| 研究生: |
王才彥 Wang, Tsai-Yen |
|---|---|
| 論文名稱: |
利用高分子穩固藍相液晶製作可寬頻帶空間調控光子能隙及雷射輸出元件 Wide-Band Spatially Tunable Photonic Bandgap and Lasing Emission using Polymer Stabilized Blue Phase |
| 指導教授: |
李佳榮
Lee, Chia-Rong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 高分子穩定藍相液晶 、光子能隙 、高分子穩定染料摻雜藍相液晶雷射 |
| 外文關鍵詞: | polymer-stabilized blue phase, photonic bandgap, polymer-stabilized dye-doped blue phase laser |
| 相關次數: | 點閱:147 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文成功發展一具有可寬頻帶空間調控之聚合物穩固藍相液晶光子能隙元件。此元件所具有的螺距梯度分佈乃藉由一高一低手性分子濃度之藍相液晶與前聚物混合物反向擴散得到。實驗結果顯示此光子能隙元件可在1.4公分內從藍光區(481.9 nm)空間調控至紅光區(646.9 nm)。整個可調控頻寬範圍有165奈米寬。
本論文也研究有關聚合物穩固染料摻雜藍相液晶雷射之相關調控特性。實驗結果顯示此雷射可空間調控頻寬為約58奈米。此頻寬較聚合物穩固藍相液晶光子能隙元件之可調控頻寬窄了約82奈米,此兩元件在調控頻寬上的差異主要是歸因於幾個因素: 在短波區的螢光受染料再吸收效應、在長波區的弱螢光放射效應與具有較大晶格之藍相區區塊嚴重碎裂效應。聚合物穩固染料摻雜藍相液晶雷射之雷射波長隨溫度變化之敏感度為線性且約為0.26 nm/°C,此雷射與溫度線性相依性是由於常數且為負值的dn/dT所致。由於此兩元件具有許多優點,例如寬頻帶可調控性、可快速調控性、高穩定性與高可靠度、無磁滯問題與不需外界控制源,因此他們具有相當潛力運用在前瞻的光子元件與顯示器上之研究。
This thesis successfully develops a gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentration. Experimental results show that the formed PSBP PBG device can be spatially tuned from the blue (481.9 nm) to the red (646.9 nm) regions within 14 mm at room temperature. The entire spectral range of tunability is as wide as 165 nm.
This thesis also studies the tuning characters of the polymer-stabilized dye-doped BP (PSDDBP) laser. Experimental results present that the tuning spectral range of the laser is around 58 nm, which is about 82 nm narrower than that of the corresponding PBG. The discrepancy between the tuning features of the two devices is attributable to several factors: the dye’s reabsorption of fluorescence photons at short wavelength regions, the weak dye’s fluorescence emission at long wavelength regions, and the significant fragmentation of the frustrated BP with large lattices. The temperature sensitivity of the lasing wavelength for the PSDDBP laser is linear and approximately 0.26 nm/°C, which result is attributed to the constant and negative dn/dT. The two devices have a great potential for use in applications of photonic devices and advanced displays because of their advantages, such as wide-band tunability, fast tuning speed, high stability and reliability, no issue of hysteresis, and no need of external controlling sources.
1 M. Imada, S. Noda, A. Chutinan, T. Tokuda, M. Murata, and G. Sasaki, "Coherent two-dimensional lasing action in surface-emitting laser with triangular-lattice photonic crystal structure," Applied Physics Letters 75(3), 316-318 (1999).
2 O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O'Brien, P. D. Dapkus, and I. Kim, "Two-dimensional photonic band-gap defect mode laser," Science 284(5421), 1819-1821 (1999).
3 M. Loncar, T. Yoshie, A. Scherer, P. Gogna, and Y. M. Qiu, "Low-threshold photonic crystal laser," Applied Physics Letters 81(15), 2680-2682 (2002).
4 H. Kikuchi, M. Yokota, Y. Hisakado, H. Yang, and T. Kajiyama, "Polymer-stabilized liquid crystal blue phases," Nature materials 1(1), 64-68 (2002).
5 P. G. de Gennes and J. Prost, "The Physics of Liquid Crystals," Oxford University Press, New York (1993).
6 S. Chandrasekhar, "Liquid Crystals," Cambridge University Press, New York (1992).
7 I. C. Khoo, "Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena," John Wiley & Sons, New York (1995).
8 Amon Yariv and Pochi Yeh, "Optical Waves in Crystals," John Wiley & Sons Press, New York (1984).
9 陳怡君, "對膽固醇液晶雷射輸出大範圍調控之研究," 國立成功大學物理研究所碩士論文 (2005).
10 Pochi Yeh and Claire Gu, "Optics of Liquid Crystal Displays," John Wiley & Sons, New York (1999).
11 A. Yariv, "Optical Electronics in Modern Communications," Oxford University Press, New York (1997).
12 P. P. Crooker, "The cholesteric blue phase - a progress report," Molecular Crystals and Liquid Crystals 98(1-4), 31-45 (1983).
13 H. Stegemeyer, T. Blumel, K. Hiltrop, H. Onusseit, and F. Porsch, "Thermodynamic, structural and morphological-studies on liquid-crystalline blue phases," Liquid Crystals 1(1), 3-28 (1986).
14 D. C. Wright and N. D. Mermin, "Crystalline liquids - the blue phases," Reviews of Modern Physics 61(2), 385-432 (1989).
15 P. Cladis, "Theorey and Applications of Liquid Crystals," Berlin Heidelberg, Springer, New York (1987).
16 P. Crooker, "Chirality in Liquid Crystals," Berlin Heidelberg, Springer, New York (2001).
17 P. Oswald and P. Pieranski, "Nematic and Cholesteric Liquid Crystals," Taylor & Francis, Boca Raton, London, New York, Singapore (2005).
18 P. Etchegoin, "Blue phases of cholesteric liquid crystals as thermotropic photonic crystals," Physical Review E 62(1), 1435-1437 (2000).
19 Hirotsugu Kikuchi, "Liquid crystalline blue phases", in Liquid Crystalline Functional Assemblies and Their Supramolecular Structures, edited by T. Kato (2008), Vol. 128, pp. 99-117.
20 G. W. Gray, "The mesomorphic behaviour of the fatty esters of cholesterol," Journal of the Chemical Society (OCT), 3733-3739 (1956).
21 A. Saupe, "On molecular structure and physical properties of thermotropic liquid crystals," Molecular Crystals and Liquid Crystals 7, 59-& (1969).
22 Atsushi Yoshizawa, "Liquid Crystal Oligomers Exhibiting a Blue Phase," Molecular Crystals and Liquid Crystals 516, 99-106 (2010).
23 H. S. Kitzerow, "Blue phases come of age: a review," Proceedings of the SPIE - The International Society for Optical Engineering 7232, 723205 (723214 pp.)-723205 (723214 pp.) (2009).
24 J. A. N. Zasadzinski, S. Meiboom, M. J. Sammon, and D. W. Berreman, "Freeze-Fracture Electron-Microscope Qbservations of the Blue Phase III," Phys. Rev. Lett. 57, 364-367 (1986).
25 Charles Kittel, "Introduction to Solid State Physics," John Wiley & Sons, New York (2005).
26 P. Pieranski, "Classroom Experiments with Chiral Liquid Crystals," Springer-Verlag, New York (2001).
27 P. E. Cladis, T. Garel, and P. Pieranski, "Kossel diagrams show electric-field induced cubic-tetragonal structural transition in frustrated liquid-crystal blue phases," Physical Review Letters 57(22), 2841-2844 (1986).
28 B. Jerome and P. Pieranski, "Kossel diagrams of blue phases," Liquid Crystals 5(3), 799-812 (1989).
29 R. J. Miller, H. F. Gleeson, and J. E. Lydon, "Many-wave light scattering features in blue-phase Kossel diagrams and the phase problem," Physical Review Letters 77(5), 857-860 (1996).
30 W. Kossel, V. Loeck, and M. Voges, "Die Richtungsverteilung der in einem Kristall entstandenen charakteristischen Röntgenstrahlung," Zeitschrift für Physik 94, 139-144 (1935).
31 P. E. Cladis, P. Pieranski, and M. Joanicot, "Elasticity of blue phase-i of cholesteric liquid-crystals," Physical Review Letters 52(7), 542-545 (1984).
32 S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, "Theory of the blue phase of cholesteric liquid-crystals," Physical Review Letters 46(18), 1216-1219 (1981).
33 I. W. Stewart, "The Static and Dynamic Continuum Theory of Liquid Crystals: A Mathematical Introduction," Taylor & Francis, London (2004).
34 Yu-zhang Xie, "On the elastic continuum theory of uniaxial liquid crystals," Wuli 9(1), 51-55 (1980).
35 G. P. Alexander and J. M. Yeomans, "Stabilizing the blue phases," Physical Review E 74(6) (2006).
36 M. Kahlweit and W. Ostner, "Estimation of interfacial tension between nematic and isotropic states of a liquid-crystal," Chemical Physics Letters 18(4), 589-591 (1973).
37 J. Kerr, "A new relation between electricity and light: Dielectrified media birefringent," Philos. Mag. 50, 337-348 (1875).
38 Hiroyuki Yoshida, Shuhei Yabu, Hiroki Tone, Yuto Kawata, Hirotsugu Kikuchi, and Masanori Ozaki, "Secondary electro-optic effect in liquid crystalline cholesteric blue phases," Optical Materials Express 4(5), 960-968 (2014).
39 Sung-Taek Hur, Bo Ram Lee, Min-Jun Gim, Kyung-Won Park, Myoung Hoon Song, and Suk-Won Choi, "Liquid-Crystalline Blue Phase Laser with Widely Tunable Wavelength," Advanced materials 25(21), 3002-3006 (2013).
40 Tsung-Hsien Lin, Yannian Li, Chun-Ta Wang, Hung-Chang Jau, Chun-Wei Chen, Cheng-Chung Li, Hari Krishna Bisoyi, Timothy J. Bunning, and Quan Li, "Red, Green and Blue Reflections Enabled in an Optically Tunable Self-Organized 3D Cubic Nanostructured Thin Film," Advanced materials 25(36), 5050-5054 (2013).
41 Hong Sung-Kyu, Lim Gi-Hwan, and H. Kikuchi, "Thickness Dependence of Blue Phase Transition Behavior of Chiral Nematic Liquid Crystal," Molecular Crystals and Liquid Crystals 511, 248-254 (2009).
42 Jia-De Lin, Hong-Sheng Wang, Shih-Hung Lin, Shuan-Yu Huang, Ting-Shan Mo, and Chia-Rong Lee, "Spatially tunable dye-doped blue phase laser," Submitted (2013).
43 H. S. Kitzerow, H. Schmid, A. Ranft, G. Heppke, R. A. M. Hikmet, and J. Lub, "Observation of blue phases in chiral networks," Liquid Crystals 14(3), 911-916 (1993).
44 A. Yariv and P. Yeh, "Photonics 6th ed," Oxford University Press, New York (2007).
45 B. E. A. Saleh and M. C. Teich, "Fundamentals of Photonics," John Wiley & Sons, New York (2007).
46 D. C. O’shea, W. R. Callen, and W. T. Rhodes, "Introduction to Lasers and Their Applications," Addison Wesley, Boston (1977).
47 J. T. Verdeyen, "Laser Electronics," Prentice Hall, Inc., 3rd ed. (1995).
48 L. S. Goldberg and J. M. Schnur, "Tunable internal-feedback liquid crystal laser," U.S. patent 3,771,065 (1973).
49 V. I. Kopp, B. Fan, H. K. M. Vithana, and A. Z. Genack, "Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals," Optics Letters 23(21), 1707-1709 (1998).
50 J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, "The photonic band-edge laser - a new approach to gain enhancement," Journal of Applied Physics 75(4), 1896-1899 (1994).
51 H. Kogelnik and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," Journal of Applied Physics 453(5), 2327-2335 (1972).
52 V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, "Lasing in chiral photonic structures," Progress in Quantum Electronics 27(6), 369-416 (2003).
53 Cao Wenyi, A. Munoz, P. Palffy-Muhoray, and B. Taheri, "Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II," Nature materials 1(2), 111-113 (2002).
54 S. Yokoyama, S. Mashiko, H. Kikuchi, K. Uchida, and T. Nagamura, "Laser emission from a polymer-stabilized liquid-crystalline blue phase," Advanced materials 18(1), 48-51 (2006).
55 Hiroyuki Yoshida, Yuma Tanaka, Kosuke Kawamoto, Hitoshi Kubo, Tetsuya Tsuda, Akihiko Fujii, Susumu Kuwabata, Hirotsugu Kikuchi, and Masanori Ozaki, "Nanoparticle-Stabilized Cholesteric Blue Phases," Applied Physics Express 2(12) (2009).
56 P. P. Crooker, "The blue phases - a review of experiments," Liquid Crystals 5(3), 751-775 (1989).
57 S. H. Lin, C. Y. Shyu, J. H. Liu, P. C. Yang, T. S. Mo, S. Y. Huang, and C. R. Lee, "Photoerasable and photorewritable spatially-tunable laser based on a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant," Optics Express 18(9), 9496-9503 (2010).
58 Li Jun, S. Gauza, and Wu Shin-Tson, "Temperature effect on liquid crystal refractive indices," Journal of Applied Physics 96(1), 19-24 (2004).