| 研究生: |
許瑞蘩 Xu, Rui-Fan |
|---|---|
| 論文名稱: |
蜂巢相關材料彈塑性行為之研究 Analyses on the Elasto-Plastic Behavior of Honeycomb-like Materials |
| 指導教授: |
黃忠信
Huang, Jong-Shin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2021 |
| 畢業學年度: | 109 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 蜂巢相關材料 、完美塑性 、彈塑性變形 、初始降伏 、完全塑性 、有限元素數值分析 、共軛梁法 |
| 外文關鍵詞: | honeycomb-like material, perfectly-plastic, elasto-plastic deformation, finite element numerical analysis, conjugated beam method |
| 相關次數: | 點閱:126 下載:17 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討蜂巢相關材料之彈塑性變形行為,由於蜂巢相關材料之主要變形機制乃其微觀桿件之撓曲變形,因此,採用一細長梁加以模擬微觀桿件,假設其承受不同載重與邊界束制,理論推導及數值分析此細長梁及蜂巢相關材料受力及變形行為。利用有限元素套裝軟體ABAQUS,建立不同幾何條件之數值分析模型,假設組成固體材料為一完美塑性材料,配合適當邊界束制及施力條件,進行其彈塑性行為之數值分析。然後,理論推導一細長懸臂梁,當進入塑性變形後之折減勁度,轉換成共軛梁上之放大載重,求取此共軛梁之彎矩,亦即原細長懸臂梁之垂直位移。接著,將數值分析結果及理論推導公式中之施力變形關係,進行正規化及無因次化處理,進而獲得一致施力變形關係,因此,可使用理論推導所得之關係公式,描述微觀桿件彈塑性行為,最後,進一步將微觀桿件之施力變形關係,透過物理尺度轉換,求得整體蜂巢相關材料的彈塑性應力應變關係。
SUMMARY
The elasto-plastic behavior of honeycomb-like materials with different relative densities is analyzed theoretically and numerically. It is assumed that the solid material from which honeycombs are made is linearly elastic-perfectly plastic and the bending of cell edges is their dominant deformation mechanism. The transition from initial yielding to full plasticity of cell edges in honeycomb-like materials is of concern and studied here. An expression for describing the force-deformation curve of the transition is obtained theoretically by using the conjugate beam method and then verified numerically by using the finite element package ABAQUS. The elasto-plastic deformation behaviors of honeycomb-like materials with four different types of cell-edge geometries, such as curved cell-edge, variable-thickness cell-edge and straight uniform-thickness cell-edge, are first analyzed and then compared to each other. As a result, a theoretical formula is found and can be utilized to describe the elasto-plastic behavior of honeycomb-like materials.
Keywords: honeycomb-like material, perfectly-plastic, elasto-plastic deformation, finite element numerical analysis, conjugated beam method.
[1]Timoshenko S., ” Strength of Materials. Part II. Advanced theory and problems. ” 2nd edition, 1940.
[2]Ashby, M.F., L.J. Gibson, ” Cellular solids: structure and properties. ” Press Syndicate of the University of Cambridge, Cambridge, UK: p. 175-231, 1997.
[3]Simone, A.E., L.J. Gibson, ” Effects of solid distribution on the stiffness and strength of metallic foams. ” Acta Materialia. 46(6): p. 2139-2150, 1998.
[4]Grenestedt, J.L., ” Influence of wavy imperfections in cell walls on elastic stiffness of cellular solids. ” Journal of the Mechanics and Physics of Solids. 46(1): p. 29-50, 1998.
[5]Gere J.M., Timoshenko S., ” Mechanics of Materials.” 2nd edition, Brooks Cole Engineering Division, 1984.
[6]莊承鑫, ”具不均勻微觀構件之蜂巢材料力學性質 ” ,國立成功大學土木工程學系學位論文, 2002.
[7]楊美怡, ”微構件剖面對蜂巢材料雙軸抗壓行為之影響 ”, 成功大學土木工程學系學位論文: p. 1-105, 2002.
[8]張富淼, ”具曲度微構件之蜂巢材料勁度與強度 ”, 成功大學土木工程學系學位論文: p. 1-60, 2003.
[9]林孟言, ”連通型泡沫材料彈塑性行為之研究 ”, 成功大學土木工程學系學位論文: p. 1-152, 2020.
[10]Dassault Systèmes Simulia Corp., 士盟瑞其CAE團隊, ”最新Abaqus實務入門引導 ”, 全華圖書股份有限公司出版, 2013.