-dependent polarization degree of two samples indicated that the reduction of DoP is improved by inserting the step-stage MQW due to the less indium fluctuations and less non-radiative centers. The structure and optical properties of a-plane InGaNGaN MQWs grown on OSELOG-GaN-template was also investigated. TEM image shows the first three QWs show sharp interface between GaN and InGaN. However, the crystal perfection suffers due to the introduction of many defects after the deposition of the 3rd quantum well. It means that it is essential for further improving the growth condition during the epitaxial process of MQW grown on OSELOG-GaN-template. Then, the temperature-dependent PL intensity and DoP of the MQW sample is further improved by depositing on OSELOG-GaN template. The DoP value is almost unchanged by increased temperature.
    GaN-based blue light emitting dioides (LEDs) with step-stage MQW structure as an electron-injection layer (EIL) is proposed and investigated. The light output power of the step-stage LED measured are 363.8 mW at 350 mA corresponding to an external quantum efficiency (EQE) of 36.7%, which represents a 23% increase over that of dual-stage LED. These results conclude the indium-stepwise-doped EIL could function as a better pre-strain layer and could also provide an easier electron-tunneling structure for the electrons. The a-plane GaN-based metal-semiconductor-metal (MSM) photodetectors (PDs) grown on OSELOG-GaN-template were fabricated. We also investigated the direction effect between the BSFs in a-plane GaN and the metal electrode. Firstly, the performance of a-plane GaN MSM-PDs operated under 1 V show high photo-to-dark current ratio (~103), higher measured responsivity (~1 A/W), and high UV-to-visible rejection ratio (~103). In addition, the results show the a-plane MSM-PD has greater internal gain effect when the direction of BSFs is parallel to metal electrode. These results show great potential of a-plane GaN material for the fabrication high performance PDs in the future.

    Abstract (in Chinese).............................................................................................................i Abstract (in English)............................................................................................................iv Acknowledgement..............................................................................................................viii Contents................................................................................................................................ix Table captions.....................................................................................................................xiii Figure captions...................................................................................................................xiv Chapter 1 Introduction...........................................................................................................................1 1-1 Evolution of III-nitride based optoelectronic devices.....................................................1 1-1-1 Historical movements of polar (c-plane) GaN LEDs………….............……...…1 1-1-2 Historical movements of nonpolar (a-/m-plane) GaN LEDs ……..............….…4 1-2 Evolution of nonpolar GaN growth and optoelectronic devices.....................................9 1-2-1 Inherent characteristics of nonpolar GaN materials………......…….…........…...9 1-2-2 Current progress of nonpolar GaN optoelectronic devices ……......……..........16 1-2-3 Challenges of the growth nonpolar a-plane GaN films………….............….….19 1-3 Overview of this dissertation…………………………………………...….….......….23 Chapter 2 Experimental instruments and metrologies......................................................................25 2-1 Metal organic vapor phase epitaxy (MOVPE)…….............................…….........…....25 2-2 Metrologies for surface characteristics in epitaxial structure........................................26 2-2-1 Scanning electron microscope (SEM)…………………...…………..........……26 2-2-2 Electron channeling contrast imaging (ECCI)……….……....….…........……..27 2-2-3 Atomic force microscope (AFM)…………….……….………….........……….28 2-2-4 X-ray photoelectron spectroscopy (XPS)……...……………….…........………29 2-3 Metrologies for physical characteristics in epitaxial structure......................................30 2-3-1 Transmission electron microscope (TEM)………………....…........….……….30 2-3-2 High resolution X-ray diffraction (HR-XRD) …………............………....……32 2-4 Metrologies for optical characteristics in epitaxial structure………...............…….…..32 2-4-1 Cathodoluminescence (CL)…………………………………...........…..………33 2-4-2 Photoluminescence (PL)…………………………...…........……………...……34 Chapter 3 Optimization of the epitaxial growth conditions of a-plane GaN on r-sapphire...........37 3-1 Challenges of the growth of a-plane GaN on r-sapphire…………........................…..37 3-2 Effects of the insertion of buffer layer............................................................…….......38 3-3 Effects of V/III ratio and temperature on two-step growth....................………….......41 3-4 Optimization of V/III ratio for two-step growth.............………........…………..…....44 3-5 Summary…………………………………………………………..........………...…..48 Chapter 4 Investigation of crystalline quality and surface characteristics of a-plane GaN using defect-selective etching........................................................................................................49 4-1 Motivation of the development in defect-selective etch (DSE) approach ............…...49 4-2 Experimental procedure……………………………………………....…..........……..50 4-3 Effects of the etchant ratios on a-plane GaN surface...………......……..……….........51 4-4 Analysis of the crystalline quality of a-plane GaN film by DSE..................................53 4-5 Surface characteristics of a-plane GaN after DSE............…………......…........……..54 4-6 Summary……………………………………………………………..........………….56 Chapter 5 Two approaches for the improvement of crystalline quality in a-plane GaN film........58 5-1 Approaches for defect reduction of a-plane GaN on r-plane sapphire….…................58 5-2 Experimental procedure................................................................................................59 5-2-1 Overgrowth of in situ etched GaN template………………….....……..........….59 5-2-2 One-sidewall-seed epitaxial lateral overgrowth (OSELOG)…………….…......60 5-3 Overgrowth a-plane GaN on in situ etched GaN template……….......……............…62 5-4 Defect reduction of a-plane GaN by OSELOG………………………............…..…..68 5-4-1 Effects of precursor flow rate during OSELOG…….............................……….71 5-4-2 Two methods for BSF calculation of a-plane GaN film……….....………….....76 5-5 Summary…………………………………………………..…………........….………79 Chapter 6 Investigation of structures and optical properties in a-plane InGaN/GaN MQW structure...............................................................................................................................81 6-1 Challenges of a-plane InGaNGaN MQW structure………..............………......….....81 6-2 Enhance optical property of a-plane InGaNGaN MQW by step-stage MQW.............83 6-2-1 Motivation for the insertion of Indium-step-graded MQW structure..................83 6-2-2 Demonstration of step-stage InGaNGaN MQW structure................................ 83 6-2-3 Effect of varied pair step-stage MQW.................................................................86 6-2-4 Temperature-dependent optical property of a-plane InGaNGaN MQW............91 6-2-5 Characteristics of polarization-anisotropy in a-plane InGaNGaN MQW..........95 6-3 Observation of a-plane InGaNGaN MQW grown on OSELOG-GaN template..........98 6-3-1 Motivation of a-plane InGaNGaN MQW on OSELOG-GaN template.............98 6-3-2 Structure property of a-plane InGaNGaN MQW...............................................98 6-3-3 Optical property of a-plane InGaNGaN MQW................................................103 6-4 Summary…………………………………………………………………..…...........105 Chapter 7 Characteristics of GaN-based optoelectronic devices grown by MOVPE...................106 7-1 Enhanced performance of nitride-based LED with step-stage MQW structure..........106 7-1-1 Motivation for the insertion of step-stage MQW structure in LED………..............106 7-1-2 Experimental procedure of LED with multi-stage MQW structure..................107 7-1-3 Characteristics of c-plane GaN-based LEDs with mutil-stage MQW...............108 7-2 Investigation of a-plane GaN-based metal-semiconductor-metal photodetector........114 7-2-1 Motivation of nonpolar GaN-based ultraviolet photodetectors….................... 114 7-2-2 Experimental procedure of a-plane GaN MSM PDs........................................ 116 7-2-3 Anisotropy characteristics of a-plane MSM PDs..............................................117 7-3 Summary………………………………………………………..………...…........…..121 Chapter 8 Conclusions and future prospects....................................................................................122 8-1 Conclusions..................................................................................................................122 8-2 Future prospects............................................................................................................125 Reference……………..................................................................…………………..........126 Publication list...................................................................................................................139 Vita......................................................................................................................................141

    [1] T. Paskova, Nitrides with Nonpolar Surfaces. Weinheim: Wiley-VCH, 2008.
    [2] R. Dingle, D. D. Sell, S. E. Stokowski, and M. Ilegems, "Absorption, Reflectance, and Luminescence of GaN Epitaxial Layers," Phys. Rev. B, vol. 4, pp. 1211-1218, 1971.
    [3] H. Amano, N. Sawaki, I. Akasaki, and Y. Toyoda, "Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer," Appl. Phys. Lett., vol. 48, pp. 353-355, 1986.
    [4] S. Nakamura, "GaN Growth Using GaN Buffer Layer," Jpn. J. Appl. Phys., vol. 30, pp. L1705-L1707, 1971.
    [5] H. Amano, M. Kitoh, K. Hiramatsu, and I. Akasaki, "Growth and luminescence properties of Mg-doped GaN prepared by MOVPE," J. Electrochem. Soc., vol. 137, pp. 1639-1641, 1990.
    [6] S. Nakamura, T. Mukal, M. Senoh, and N. Iwasa, "Thermal annealing effects on P-type Mg-doped GaN films," Jpn. J. Appl. Phys., vol. 31, pp. 139-142, 1992.
    [7] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, "Hole compensation mechanism of P-type GaN films," Jpn. J. Appl. Phys., vol. 31, pp. 1258-1266, 1992.
    [8] S. Nakamura, M. Senoh, and T. Mukai, "P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes," Jpn. J. Appl. Phys., vol. 32, pp. L8-L11, 1993.
    [9] S. Nakamura, "Zn-doped InGaN growth and InGaN/AlGaN double-heterostructure blue-light-emitting diodes," J. Cryst. Growth, vol. 145, pp. 911-917, 1994.
    [10] S. Nakamura, T. Mukai, and M. Senoh, "Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes," Appl. Phys. Lett., vol. 64, pp. 1687-1689, 1994.
    [11] S. Nakamura, M. Senoh, N. Iwasa, and S. Nagahama, "High-brightness in InGaN blue, green and yellow light-emitting diodes with quantum well structures," Jpn. J. Appl. Phys., vol. 34, pp. L797-L799, 1995.
    [12] S. Nakamura, M. Senoii, N. Iwasa, S.-i. Nagahama, T. Yamada, and T. Mukai, "Superbright green InGaN single-quantum-well-structure light-emitting diodes," Jpn. J. Appl. Phys., vol. 34, pp. L1332-L1335, 1995.
    [13] S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, "InGaN-based multi-quantum-well-structure laser diodes," Jpn. J. Appl. Phys., vol. 35, pp. L74-L76, 1996.
    [14] P. Kung, C. J. Sun, A. Saxler, H. Ohsato, and M. Razeghi, "Crystallography of epitaxial growth of wurtzite-type thin films on sapphire substrates," J. Appl. Phys., vol. 75, pp. 4515-4519, 1994.
    [15] M. Suzuki, and T. Uenoyama, "Strain effect on electronic and optical properties of GaN/AlGaN quantum-well lasers," J. Appl. Phys., vol. 80, pp. 6868-6874, 1996.
    [16] F. Bernardini, V. Fiorentini, and D. Vanderbilt, "Spontaneous polarization and piezoelectric constants of III-V nitrides," Phys. Rev. B, vol. 56, pp. R10024-27, 1997.
    [17] V. Fiorentini, F. Bernardini, F. Della Sala, A. Di Carlo, and P. Lugli, "Effects of macroscopic polarization in III-V nitride multiple quantum wells," Phys. Rev. B, vol. 60, pp. 8849-8858, 1999.
    [18] S. Chichibu, T. Azuhata, T. Sota, and S. Nakamura, "Spontaneous emission of localized excitons in InGaN single and multiquantum well structures," Appl. Phys. Lett., vol. 69, pp. 4188-4190, 1996.
    [19] P. Waltereit, O. Brandt, M. Ramsteiner, A. Trampert, H. T. Grahn, J. Menniger, M. Reiche, and K. H. Ploog, "M-plane GaN grown on LiAlO2(1 0 0): nitride semiconductors free of internal electrostatic fields," J. Cryst. Growth, vol. 227-228, pp. 437-441, 2001.
    [20] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, M. Reiche, and K. H. Ploog, "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, vol. 406, pp. 865-868, 2000.
    [21] M. McLaurin, T. E. Mates, F. Wu, and J. S. Speck, "Growth of p-type and n-type m-plane GaN by molecular beam epitaxy," J. Appl. Phys., vol. 100, pp. 063707-7, 2006.
    [22] M. Sano, and M. Aoki, "Epitaxial Growth of Undoped and Mg-Doped GaN," Jpn. J. Appl. Phys., vol. 15, pp. 1943-1950, 1976.
    [23] C. Chen, V. Adivarahan, J. Yang, M. Shatalov, E. Kuokstis, and M. A. Khan, "Ultraviolet Light Emitting Diodes Using Non-Polar a-Plane GaN-AlGaN Multiple Quantum Wells " Jpn. J. Appl. Phys., vol. 42, pp. L1039-L1040, 2003.
    [24] A. Chitnis, C. Chen, V. Adivarahan, M. Shatalov, E. Kuokstis, V. Mandavilli, J. Yang, and M. A. Khan, "Visible light-emitting diodes using a-plane GaN-InGaN multiple quantum wells over r-plane sapphire," Appl. Phys. Lett., vol. 84, pp. 3663-3665, 2004.
    [25] B. A. Haskell, F. Wu, M. D. Craven, S. Matsuda, P. T. Fini, T. Fujii, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, "Defect reduction in (1120) a-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor-phase epitaxy," Appl. Phys. Lett., vol. 83, pp. 644-646, 2003.
    [26] B. A. Haskell, T. J. Baker, M. B. McLaurin, F. Wu, P. T. Fini, S. P. Denbaars, J. S. Speck, and S. Nakamura, "Defect reduction in (1100) m-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor phase epitaxy," Appl. Phys. Lett., vol. 86, pp. 1-3, 2005.
    [27] T. Onuma, A. Chakraborty, B. A. Haskell, S. Keller, S. P. Denbaars, J. S. Speck, S. Nakamura, U. K. Mishra, T. Sota, and S. F. Chichibu, "Localized exciton dynamics in nonpolar (1120) InxGa1-xN multiple quantum wells grown on GaN templates prepared by lateral epitaxial overgrowth," Appl. Phys. Lett., vol. 86, p. 151918, 2005.
    [28] M. P. D'Evelyn, H. C. Hong, D. S. Park, H. Lu, E. Kaminsky, R. R. Melkote, P. Perlin, M. Lesczynski, S. Porowski, and R. J. Molnar, "Bulk GaN crystal growth by the high-pressure ammonothermal method," J. Cryst. Growth, vol. 300, pp. 11-16, 2007.
    [29] F. Kawamura, M. Morishita, M. Tanpo, M. Imade, M. Yoshimura, Y. Kitaoka, Y. Mori, and T. Sasaki, "Effect of carbon additive on increases in the growth rate of 2 in GaN single crystals in the Na flux method," J. Cryst. Growth, vol. 310, pp. 3946-3949, 2008.
    [30] K. Okamoto, H. Ohta, D. Nakagawa, M. Sonobe, J. Ichihara, and H. Takasu, "Dislocation-free m-plane InGaN/GaN light-emitting diodes on m-plane GaN single crystals," Jpn. J. Appl. Phys., vol. 45, pp. L1197-L1199, 2006.
    [31] M. C. Schmidt, K. C. Kim, R. M. Farrell, D. F. Feezell, D. A. Cohen, M. Saito, K. Fujito, J. S. Speck, S. P. Denbaars, and S. Nakamura, "Demonstration of nonpolar m-plane InGaN/GaN laser diodes," Jpn. J. Appl. Phys., vol. 46, pp. L190-L191, 2007.
    [32] K. Fujito, K. Kiyomi, T. Mochizuki, H. Oota, H. Namita, S. Nagao, and I. Fujimura, "High-quality nonpolar m -plane GaN substrates grown by HVPE," Phys. Status Solidi A, vol. 205, pp. 1056-1059, 2008.
    [33] T. Paskova, and K. R. Evans, "GaN Substrates-Progress, Status, and Prospects," IEEE J. Sel. Top. Quantum Electron., vol. 15, pp. 1041-1052, 2009.
    [34] G. Purvis, "Changing the crystal face of gallium nitride," III-Vs Review, vol. 18, pp. 26-28, 2005.
    [35] T. Paskova, "Development and prospects of nitride materials and devices with nonpolar surfaces," Phys. Status Solidi B, vol. 245, pp. 1011-1025, 2008.
    [36] C.-J. Sun, and M. Razeghi, "Comparison of the physical properties of GaN thin films deposited on (0001) and (011-bar 2) sapphire substrates," Appl. Phys. Lett., vol. 63, pp. 973-975, 1993.
    [37] T. Paskova, P. P. Paskov, E. Valcheva, V. Darakchieva, J. Birch, A. Kasic, B. Arnaudov, S. Tungasmita, and B. Monemar, "Polar and nonpolar GaN grown by HVPE: Preferable substrates for nitride-based emitting devices," Phys. Status Solidi A, vol. 201, pp. 2265-2270, 2004.
    [38] K. Kusakabe, and K. Ohkawa, "Morphological characteristics of a-plane GaN grown on r-plane sapphire by metalorganic vapor-phase epitaxy," Jpn. J. Appl. Phys., vol. 44, pp. 7931-7933, 2005.
    [39] M. D. Craven, S. H. Lim, F. Wu, J. S. Speck, and S. P. DenBaars, "Structural characterization of nonpolar (1120) a-plane GaN thin films grown on (1102) r-plane sapphire," Appl. Phys. Lett., vol. 81, pp. 469-471, 2002.
    [40] B. Imer, F. Wu, M. D. Craven, J. S. Speck, and S. P. DenBaars, "Stability of (1100) m-plane GaN films grown by metalorganic chemical vapor deposition," Jpn. J. Appl. Phys., vol. 45, pp. 8644-8647, 2006.
    [41] X. Ni, Y. Fu, Y. T. Moon, N. Biyikli, and H. Morkoc, "Optimization of (1120) a-plane GaN growth by MOCVD on (1102) r-plane sapphire," J. Cryst. Growth, vol. 290, pp. 166-170, 2006.
    [42] H. Wang, C. Chen, Z. Gong, J. Zhang, M. Gaevski, M. Su, J. Yang, and M. A. Khan, "Anisotropic structural characteristics of (1120) GaN templates and coalesced epitaxial lateral overgrown films deposited on (1012) sapphire," Appl. Phys. Lett., vol. 84, pp. 499-501, 2004.
    [43] O. Brandt, Y. Jun Sun, L. Däweritz, and K. H. Ploog, "Growth of M-plane GaN on r-LiAlO2(1 0 0): the role of Ga adsorption/desorption," Physica E, vol. 23, pp. 339-346, 2004.
    [44] F. Wu, M. D. Craven, S.-H. Lim, and J. S. Speck, "Polarity determination of a-plane GaN on r-plane sapphire and its effects on lateral overgrowth and heteroepitaxy," J. Appl. Phys., vol. 94, pp. 942-947, 2003.
    [45] K. Domen, K. Horino, A. Kuramata, and T. Tanahashi, "Analysis of polarization anisotropy along the c axis in the photoluminescence of wurtzite GaN," Appl. Phys. Lett., vol. 71, pp. 1996-1998, 1997.
    [46] B. Liu, R. Zhang, Z. L. Xie, J. Y. Kong, J. Yao, Q. J. Liu, Z. Zhang, D. Y. Fu, X. Q. Xiu, P. Chen, P. Han, Y. Shi, Y. D. Zheng, S. M. Zhou, and G. Edwards, "Anisotropic crystallographic properties, strain, and their effects on band structure of m-plane GaN on LiAlO2(100)," Appl. Phys. Lett., vol. 92, p. 261906, 2008.
    [47] S. Ghosh, P. Waltereit, O. Brandt, H. T. Grahn, and K. H. Ploog, "Electronic band structure of wurtzite GaN under biaxial strain in the M plane investigated with photoreflectance spectroscopy," Phys. Rev. B, vol. 65, p. 075202, 2002.
    [48] C. H. Chiu, S. Y. Kuo, M. H. Lo, C. C. Ke, T. C. Wang, Y. T. Lee, H. C. Kuo, T. C. Lu, and S. C. Wang, "Optical properties of a-plane InGaN/GaN multiple quantum wells on r-plane sapphire substrates with different indium compositions," J. Appl. Phys., vol. 105, p. 063105, 2009.
    [49] H. T. Grahn, "Nonpolar-oriented GaN films for polarization-sensitive and narrow-band photodetectors," MRS Bull., vol. 34, pp. 341-347, 2009.
    [50] H. T. Grahn, and K. H. Ploog, "Polarization properties of nonpolar GaN films and (In, Ga)N/GaN multiple quantum wells," Appl. Phys. A, vol. 78, pp. 447-451, 2004.
    [51] H.-H. Huang, and Y.-R. Wu, "Study of polarization properties of light emitted from a -plane InGaN/GaN quantum well-based light emitting diodes," J. Appl. Phys., vol. 106, p. 023106, 2009.
    [52] H.-M. Huang, H.-H. Huang, Y.-R. Wu, and T.-C. Lu, "Abnormal polarization switching phenomenon in a-plane AlxGa1-xN," Opt. Express, vol. 18, pp. 21743-21749, 2010.
    [53] A. Navarro, C. Rivera, J. Pereiro, E. Muoz, B. Imer, S. P. Denbaars, and J. S. Speck, "High responsivity A-plane GaN-based metal-semiconductor-metal photodetectors for polarization-sensitive applications," Appl. Phys. Lett., vol. 94, p. 213512, 2009.
    [54] S.-H. Park, D. Ahn, and S.-L. Chuang, "Electronic and optical properties of a- and m-plane wurtzite InGaN-GaN quantum wells," IEEE J. Quantum Electron., vol. 43, pp. 1175-1182, 2007.
    [55] H. Masui, H. Yamada, K. Iso, J. S. Speck, S. Nakamura, and S. P. DenBaars, "Non-polar-oriented InGaN light-emitting diodes for liquid-crystal-display backlighting," J. Soc. Inf. Displays, vol. 16, pp. 571-578, 2008.
    [56] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. Denbaars, S. Nakamura, and U. K. Mishra, "Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak," Appl. Phys. Lett., vol. 85, pp. 5143-5145, 2004.
    [57] N. F. Gardner, J. C. Kim, J. J. Wierer, Y. C. Shen, and M. R. Krames, "Polarization anisotropy in the electroluminescence of m-plane InGaN--GaN multiple-quantum-well light-emitting diodes," Appl. Phys. Lett., vol. 86, p. 111101, 2005.
    [58] A. Chakraborty, K. C. Kim, F. Wu, B. A. Haskell, S. Keller, J. S. Speck, S. Nakamura, S. P. Denbaars, and U. K. Mishra, "Structural and electroluminescence characteristics of nonpolar light-emitting diodes fabricated on lateral epitaxially overgrown a-plane GaN," Jpn. J. Appl. Phys., vol. 45, pp. 8659-8661, 2006.
    [59] K.-C. Kim, M. C. Schmidt, H. Sato, F. Wu, N. Fellows, Z. Jia, M. Saito, S. Nakamura, S. P. DenBaars, J. S. Speck, and K. Fujito, "Study of nonpolar m-plane InGaN/GaN multiquantum well light emitting diodes grown by homoepitaxial metal-organic chemical vapor deposition," Appl. Phys. Lett., vol. 91, p. 181120, 2007.
    [60] M. C. Schmidt, K.-C. Kim, H. Sato, N. Fellows, H. Masui, S. Nakamura, S. P. DenBaars, and J. S. Speck, "High power and high external efficiency m-plane InGaN light emitting diodes," Jpn. J. Appl. Phys., vol. 46, pp. L126-L128, 2007.
    [61] H. Yamada, K. Iso, M. Saito, H. Hirasawa, N. Fellows, H. Masui, K. Fujito, J. S. Speck, S. P. DenBaars, and S. Nakamura, "Comparison of InGaN/GaN light emitting diodes grown on a-plane and a-plane bulk GaN substrates," Phys. Status Solidi RRL, vol. 2, pp. 89-91, 2008.
    [62] J. P. Liu, J. B. Limb, J. H. Ryou, D. Yoo, C. A. Horne, R. D. Dupuis, Z. H. Wu, A. M. Fischer, F. A. Ponce, A. D. Hanser, L. Liu, E. A. Preble, and K. R. Evans, "Blue light emitting diodes grown on freestanding (11-20) a-plane GaN substrates," Appl. Phys. Lett., vol. 92, p. 011123, 2008.
    [63] T. Detchprohm, M. Zhu, Y. Li, Y. Xia, C. Wetzel, E. A. Preble, L. Liu, T. Paskova, and D. Hanser, "Green light emitting diodes on a-plane GaN bulk substrates," Appl. Phys. Lett., vol. 92, p. 241109, 2008.
    [64] M. D. Craven, F. Wu, A. Chakraborty, B. Imer, U. K. Mishra, S. P. DenBaars, and J. S. Speck, "Microstructural evolution of a-plane GaN grown on a-plane SiC by metalorganic chemical vapor deposition," Appl. Phys. Lett., vol. 84, pp. 1281-1283, 2004.
    [65] O. Brandt, Y. J. Sun, and K. H. Ploog, "Growth of nonpolar GaN(1100) films and heterostructures by plasma-assisted molecular beam epitaxy," presented at the MRS Proceedings, Boston, MA, United states, 2005.
    [66] C. Mauder, B. Reuters, L. Rahimzadeh Khoshroo, M. V. Rzheutskii, E. V. Lutsenko, G. P. Yablonskii, J. F. Woitok, M. Heuken, H. Kalisch, and R. H. Jansen, "Development of m-plane GaN anisotropic film properties during MOVPE growth on LiAlO2 substrates," J. Cryst. Growth, vol. 312, pp. 1823-1827, 2010.
    [67] T. Sasaki, and S. Zembutsu, "Substrate-orientation dependence of GaN single-crystal films grown by metalorganic vapor-phase epitaxy," J. Appl. Phys., vol. 61, pp. 2533-2540, 1987.
    [68] J. Smalc-Koziorowska, G. P. Dimitrakopulos, S. L. Sahonta, G. Tsiakatouras, A. Georgakilas, and P. Komninou, "Step-induced misorientation of GaN grown on r-plane sapphire," Appl. Phys. Lett., vol. 93, p. 021910, 2008.
    [69] W. Qian, M. Skowronski, and G. S. Rohrer, "Structural defects and their relationship to nucleation of GaN thin films," presented at the MRS Proceedings, San Francisco, CA, USA 1996.
    [70] B. A. Haskell, F. Wu, S. Matsuda, M. D. Craven, P. T. Fini, S. P. DenBaars, J. S. Speck, and S. Nakamura, "Structural and morphological characteristics of planar (1120) a-plane gallium nitride grown by hydride vapor phase epitaxy," Appl. Phys. Lett., vol. 83, pp. 1554-1556, 2003.
    [71] M. von Ardenne, "Das Elektronen-Rastermikroskop," Zeitschrift für Physik A Hadrons and Nuclei, vol. 109, pp. 553-572, 1938.
    [72] D. C. Joy, D. E. Newbury, and D. L. Davidson, "Electron channeling patterns in the scanning electron microscope," J. Appl. Phys., vol. 53, pp. R81-R122, 1982.
    [73] J. T. Czernuszka, N. J. Long, E. D. Boyes, and P. B. Hirsch, "Imaging of dislocations using backscattered electrons in a scanning electron microscope," Philos. Mag. Lett., vol. 62, pp. 227 - 232, 1990.
    [74] Y. N. Picard, M. E. Twigg, J. D. Caldwell, J. C. R. Eddy, P. G. Neudeck, A. J. Trunek, and J. A. Powell, "Electron channeling contrast imaging of atomic steps and threading dislocations in 4H-SiC," Appl. Phys. Lett., vol. 90, p. 234101, 2007.
    [75] Y. N. Picard, J. D. Caldwell, M. E. Twigg, J. C. R. Eddy, M. A. Mastro, R. L. Henry, R. T. Holm, P. G. Neudeck, A. J. Trunek, and J. A. Powell, "Nondestructive analysis of threading dislocations in GaN by electron channeling contrast imaging," Appl. Phys. Lett., vol. 91, p. 094106, 2007.
    [76] C. Trager-Cowan, F. Sweeney, P. W. Trimby, A. P. Day, A. Gholinia, N. H. Schmidt, P. J. Parbrook, A. J. Wilkinson, and I. M. Watson, "Electron backscatter diffraction and electron channeling contrast imaging of tilt and dislocations in nitride thin films," Phys. Rev. B, vol. 75, p. 085301, 2007.
    [77] F. J. Giessibl, "Advances in atomic force microscopy," Rev. Mod. Phys., vol. 75, pp. 949-983, 2003.
    [78] C. F. Johnston, M. J. Kappers, and C. J. Humphreys, "Microstructural evolution of nonpolar (11-20) GaN grown on (1-102) sapphire using a 3D-2D method," J. Appl. Phys., vol. 105, p. 073102, 2009.
    [79] M. A. Moram, C. F. Johnston, M. J. Kappers, and C. J. Humphreys, "Measuring dislocation densities in nonpolar a-plane GaN films using atomic force microscopy," J. Phys. D: Appl. Phys., vol. 43, p. 055303, 2010.
    [80] X-ray photoelectron spectroscopy. Available: http://en.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
    [81] Transmission electron microscopy. Available: http://en.wikipedia.org/wiki/Transmission_electron_microscopy
    [82] X-ray Diffraction. Available: http://www.panalytical.com/
    [83] Y.-H. Cho, G. H. Gainer, A. J. Fischer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBaars, "``S-shaped' temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells," Appl. Phys. Lett., vol. 73, pp. 1370-1372, 1998.
    [84] H. Murotani, T. Kuronaka, Y. Yamada, T. Taguchi, N. Okada, and H. Amano, "Temperature dependence of excitonic transitions in a-plane AlN epitaxial layers," J. Appl. Phys., vol. 105, p. 083533, 2009.
    [85] H. Song, J. S. Kim, E. K. Kim, S.-H. Lee, J. B. Kim, J.-S. Son, and S.-M. Hwang, "Nonpolar growth and characterization of a-plane InGaN/GaN quantum well structures with different indium compositions," Solid-State Electron., vol. 54, pp. 1221-1226, 2010.
    [86] A. Chakraborty, B. A. Haskell, S. Keller, J. S. Speck, S. P. DenBaars, S. Nakamura, and U. K. Mishra, "Nonpolar InGaN/GaN emitters on reduced-defect lateral epitaxially overgrown a-plane GaN with drive-current-independent electroluminescence emission peak," Appl. Phys. Lett., vol. 85, pp. 5143-5145, 2004.
    [87] J. L. Hollander, M. J. Kappers, C. McAleese, and C. J. Humphreys, "Improvements in a -plane GaN crystal quality by a two-step growth process," Appl. Phys. Lett., vol. 92, p. 101104, 2008.
    [88] T. S. Ko, T. C. Wang, H. M. Huang, J. R. Chen, H. G. Chen, C. P. Chu, T. C. Lu, H. C. Kuo, and S. C. Wang, "Characteristics of a-plane GaN with the SiNx insertion layer grown by metal-organic chemical vapor deposition," J. Cryst. Growth, vol. 310, pp. 4972-4975, 2008.
    [89] C. W. Kuo, Y. K. Fu, C. H. Kuo, L. C. Chang, C. J. Tun, C. J. Pan, and G. C. Chi, "Dislocation reduction in GaN with double MgxNy/AlN buffer layer by metal organic chemical vapor deposition," J. Cryst. Growth, vol. 311, pp. 249-253, 2009.
    [90] L. Sugiura, "Dislocation motion in GaN light-emitting devices and its effect on device lifetime," J. Appl. Phys., vol. 81, pp. 1633-1638, 1997.
    [91] J. L. Weyher, P. D. Brown, J. L. Rouvière, T. Wosinski, A. R. A. Zauner, and I. Grzegory, "Recent advances in defect-selective etching of GaN," J. Cryst. Growth, vol. 210, pp. 151-156, 2000.
    [92] J. L. Weyher, H. Ashraf, and P. R. Hageman, "Reduction of dislocation density in epitaxial GaN layers by overgrowth of defect-related etch pits," Appl. Phys. Lett., vol. 95, p. 031913, 2009.
    [93] M. H. Lo, P. M. Tu, C. H. Wang, C. W. Hung, S. C. Hsu, Y. J. Cheng, H. C. Kuo, H. W. Zan, S. C. Wang, C. Y. Chang, and S. C. Huang, "High efficiency light emitting diode with anisotropically etched GaN-sapphire interface," Appl. Phys. Lett., vol. 95, p. 041109 2009.
    [94] G. Y. Ha, T. Y. Park, J. Y. Kim, D. J. Kim, K. I. Min, and S. J. Park, "Improvement of Reliability of GaN-Based Light-Emitting Diodes by Selective Wet Etching With p-GaN," IEEE Photon. Technol. Lett., vol. 19, pp. 813-815, 2007.
    [95] S. I. Na, G. Y. Ha, D. S. Han, S. S. Kim, J. Y. Kim, J. H. Lim, D. J. Kim, K. I. Min, and S. J. Park, "Selective wet etching of p-GaN for efficient GaN-based light-emitting diodes," IEEE Photon. Technol. Lett., vol. 18, pp. 1512-1514, 2006.
    [96] P. Visconti, K. M. Jones, M. A. Reshchikov, R. Cingolani, H. Morkoc, and R. J. Molnar, "Dislocation density in GaN determined by photoelectrochemical and hot-wet etching," Appl. Phys. Lett., vol. 77, pp. 3532-3534, 2000.
    [97] D. Zhuang, and J. H. Edgar, "Wet etching of GaN, AlN, and SiC: A review," Materials Science and Engineering R: Reports, vol. 48, pp. 1-46, 2005.
    [98] Y. Gao, M. D. Craven, J. S. Speck, S. P. DenBaars, and E. L. Hu, "Dislocation- and crystallographic-dependent photoelectrochemical wet etching of gallium nitride," Appl. Phys. Lett., vol. 84, pp. 3322-3324, 2004.
    [99] H. C. Hsu, Y. K. Su, S. J. Huang, Y. J. Wang, C. Y. Wu, and M. C. Chou, "Direct growth of a-plane GaN on r-plane sapphire by metal organic chemical vapor deposition," Jpn. J. Appl. Phys., vol. 49, p. 04DH05 2010.
    [100] S. K. Hong, B. J. Kim, H. S. Park, Y. Park, S. Y. Yoon, and T. I. Kim, "Evaluation of nanopipes in MOCVD grown (0 0 0 1) GaN/Al2O3 by wet chemical etching," J. Cryst. Growth, vol. 191, pp. 275-278, 1998.
    [101] P. Visconti, D. Huang, M. A. Reshchikov, F. Yun, R. Cingolani, D. J. Smith, J. Jasinski, W. Swider, Z. Liliental-Weber, and H. Morko, "Investigation of defects and surface polarity in GaN using hot wet etching together with microscopy and diffraction techniques," Mater. Sci. Eng., B, vol. 93, pp. 229-233, 2002.
    [102] D. Li, M. Sumiya, S. Fuke, D. Yang, D. Que, Y. Suzuki, and Y. Fukuda, "Selective etching of GaN polar surface in potassium hydroxide solution studied by x-ray photoelectron spectroscopy," J. Appl. Phys., vol. 90, pp. 4219-4223, 2001.
    [103] T. C. Wen, W. I. Lee, J. K. Sheu, and G. C. Chi, "Observation of dislocation etch pits in epitaxial lateral overgrowth GaN by wet etching," Solid-State Electron., vol. 46, pp. 555-558, 2002.
    [104] J. L. Weyher, "Characterization of wide-band-gap semiconductors (GaN, SiC) by defect-selective etching and complementary methods," Superlattices Microstruct., vol. 40, pp. 279-288, 2006.
    [105] H. Hasegawa, T. Muranaka, S. Kasai, and T. Hashizume, "Fabrication of AlGaN/GaN quantum nanostructures by methane-based dry etching and characterization of their electrical properties," Jpn. J. Appl. Phys., vol. 42, pp. 2375-2381, 2003.
    [106] R. Carli, and C. L. Bianchi, "XPS analysis of gallium oxides," Appl. Surf. Sci., vol. 74, pp. 99-102, 1994.
    [107] R. Sohal, C. Walczyk, P. Zaumseil, D. Wolansky, A. Fox, B. Tillack, H.-J. Müssig, and T. Schroeder, "Thermal oxidation of chemical vapour deposited tungsten layers on silicon substrates for embedded non-volatile memory application," Thin Solid Films, vol. 517, pp. 4534-4539, 2009.
    [108] S. W. King, J. P. Barnak, M. D. Bremser, K. M. Tracy, C. Ronning, R. F. Davis, and R. J. Nemanich, "Cleaning of AlN and GaN surfaces," J. Appl. Phys., vol. 84, pp. 5248-5260, 1998.
    [109] X. Ni, Y. Fu, Y. T. Moon, N. Biyikli, and H. Morko, "Optimization of a-plane GaN growth by MOCVD on r-plane sapphire," J. Cryst. Growth, vol. 290, pp. 166-170, 2006.
    [110] F. Wu, M. D. Craven, S. H. Lim, and J. S. Speck, "Polarity determination of a-plane GaN on r-plane sapphire and its effects on lateral overgrowth and heteroepitaxy," J. Appl. Phys., vol. 94, pp. 942-947, 2003.
    [111] Y. D. Wang, K. Y. Zang, S. J. Chua, S. Tripathy, P. Chen, and C. G. Fonstad, "Nanoair-bridged lateral overgrowth of GaN on ordered nanoporous GaN template," Appl. Phys. Lett., vol. 87, pp. 251915-3, 2005.
    [112] J. L. Weyher, H. Ashraf, and P. R. Hageman, "Reduction of dislocation density in epitaxial GaN layers by overgrowth of defect-related etch pits," Appl. Phys. Lett., vol. 95, pp. 031913-3, 2009.
    [113] X. Ni, U. Ozgur, Y. Fu, N. Biyikli, J. Xie, A. A. Baski, H. Morkoc, and Z. Liliental-Weber, "Defect reduction in (1120) a-plane GaN by two-stage epitaxial lateral overgrowth," Appl. Phys. Lett., vol. 89, p. 262105, 2006.
    [114] T. C. Wang, T. C. Lu, T. S. Ko, H. C. Kuo, M. Yu, S. C. Wang, C. C. Chuo, Z. H. Lee, and H. G. Chen, "Trenched epitaxial lateral overgrowth of fast coalesced a-plane GaN with low dislocation density," Appl. Phys. Lett., vol. 89, p. 251109, 2006.
    [115] B. M. Imer, F. Wu, S. P. Denbaars, and J. S. Speck, "Improved quality (1120) a-plane GaN with sidewall lateral epitaxial overgrowth," Appl. Phys. Lett., vol. 88, p. 061908, 2006.
    [116] D. Iida, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "One-sidewall-seeded epitaxial lateral overgrowth of a-plane GaN by metalorganic vapor-phase epitaxy," J. Cryst. Growth, vol. 311, pp. 2887-2890, 2009.
    [117] S. C. Ling, C. L. Chao, J. R. Chen, P. C. Liu, T. S. Ko, T. C. Lu, H. C. Kuo, S. C. Wang, S. J. Cheng, and J. D. Tsay, "Nanorod epitaxial lateral overgrowth of a-plane GaN with low dislocation density," Appl. Phys. Lett., vol. 94, p. 251912, 2009.
    [118] C. D. Thurmond, and R. A. Logan, "The Equilibrium Pressure of N2 over GaN," J. Electrochem. Soc., vol. 119, pp. 622-626, 1972.
    [119] Y. T. Moon, Y. Fu, F. Yun, S. Dogan, M. Mikkelson, D. Johnstone, and H. Morko, "A study of GaN regrowth on the micro-facetted GaN template formed by in-situ thermal etching," Phys. Status Solidi A, vol. 202, pp. 718-721, 2005.
    [120] D. Iida, T. Kawashima, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, "Sidewall epitaxial lateral overgrowth of nonpolar a-plane GaN by metalorganic vapor phase epitaxy," Phys. Status Solidi C, vol. 5, pp. 1575-1578, 2008.
    [121] B. A. Haskell, F. Wu, M. D. Craven, S. Matsuda, P. T. Fini, T. Fujii, K. Fujito, S. P. DenBaars, J. S. Speck, and S. Nakamura, "Defect reduction in (112-bar 0) a-plane gallium nitride via lateral epitaxial overgrowth by hydride vapor-phase epitaxy," Appl. Phys. Lett., vol. 83, pp. 644-646, 2003.
    [122] T. S. Zheleva, W. M. Ashmawi, O.-H. Nam, and R. F. Davis, "Thermal mismatch stress relaxation via lateral epitaxy in selectively grown GaN structures," Appl. Phys. Lett., vol. 74, pp. 2492-2494, 1999.
    [123] M. Haberlen, T. J. Badcock, M. A. Moram, J. L. Hollander, M. J. Kappers, P. Dawson, C. J. Humphreys, and R. A. Oliver, "Low temperature photoluminescence and cathodoluminescence studies of nonpolar GaN grown using epitaxial lateral overgrowth," J. Appl. Phys., vol. 108, p. 033523, 2010.
    [124] R. Liu, A. Bell, F. A. Ponce, C. Q. Chen, J. W. Yang, and M. A. Khan, "Luminescence from stacking faults in gallium nitride," Appl. Phys. Lett., vol. 86, p. 021908, 2005.
    [125] B. Monemar, "Bound excitons in GaN," J. Phys. Condens. Matter, vol. 13, pp. 7011-7026, 2001.
    [126] O. Martinez, M. Avella, J. Jimenez, B. Gerard, R. Cusco, and L. Artus, "Optical properties of epitaxial lateral overgrowth GaN structures studied by Raman and cathodoluminescence spectroscopies," J. Appl. Phys., vol. 96, pp. 3639-3644, 2004.
    [127] T. Wernicke, U. Zeimer, C. Netzel, F. Brunner, A. Knauer, M. Weyers, and M. Kneissl, "Epitaxial lateral overgrowth on (2 1 1 0) a-plane GaN with [0 1 1 1]-oriented stripes," J. Cryst. Growth, vol. 311, pp. 2895-2898, 2009.
    [128] B. Bastek, F. Bertram, J. Christen, T. Wernicke, M. Weyers, and M. Kneissl, "A-plane GaN epitaxial lateral overgrowth structures: Growth domains, morphological defects, and impurity incorporation directly imaged by cathodoluminescence microscopy," Appl. Phys. Lett., vol. 92, p. 212111, 2008.
    [129] J. Mei, S. Srinivasan, R. Liu, F. A. Ponce, Y. Narukawa, and T. Mukai, "Prismatic stacking faults in epitaxially laterally overgrown GaN," Appl. Phys. Lett., vol. 88, p. 141912, 2006.
    [130] M. A. Reshchikov, and H. Morkoc, "Luminescence properties of defects in GaN," J. Appl. Phys., vol. 97, p. 061301, 2005.
    [131] M. B. McLaurin, A. Hirai, E. Young, F. Wu, and J. S. Speck, "Basal plane stacking-fault related anisotropy in X-ray rocking curve widths of m-plane GaN," Jpn. J. Appl. Phys., vol. 47, pp. 5429-5431, 2008.
    [132] Q. Sun, T.-S. Ko, C. D. Yerino, Y. Zhang, I.-H. Lee, J. Han, T.-C. Lu, H.-C. Kuo, and S.-C. Wang, "Effect of controlled growth dynamics on the microstructure of nonpolar a-plane GaN revealed by X-ray diffraction," Jpn. J. Appl. Phys., vol. 48, 2009.
    [133] T. Metzger, R. Höpler, E. Born, O. Ambacher, M. Stutzmann, R. Stömmer, M. Schuster, H. Göbel, S. Christiansen, M. Albrecht, and H. P. Strunk, "Defect structure of epitaxial GaN films determined by transmission electron microscopy and triple-axis X-ray diffractometry," Philos. Mag. A, vol. 77, pp. 1013-1025, 1998.
    [134] T. Onuma, T. Koyama, A. Chakraborty, M. McLaurin, B. A. Haskell, P. T. Fini, S. Keller, S. P. Denbaars, J. S. Speck, S. Nakamura, U. K. Mishra, T. Sota, and S. F. Chichibu, "Radiative and nonradiative lifetimes in nonpolar m -plane Inx Ga1-x NGaN multiple quantum wells grown on GaN templates prepared by lateral epitaxial overgrowth," J. Vac. Sci. Technol., B, vol. 25, pp. 1524-1528, 2007.
    [135] D. F. Feezell, M. C. Schmidt, S. P. DenBaars, and S. Nakamura, "Development of nonpolar and semipolar InGaN/GaN visible light-emitting diodes," MRS Bull., vol. 34, pp. 318-323, 2009.
    [136] D. M. Graham, P. Dawson, M. J. Godfrey, M. J. Kappers, P. M. F. J. Costa, M. E. Vickers, R. Datta, C. J. Humphreys, and E. J. Thrush, "High quantum efficiency InGaN/GaN structures emitting at 540 nm," Phys. Status Solidi C, vol. 3, pp. 1970-1973, 2006.
    [137] Y.-H. Cho, S. K. Lee, H. S. Kwack, J. Y. Kim, K. S. Lim, H. M. Kim, T. W. Kang, S. N. Lee, M. S. Seon, O. H. Nam, and Y. J. Park, "Carrier loss and luminescence degradation in green-light-emitting InGaN quantum wells with micron-scale indium clusters," Appl. Phys. Lett., vol. 83, pp. 2578-2580, 2003.
    [138] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, S. P. DenBaars, T. Sota, and S. F. Chichibu, "Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1-xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates," Appl. Phys. Lett., vol. 89, p. 091906, 2006.
    [139] S.-C. Ling, T.-C. Wang, J.-R. Chen, P.-C. Liu, T.-S. Ko, T.-C. Lu, H.-C. Kuo, S.-C. Wang, and J.-D. Tsay, "Performance enhancement of a-plane light-emitting diodes using InGaN/GaN superlattices," Jpn. J. Appl. Phys., vol. 48, p. 04C136, 2009.
    [140] S. R. Xu, Y. Hao, J. C. Zhang, X. W. Zhou, L. A. Yang, J. F. Zhang, H. T. Duan, Z. M. Li, M. Wei, S. G. Hu, Y. R. Cao, Q. W. Zhu, Z. H. Xu, and W. P. Gu, "Improvements in a-plane GaN crystal quality by AlN/AlGaN superlattices layers," J. Cryst. Growth, vol. 311, pp. 3622-3625, 2009.
    [141] M. R. Islam, Y. Ohmura, A. Hashimoto, A. Yamamoto, K. Kinoshita, and Y. Koji, "“Step-graded interlayers” for the improvement of MOVPE InxGa1-xN (x ∼ 0.4) epi-layer quality," Phys. Status Solidi C, vol. 7, pp. 2097-2100, 2010.
    [142] V. Krishnamoorthy, P. Ribas, and R. M. Park, "Strain relief study concerning the In[sub x]Ga[sub 1 - x]As/GaAs (0.07 < x < 0.5) material system," Appl. Phys. Lett., vol. 58, pp. 2000-2002, 1991.
    [143] C. F. Huang, T. Y. Tang, J. J. Huang, W. Y. Shiao, C. C. Yang, C. W. Hsu, and L. C. Chen, "Prestrained effect on the emission properties of InGaN/GaN quantum-well structures," Appl. Phys. Lett., vol. 89, p. 051913, 2006.
    [144] K. L. Chang, J. H. Epple, G. W. Pickrell, H. C. Lin, K. Y. Cheng, and K. C. Hsieh, "Strain relaxation and defect reduction in InxGa1-xAs/GaAs by lateral oxidation of an underlying AlGaAs layer," J. Appl. Phys., vol. 88, pp. 6922-6924, 2000.
    [145] I. Vurgaftman, J. R. Meyer, and L. R. Ram-Mohan, "Band parameters for III--V compound semiconductors and their alloys," J. Appl. Phys., vol. 89, pp. 5815-5875, 2001.
    [146] I. Vurgaftman, and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys., vol. 94, pp. 3675-3696, 2003.
    [147] M. Godlewski, E. M. Goldys, M. R. Phillips, R. Langer, and A. Barski, "Cathodoluminescence depth-profiling studies of GaN/AlGaN quantum-well structures," J. Mater. Res., vol. 15, pp. 495-501, 2000.
    [148] Z. H. Wu, A. M. Fischer, F. A. Ponce, W. Lee, J. H. Ryou, J. Limb, D. Yoo, and R. D. Dupuis, "Effect of internal electrostatic fields in InGaN quantum wells on the properties of green light emitting diodes," Appl. Phys. Lett., vol. 91, p. 041915, 2007.
    [149] M. Hao, H. Ishikawa, T. Egawa, C. L. Shao, and T. Jimbo, "Anomalous compositional pulling effect in InGaN/GaN multiple quantum wells," Appl. Phys. Lett., vol. 82, pp. 4702-4704, 2003.
    [150] M. Leroux, N. Grandjean, B. Beaumont, G. Nataf, F. Semond, J. Massies, and P. Gibart, "Temperature quenching of photoluminescence intensities in undoped and doped GaN," J. Appl. Phys., vol. 86, pp. 3721-3728, 1999.
    [151] Y.-h. Wu, K. Arai, and T. Yao, "Temperature dependence of the photoluminescence of ZnSe/ZnS quantum-dot structures," Phys. Rev. B, vol. 53, p. R10485, 1996.
    [152] T. Kim, J. Kim, M.-S. Yang, S. Lee, Y. Park, U. I. Chung, and Y. Cho, "Highly efficient yellow photoluminescence from {1122} InGaN multiquantum-well grown on nanoscale pyramid structure," Appl. Phys. Lett., vol. 97, pp. 241111-3, 2010.
    [153] P. Lefebvre, T. Taliercio, A. Morel, J. Allegre, M. Gallart, B. Gil, H. Mathieu, B. Damilano, N. Grandjean, and J. Massies, "Effects of GaAlN barriers and of dimensionality on optical recombination processes in InGaN quantum wells and quantum boxes," Appl. Phys. Lett., vol. 78, pp. 1538-1540, 2001.
    [154] Y. J. Sun, O. Brandt, M. Ramsteiner, H. T. Grahn, and K. H. Ploog, "Polarization anisotropy of the photoluminescence of M-plane (In,Ga)N/GaN multiple quantum wells," Appl. Phys. Lett., vol. 82, pp. 3850-3852, 2003.
    [155] A. Sasaki, S.-i. Shibakawa, Y. Kawakami, K. Nishizuka, Y. Narukawa, and T. Mukai, "Equation for Internal Quantum Efficiency and Its Temperature Dependence of Luminescence, and Application to InxGa1-xN/GaN Multiple Quantum Wells," Jpn. J. Appl. Phys., vol. 45, p. 8719, 2006.
    [156] S. Ghosh, P. Misra, H. T. Grahn, B. Imer, S. Nakamura, S. P. DenBaars, and J. S. Speck, "Polarized photoreflectance spectroscopy of strained A-plane GaN films on R-plane sapphire," J. Appl. Phys., vol. 98, pp. 1-3, 2005.
    [157] M. Kubota, K. Okamoto, T. Tanaka, and H. Ohta, "Temperature dependence of polarized photoluminescence from nonpolar m-plane InGaN multiple quantum wells for blue laser diodes," Appl. Phys. Lett., vol. 92, p. 011920, 2008.
    [158] B. Rau, P. Waltereit, O. Brandt, M. Ramsteiner, K. H. Ploog, J. Puls, and F. Henneberger, "In-plane polarization anisotropy of the spontaneous emission of M-plane GaN/(Al,Ga)N quantum wells," Appl. Phys. Lett., vol. 77, pp. 3343-3345, 2000.
    [159] V. Liuolia, S. Marcinkevicius, Y.-D. Lin, H. Ohta, S. P. Denbaars, and S. Nakamura, "Dynamics of polarized photoluminescence in m-plane InGaN/GaN quantum wells," J. Appl. Phys., vol. 108, p. 023101, 2010.
    [160] D. Fu, R. Zhang, B. Wang, Z. Zhang, B. Liu, Z. Xie, X. Xiu, H. Lu, Y. Zheng, and G. Edwards, "Modification of the valence band structures of polar and nonpolar plane wurtzite-GaN by anisotropic strain," J. Appl. Phys., vol. 106, p. 023714, 2009.
    [161] A. Chakraborty, S. Keller, C. Meier, B. A. Haskell, S. Keller, P. Waltereit, S. P. DenBaars, S. Nakamura, J. S. Speck, and U. K. Mishra, "Properties of nonpolar a -plane InGaNGaN multiple quantum wells grown on lateral epitaxially overgrown a -plane GaN," Appl. Phys. Lett., vol. 86, pp. 1-3, 2005.
    [162] C. Mauder, B. Reuters, K. R. Wang, D. Fahle, A. Trampert, M. V. Rzheutskii, E. V. Lutsenko, G. P. Yablonskii, J. F. Woitok, M. M. C. Chou, M. Heuken, H. Kalisch, and R. H. Jansen, "Effect of indium incorporation on optical and structural properties of m-plane InGaN/GaN MQW on LiAlO2 substrates," J. Cryst. Growth, vol. 315, pp. 246-249, 2011.
    [163] S. Nakamura, "InGaN-based blue light-emitting diodes and laser diodes," J. Cryst. Growth, vol. 201, pp. 290-295, 1999.
    [164] Y. T. Rebane, Y. G. Shreter, B. S. Yavich, V. E. Bougrov, S. I. Stepanov, and W. N. Wang, "Light Emitting Diode with Charge Asymmetric Resonance Tunneling," Phys. Status Solidi A, vol. 180, pp. 121-126, 2000.
    [165] S. J. Chang, S. C. Wei, Y. K. Su, and W. C. Lai, "Nitride-Based Dual-Stage MQW LEDs," J. Electrochem. Soc., vol. 154, pp. H871-H874, 2007.
    [166] M.-H. Kim, M. F. Schubert, Q. Dai, J. K. Kim, E. F. Schubert, J. Piprek, and Y. Park, "Origin of efficiency droop in GaN-based light-emitting diodes," Appl. Phys. Lett., vol. 91, p. 183507, 2007.
    [167] M. F. Schubert, S. Chhajed, J. K. Kim, E. F. Schubert, D. D. Koleske, M. H. Crawford, S. R. Lee, A. J. Fischer, G. Thaler, and M. A. Banas, "Effect of dislocation density on efficiency droop in GaInN/GaN light-emitting diodes," Appl. Phys. Lett., vol. 91, p. 231114, 2007.
    [168] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, "Auger recombination in InGaN measured by photoluminescence," Appl. Phys. Lett., vol. 91, p. 141101, 2007.
    [169] X. A. Cao, E. B. Stokes, P. M. Sandvik, S. F. LeBoeuf, J. Kretchmer, and D. Walker, "Diffusion and tunneling currents in GaN/InGaN multiple quantum well light-emitting diodes," IEEE Electron Device Lett., vol. 23, pp. 535-537, 2002.
    [170] C. F. Lu, C. F. Huang, Y. S. Chen, and C. C. Yang, "Dependence of spectral behavior in an InGaN/GaN quantum-well light-emitting diode on the prestrained barrier thickness," J. Appl. Phys., vol. 104, p. 043108, 2008.
    [171] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischer, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldren, S. P. DenBaars, and T. Sota, "Effective band gap inhomogeneity and piezoelectric field in InGaN/GaN multiquantum well structures," Appl. Phys. Lett., vol. 73, pp. 2006-2008, 1998.
    [172] Y. K. Su, J. J. Chen, C. L. Lin, C. C. Kao, and C. T. Lin, "Effect of period of the electron emitter MQW structure on the improvement of characteristics in nitride-based LEDs," Phys. Status Solidi C, vol. 7, pp. 2162-2164, 2010.
    [173] Y. Inoue, H. Nagasawa, N. Sone, K. Ishino, A. Ishida, H. Fujiyasu, J. J. Kim, H. Makino, T. Yao, S. Sakakibara, and M. Kuwabara, "Fabrication and characterization of short period AlN/GaN quantum cascade laser structures," J. Cryst. Growth, vol. 265, pp. 65-70, 2004.
    [174] M. L. Lee, J. K. Sheu, and Y.-R. Shu, "Ultraviolet bandpass Al0.17 Ga0.83 NGaN heterojunction phototransitors with high optical gain and high rejection ratio," Appl. Phys. Lett., vol. 92, 2008.
    [175] K. S. Stevens, M. Kinniburgh, and R. Beresford, "Photoconductive ultraviolet sensor using Mg-doped GaN on Si(111)," Appl. Phys. Lett., vol. 66, pp. 3518-3520, 1995.
    [176] M. L. Lee, J. K. Sheu, W. C. Lai, S. J. Chang, Y. K. Su, M. G. Chen, C. J. Kao, G. C. Chi, and J. M. Tsai, "GaN Schottky barrier photodetectors with a low-temperature GaN cap layer," Appl. Phys. Lett., vol. 82, pp. 2913-2915, 2003.
    [177] T. Tut, N. Biyikli, I. Kimukin, T. Kartaloglu, O. Aytur, M. S. Unlu, and E. Ozbay, "High bandwidth-efficiency solar-blind AlGaN Schottky photodiodes with low dark current," Solid-State Electron., vol. 49, pp. 117-122, 2005.
    [178] M. C. Chen, J. K. Sheu, M. L. Lee, C. J. Kao, and G. C. Chi, "Planar GaN p-i-n photodiodes with n+-conductive channel formed by Si implantation," Appl. Phys. Lett., vol. 88, p. 203508, 2006.
    [179] R. McClintock, E. Cicek, Z. Vashaei, C. Bayram, M. Razeghi, and M. P. Ulmer, "III-nitride-based avalanche photo detectors," in SPIE, San Diego, California, USA, 2010.
    [180] X. Sun, D. Li, H. Jiang, Z. Li, H. Song, Y. Chen, and G. Miao, "Improved performance of GaN metal-semiconductor-metal ultraviolet detectors by depositing SiO2 nanoparticles on a GaN surface," Appl. Phys. Lett., vol. 98, p. 121117, 2011.
    [181] F. Xie, H. Lu, X. Xiu, D. Chen, P. Han, R. Zhang, and Y. Zheng, "Low dark current and internal gain mechanism of GaN MSM photodetectors fabricated on bulk GaN substrate," Solid-State Electron., vol. 57, pp. 39-42, 2011.
    [182] J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, "Comprehensive characterization of metal--semiconductor--metal ultraviolet photodetectors fabricated on single-crystal GaN," J. Appl. Phys., vol. 83, pp. 6148-6160, 1998.
    [183] T. Palacios, E. Monroy, F. Calle, and F. Omnes, "High-responsivity submicron metal-semiconductor-metal ultraviolet detectors," Appl. Phys. Lett., vol. 81, pp. 1902-1904, 2002.
    [184] J. W. P. Hsu, M. J. Manfra, D. V. Lang, S. Richter, S. N. G. Chu, A. M. Sergent, R. N. Kleiman, L. N. Pfeiffer, and R. J. Molnar, "Inhomogeneous spatial distribution of reverse bias leakage in GaN Schottky diodes," Appl. Phys. Lett., vol. 78, pp. 1685-1687, 2001.
    [185] D. Li, X. Sun, H. Song, Z. Li, Y. Chen, G. Miao, and H. Jiang, "Influence of threading dislocations on GaN-based metal-semiconductor-metal ultraviolet photodetectors," Appl. Phys. Lett., vol. 98, p. 011108, 2011.
    [186] J. Kolnik, I. H. Oguzman, K. F. Brennan, R. Wang, and P. P. Ruden, "Monte Carlo calculation of electron initiated impact ionization in bulk zinc-blende and wurtzite GaN," J. Appl. Phys., vol. 81, pp. 726-733, 1997.
    [187] F. Bertazzi, M. Moresco, and E. Bellotti, "Theory of high field carrier transport and impact ionization in wurtzite GaN. Part I: A full band Monte Carlo model," J. Appl. Phys., vol. 106, p. 063718, 2009.
    [188] E. Kuokstis, C. Q. Chen, J. W. Yang, M. Shatalov, M. E. Gaevski, V. Adivarahan, and M. Asif Khan, "Room-temperature optically pumped laser emission from a-plane GaN with high optical gain characteristics," Appl. Phys. Lett., vol. 84, pp. 2998-3000, 2004.
    [189] K. H. Baik, Y. G. Seo, S.-K. Hong, S. Lee, J. Kim, J.-S. Son, and S.-M. Hwang, "Effects of basal stacking faults on electrical anisotropy of nonpolar a-plane (1120) GaN light-emitting diodes on sapphire substrate," IEEE Photonics Technol. Lett., vol. 22, pp. 595-597, 2010.
    [190] M. McLaurin, and J. S. Speck, "P-type conduction in stacking-fault-free m -plane GaN," Phys. Status Solidi RRL, vol. 1, pp. 110-112, 2007.
    [191] Y. K. Su, S. J. Chang, Y. D. Jhou, S. L. Wu, and C. H. Liu, "GaN metal-semiconductor-metal photodetectoi with SiN/GaN nucleation layer," IEEE Sens. J., vol. 8, pp. 1693-1697, 2008.
    [192] O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, "Gain mechanism in GaN Schottky ultraviolet detectors," Appl. Phys. Lett., vol. 79, pp. 1417-1419, 2001.
    [193] S. J. Chang, S. M. Wang, P. C. Chang, C. H. Kuo, S. J. Young, and T. P. Chen, "GaN metal-semiconductor-metal photodetectors prepared on nanorod template," IEEE Photonics Technol. Lett., vol. 22, pp. 625-627, 2010.
    [194] M. Zhao, J. Bao, X. Fan, F. Gu, Y. Guo, Y. Zhang, M. Zhao, Y. Sha, F. Guo, and J. Li, "Effects of thermal annealing on the properties of GaN MSM UV photodetectors," Physica B, vol. 404, pp. 275-277, 2009.

    下載圖示 校內:2014-08-02公開
    校外:2016-08-02公開
    QR CODE