簡易檢索 / 詳目顯示

研究生: 曾頎堯
Tseng, Chi-Yao
論文名稱: 增加氮化物系列發光二極體的內部量子效率以及光取出效率以提升其光的強度
The enhancement of the light intensity by increasing the internal quantum efficiency and light extraction for nitride-based LED.
指導教授: 蘇炎坤
Su, Yen-Kun
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 79
中文關鍵詞: 奈米壓印電子捕獲率發光二極體
外文關鍵詞: light emitting diodes, nano-imprinting, electron capture rate
相關次數: 點閱:79下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在近幾年來,氮化物系列的發光二極體為被期待作為下一世代固態照明的明日之星,氮化物藍光以及綠光的發光二極體已被廣泛的使用在交通號誌以及液晶顯示器的背光源。

    然而,氮化物系列的發光二極體的電子捕獲率以及光取出的效率還不足,進而影響到元件的發光效率。在本論文中,我們研究團隊利用一種我們稱之為漸進式電子發射層的結構去提升電子的捕獲率。此外我們也將利用銀圍牆包圍發光二極體以及奈米壓印的技術應用在發光二極體表面上去提升氮化物發光二極體的光強度。

    由結果來看,利用漸進式電子發射層的發光二極體可以增加光強度高達75%相對於一般結構的發光二極體。而在利用銀圍牆以及奈米壓印的技術方面,我們也可以分別的提升光強度57%以及11%。

    In the past few years, Nitride-based light emitting diodes (LEDs) are considered as the most promising candidate for the next generation solid state lighting. Nitride-based blue and green LEDs have already been extensively used in traffic light lamps and liquid crystal display (LCD) backlights. However, the electron capture rate and the light extraction efficiency of nitride-based LEDs are still low and it would result in lower light intensity. In our researches, we would increase the electron capture rate of light emitting diode by gradient-stage electron emitter layer. Further, we also used the sliver enclosure to surround the LED and nano-imprinting on the LED surface. From the result, we can increase the light intensity about 75% by using the gradient-stage electron emitter layer. And we also can increase the light intensity about 57% and 11% by using the sliver enclosure and nano-imprinting, respectively.

    Contents Abstracts (in Chinese)…………………………………………………………………Ⅰ Abstracts (in English)…………………………………………………………………Ⅲ Acknowledgement …………………………………………………………………………Ⅴ Contents …………………………………………………………………………………Ⅵ Table Captions …………………………………………………………………………Ⅷ Figure Captions …………………………………………………………………………Ⅸ CHAPTER 1 Introduction 1.1 Introduction …………………………………………………………………1 1.2 Metalorganic Vapor Phase Epitaxy (MOVPE) system …………………2 1.3 Key factors for GaN based light emitting diode ……………………9 CHAPTER 2 Enhancement of the internal quantum efficiency 2.1 Motivation ……………………………………………………………………18 2.2 Development of the gradient-stage emitter layer LED………………23 2.3 Decrement the operation voltage of GaN-based LED …………………30 CHAPTER 3 Enhancement of the light extraction efficiency 3.1 Motivation…………………………………………………………………… 55 3.2 Development of GaN-based LEDs with silver enclosure ……………56 3.3 GaN-based LED with surface texture by nano-imprinting ………… 58 CHAPTER 4 Conclusion and Future work 4.1 Conclusion…………………………………………………………………… 67 4.2 Future work ………………………………………………………………… 68 Reference …………………………………………………………………………………… 69 Table Caption Table 2-1 Different growth condition of InGaN/GaN MQWs. Table 2-2 The average of ndium mole fraction. Table 2-3 Indium mole fraction of sample F, sample G and sample H. Table 2-4 Indium mole fraction of sample I, sample H and sample J. Table 2-5 The FWHM of LED structures for the growth of nucleation layer are (a) 570s (sample F) and (b) 330s (sample K). Table 2-6 The electron concentration of sample K, sample L and sample M. Figure Caption Figure 1-1 The chemical reactions in MOVPE growth GaN. Figure 1-2 The gas mixing system Figure 1-3 The structure of our reactor chamber Figure 1-4 The vacuum system Figure 1-5 The constant temperature tank system Figure 1-6 The scrubber system Figure 1-7 Electronic control system Figure 1-8 The schematic drawing of the MOVPE system Figure 2-1 AlInN electron-blocking layer in an InGaN/GaN multi-quantum well structure. (a) band diagram without doping (b) band diagram with doping. Figure 2-2 The band-diagram of a CART LED under applied forward bias voltage (y must bigger x). Figure 2-3 The band-diagram of a dual-stage MQW LED under applied forward bias voltage (y must bigger x). Figure 2-4 The band-diagram of a dual-stage MQW LED under applied forward bias voltage and considered spontaneous polarization and piezoelectric polarization. Figure 2-5 The band-diagram of gradient-stage electron emitter layer LED under applied forward bias voltage and considered spontaneous polarization and piezoelectric polarization. Figure 2-6 The structure of sample A-E. Figure 2-7 (a) The structure of sample F. (b) The schematic diagram of TMIn flow rate in the active region. Figure 2-8 (a) The structure of sample G. (b) The schematic diagram of TMIn flow rate in the dual-stage MQW. Figure 2-9 (a) The structure of sample I,H and J. The schematic diagram of four-stage (b), six-stage (c), and eight- stage (d) electrons emitter layer by gradient TMIn flow rate and TMIn flow rate in active region MQW for sample I, H, and J, respectively. Figure 2-10 The detail of experiment procedures. Figure 2-11 The DCXRD (a) and PL (b) measurement of sample A. Figure 2-12 The DCXRD (a) and PL (b) measurement of sample B. Figure 2-13 The DCXRD (a) and PL (b) measurement of sample C. Figure 2-14 The DCXRD (a) and PL (b) measurement of sample D. Figure 2-15 The DCXRD (a) and PL (b) measurement of sample E. Figure 2-16 The DCXRD (a) and PL (b) measurement of sample F, sample G and sample H. Figure 2-17 I-V characteristics of sample F, sample G and sample H fabricated LEDs. Figure 2-18 L-I characteristics of sample F, sample G and sample H fabricated LEDs. Figure 2-19 The DCXRD measurement of sample I, sample H and sample J. Figure 2-20 I-V characteristics of sample I, sample H and sample J fabricated LEDs. Figure 2-21 L-I characteristics of sample I, sample H and sample J fabricated LEDs. Figure 2-22 Band diagram illustrating recombination : non-radiative via deep level. Figure 2-23 The XRD FWHM (002) results of undoped-GaN films Figure 2-24 The XRD (002) results of LED structures for the growth of nucleation layer are (a) 570s (sample F) and (b) 330s (sample K). Figure 2-25 I-V characteristics of sample F and sample K fabricated LEDs. Figure 2-26 L-I characteristics of sample F and sample K fabricated LEDs. Figure 2-27 I-V characteristics (a) and L-I characteristics (b) of sample K, sample L and sample M fabricated LEDs. Figure 3-1 SEM micrograph (a) top-view of LED with sliver enclosure (b) the distance between LED and silver enclosure (c) the height between n-GaN surface and p-GaN surface (d) the height of sliver enclosure. Figure 3-2 L-I characteristics of normal LED and LED with sliver enclosure. Figure 3-3 Schematic drawing of the fabricated LED with sliver enclosure. Figure 3-4 I-V characteristics of normal LED and LED with sliver enclosure. Figure 3-5 SEM micrograph of the LED with sliver enclosure surface Figure 3-6 Detailed proceeding steps for nano-imprinting Figure 3-7 (a) SEM micrograph of the device top-view for p-pad portion (b), (c) enlarged the SEM micrograph of the device top-view. Figure 3-8 I-V characteristics of the conventional LED and LED with nanometer texture surface. Figure 3-9 L-I characteristics of the conventional LED and LED with nanometer texture surface.

    [1] T. Akasaka, H. Gotoh, T. Saito, and T. Makimoto, “High luminescent efficiency of InGaN multiple quantum wells grown on InGaN underlying layers,”Appl. Phys. Lett., Vol. 85, No 15,Page(s): 3089-3091, (2004).
    [2] S. Nakamura and M. Senoh, “Superbright green InGaN single-quantum-well-structure light-emitting diodes,” Jpn. J. Appl. Phys., Part 2, Vol. 34, page(s): L1332-L1335, (1995).
    [3] S. J. Chang, S. C. Wei, Y. K. Su, and W. C. Lai, “Nitride-Based Dual-Stage MQW LEDs,” Journal of The Electrochemical Society, Vol. 154, page(s): H871-H874 , (2007).
    [4] S. Fuke, H. Teshigawara, K. Kuwahara, Y. Takano, T. Ito, M. Yanagihara, and K. Ohtsuka, “Influences of initial nitridation and buffer layer deposition on the morphology of a (0001) GaN layer grown on sapphire substrates,” J. Appl. Phys., Vol. 83, page(s): 764-767, (1998).
    [5] C. C. Yang, M. C. Wu, C. A. Chang, and G. C. Chi, “Effects of multiple buffer layers on structural electronic properties of GaN growth by atmospheric pressure organometallic vapor phase epitaxy,” Mater. Sci. Eng. B, Vol. B68, page(s): 22-25, (1999).
    [6] K. Uchida, K. Nishida, M. Kondo, and H. Munekata, “Characterization of double-buffer layers and its application for the metalorganic vapor phase epitaxial growth of GaN,” Jpn. J. Appl. Phys., Vol. 37, page(s): 3882-3888, (1998).
    [7] K. Takatomo, H. Okagaua, T. Tsunekawa, T. Jyouichi, Y. Imada, M. Kato, H. Kudo, and T. Taguchi, Phys. Status Solidi A , Vol. 188,page(s): 121-125, (2001).
    [8] A. Bell, R. Liu, F. A. Ponce, H. Amano, I. Akasaki, and D. Cherns, “Light emission and microstructure of Mg-doped AlGaN grown on patterned sapphire,” Appl. Phys. Lett. Vol. 82, page(s): 349-351, (2003).
    [9] D. S. Wuu, W. K. Wang, K. S. Wen, S. C. Huang, S. H. Lin, S. Y. Huang, and C. F. Lin, and R. H. Hong, “Defect reduction and efficiency improvement of near-ultraviolet emitters via laterally overgrown GaN on a GaN/patterned sapphire template,” Appl. Phys. Lett. , Vol. l89, page(s): 161105(1)-161105(3), (2006).
    [10] B. Thibeault, M. Mack, and S. P. Denbaars, US patent NO. 6657236, (2000).
    [11] E. L. Piner, M. K. Behani, N. A. Ei-Masry, F. G. Mcintosh, J. C. Roberts, K. S. Boutros and S. M. Bedair, “Effect of hydrogen on the indium incorporation in InGaN epitaxial films,” Appl. Phys. Lett. , Vol. 70, page(s): 461-463 , (1997).
    [12] S. Chichibu, T. Azuhata, T. Sota and S. Nakamura, “Spontaneous emission of localized excitons in InGaN single and multiquantum well structures,” Appl. Phys. Lett. , Vol. 69, page(s): 4188-4190, (1996).
    [13] H. Hung,a K. T. Lam,b S. J. Chang,a,z C. H. Chen,c H. Kuan,d and Y. X. Sune, “InGaN/GaN Multiple-Quantum-Well LEDs with Si-doped barriers, ” Journal of The Electrochemical Society, , Vol. 155 , No 6, page(s): H455-H458, (2008).
    [14] S. Ruvimov, Z.Liliental-Weber, T. Suski, J. W. Ager III, J. Washburn, J. Krueger, C. Kisielowski, E. R. Weber, H. Amano, and I. Akasaki, “Effect of Si doping on the dislocation structure of GaN grown on the A-face of sapphire , ”Appl. Phys. Lett., Vol. 69, page(s): 990-992, (1996).
    [15] E. F. Schubert, I. D. Goepfert, W. Grieshaber and J. M. Redwing, “Optical properties of Si-doped GaN, ” Appl. Phys. Lett., Vol. 71, page(s): 921-924, (1996).
    [16] P. A. Grudowski, C. J. Eiting, J. Park, B. S. Shelton, D. J. H. Lamber, and R. D. Dupuis, “Properties of InGaN quantum-well heterostructures grown on sapphire by metalorganic chemical vapor deposition, ” Appl. Phys. Lett., Vol. 71, page(s): 1537-1539, (1997).
    [17] J. K. Sheu, C. J. Tun, M. S. Tsai, C. C. Lee, G. C. Chi, S. J. Chang, and Y. K. Su, “n+-GaN formed by Si implantation into p-GaN, ” J. Appl. Phys., Vol. 91, page(s): 1845-1848, (2002).
    [18] S. Bindnyk, T. J. Schmidt, Y. H. Cho, G. H. Gainer, J. J. Song, S. Keller, U. K. Mishra, and S. P. DenBarrs, “High-temperature stimulated emission in optically pumped InGaN/GaN multi-quantum wells, ” Appl. Phys. Lett., Vol. 72, page(s): 1623-1625, (1998).
    [19] S. Salvador, G. Liu, W. Kim, P. Aktas, A. Botchkarev, and H. Morkoc, “Properties of a Si doped GaN/AlGaN single quantum well, ” Appl. Phys. Lett., Vol. 67, page(s): 3322-3324, (1995).
    [20] L. W. Wu, S. J. Chang, T. C. Wen, Y. K. Su, W. C. Lai, C. H. Kuo, C. H. Chen, and J. K. Sheu, “Influence of Si-Doping on the Characteristics of InGaN–GaN Multiple Quantum-Well Blue Light Emitting Diodes, ” IEEE J. Quantum Electron., Vol. 38, page(s): 446-450, (2002).
    [21] K. C. Zeng, J. Y. Lin, H. X. Jiang, A. Salvador, G. Popovicic, H. Tang, W. Kim, and H. Morkoc, “Effects of well thickness and Si doping on the optical properties of GaN/AlGaN multiple quantum wells, ” Appl. Phys. Lett., Vol. 71, page(s): 1368-1370, (1997).
    [22] K. Kusakabe and K. Ohkawa, “Morphological characteristics of a-plane GaN grown on r-plane sapphire by Metalorganic Vapor-Phase Epitaxy, ” Jpn. J. Appl. Phys. Vol. 44, page(s): 7931-7933, (2005).
    [23] H. Masui, A. Chakraborty, B. A. Haskell, U. K. Mishra, J. S. Speck, S. Nakamura, and S. P. Denbaars, “Polarized light emission from nonpolar InGaN light-emitting diodes grown on a bulk m-plane GaN substrate, ” Jpn. J.Appl. Phys. Vol. 44, page(s): L1329-L1332, (2005).
    [24] T. C. Wang, T. C. Lu, T. S. Ko, H. C. Kao, M. Yu, S. C. Wang, C. C. Chuo, Z. H. Lee, and H. G. Chen, “Trenched epitaxial lateral overgrowth of fast coalesced a-plane GaN with low dislocation density, ” Appl. Phys. Lett. Vol. 89, page(s): 251109-251111, (2006).
    [25] I. Akasaki, “Nitride semiconductors-impact on the future world,” J. Crystal Growth, Vol. 237-239, page(s): 905-911, (2002).
    [26] S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa,“Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys., Vol. 31, page(s): L139-L142, (1992).
    [27] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Thermal annealing effects on p-type Mg-doped GaN films,” Jpn. J. Appl. Phys. Vol. 31, page(s): L139-L142, (1992).
    [28] S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett., Vol. 62, page(s): 2390-2392, (1993).
    [29] S. Nakamura, T. Mukai, and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes ,”Appl. Phys. Lett. , Vol. 64, page(s): 1687-1689, (1994).
    [30] S. Nakamura, T. Yamada, M. Senoh, M. Yamada and K. Bando, US patent NO. 5563422, (1996).
    [31] D. Kuo, and S. Hsu, US patent NO. 6515306, (2003).
    [32] N. Shibata, T. Uemura, J. Umezaki, T. Kozawa, M. Asai, T. Mori, and T. Ohwaki, US patent NO. 6008539, (1999).
    [33] T. Uemura, N. Shibata, S. Noiri, and S. Horiuchi, US patent NO. 6734468, (2004).
    [34] J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, K. K. Shih, L. C. Chen, F. R. Chen, J. J. Kai, “Low-resistance ohmic contacts to p-type GaN achieved by the oxidation of Ni/Au films ,”J. Appl. Phys. , Vol. 86, page(s): 4491-4496, (1998).
    [35] K. K. Shih, J. K. Ho, C. C. Chiu and M. H. Hon, TW patent NO. 102019, (1997).
    [36] I. Masayuki, and N. Koichi, Japan patent NO. 10-135519, (1997).
    [37] J. K. Sheu, US patent NO. 6686610, (2004).
    [38] S.C. Wei, Y.K. Su and S.J. Chang, “Electrostatic discharge engineering of nitride based light emitting diodes,” (2007).
    [39] A.T. Cheng, Y.K. Su, “ Structural Development of GaN-Based Materials and Light Emitting Diodes Grown by Metalorganic Vapor Phase Epitaxy Technique,” (2008).
    [40] S. A. Safvi, J. M. Redwing, M. A. Tischler, and T. F. Kuech, “GaN Growth by Metallorganic Vapor Phase Epitaxy”, J. Electrochem. Soc., Vol.144, page(s): 1789, (1997).
    [41] J. R. Creighton, G. T. Wang, W. G. Breiland, and M. E. Coltrin, “Nature of the parasitic chemistry during AlGaInN OMVPE”, J. Cryst. Growth, Vol. 261, page(s): 204-206, (2004).
    [42] T. G. Mihopoulos, Reaction and Transport Processes in OMCVD: Selective and Group III-Nitride Growth. Ph.D thesis, Massachusetts Institute of technology, (1999).
    [43] R. P. Parikh, and R. A. Adomaitis, “An overview of gallium nitride growth chemistry and its effect on reactor design: Application to a planetary radial-flow CVD system”, J. Cryst. Growth, Vol. 286, page(s): 259-278, (2006).
    [44] E. Mesic, M. Mukinovic, and G. Brenner, “Numerical study of AlGaN growth by MOVPE in an AIX200 RF horizontal reactor”, Comp. Mater. Sci., Vol. 31, page(s): 42-56, (2004).
    [45] A. Hirako, K. Kusakabe, and K. Ohkawa, “Modeling of Reaction Pathways of GaN Growth by Metalorganic Vapor-Phase Epitaxy Using TMGa/NH3/H2 System: A Computational Fluid Dynamics Simulation Study”, Jpn. J. Appl. Phys., Vol. 44, page(s): 874-879, (2005).
    [46] J. R. Creighton, G. T. Wang, and M. E. Coltrin, “Fundamental chemistry and modeling of group-III nitride MOVPE”, J. Cryst. Growth, Vol. 298, page(s): 2-7, (2007).
    [47] D. F. Davidson, K. Khose-Hoeinghaus, A. Y. Chang, and R. K. Hanson, Int. J. Chem. Kinet., Vol. 22, page(s): 513-515, (1990).
    [48] R. P. Parikh, and R. A. Adomaitis, “Nitrogen precursors in metalorganic vapor phase epitaxy of (Al,Ga)N”, J. Cryst. Growth, Vol.156, page(s): 140-144, (1995).
    [49] W. D. Monnery, K. A. Hawboldt, A. E. Pollock, and W. Y. Svrcek, Ind. Eng. Chem. Res., Vol. 40, page(s): 144-147, (2001).
    [50] V. S. Ban, “Mass Spectrometric Studies of Vapor-Phase Crystal Growth”, J. Electrochem. Soc., Vol. 119, page(s): 1473-1478, (1972).
    [51] S. S. Liu, D. A. Stevenson, “Growth Kinetics and Catalytic Effects in the Vapor Phase Epitaxy of Gallium Nitride”, J. Electrochem. Soc., Vol.125, page(s): 1161-1169, (1978).
    [52] M. G. Jacko, and S. J. W. Proce, Can. J. Chem., Vol.41, page(s): 1560-1565, (1962).
    [53] S. P. DenBaars, B. Y. Maa, P. D. Dapkus, A. D. Danner, and H. C. Lee, “Homogeneous and heterogeneous thermal decomposition rates of
    trimethylgallium and arsine and their relevance to the growth of GaAs by MOCVD”, J. Cryst. Growth, Vol. 77, page(s): 188-193, (1986).
    [54] A. Thon, and T. F. Kuech, “High temperature adduct formation of
    trimethylgallium and ammonia”, Appl. Phys. Lett., Vol.69, page(s): 55-57, (1996).
    [55] J. B. Williams, The Lewis Acid-Base Concepts: An Overview, Wiley, New York, (1980).
    [56] P. W. Atkins, Physical Chemistry, seventh ed., Freeman, New York, (2002).
    [57] Y.D. Jhou, Y.K. Su, S.J. Chang “Epitaxial Growth and Device Fabrication of Nitride Based Photodetectors”, (2008).
    [58] T. Sasaki and T. Matsuoka, “Analysis of two-step-growth conditions for GaN on an AIN buffer layer,” J. Appl. Phys., Vol. 77, page(s): 192-200, (1995).
    [59] S. Nakamura, T. Mokai and M. Senoh, “High-power GaN p-n junction blue light-emitting diodes,” Jpn. J. Appl. Phys., Vol. 30, page(s): 1998-2002, (1991).
    [60] S. Nakamura, M. Senoh, S. Magahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiooku, and Y. Sugimoto, “InGaN multi-quantum-well structure laser diodes with cleaved mirror cavity facets,” Jpn. J. Appl. Phys., Vol. 35, page(s): L217-L220, (1996).
    [61] S. Nakamura, M. Senoh and T. Mokai, “P-GaN/n-InGaN/n-GaN double heterostructure blue light-emitting diodes,” Jpn. J. Appl. Phys., Vol. 32, page(s):L8-L11, (1993).
    [62] S. Nakamura, T. Mokai and M. Senoh, “High-brightness InGaN/AlGaN double heterostructure blue-green light-emitting diodes,” Jpn. J. Appl. Phys., Vol.76, page(s): 8189-8183, (1994).
    [63] S. Nakamura, T. Mokai and M. Senoh, “Candela-class high-brightness InGaN/AlGaN double heterostructure blue light-emitting diodes,” Appl. Phys. Lett., Vol. 64, page(s): 1687-1689, (1994).
    [64] E. Fred Schubert, Light-Emitting Diodes, p78, (2007).
    [65] A.T. Cheng, Y.K. Su, “ Structural Development of GaN-Based Materials and Light Emitting Diodes Grown by Metalorganic Vapor Phase Epitaxy Technique,” (2008).
    [66] C.H. Chen, Y.K. Su, S.J. Chang, “III-Nitride Based Semiconductors and Related Optical Electronic Devices Grown by Metalorganic Vapor Phase Epitaxy”, (2002).
    [67] Y.T. Rebane, Y.G. Shreter, B.S. Yavich, V.E. Bougrov, S.I. Stepanov and W.N. Wang, “ Light Emitting Diode with Charge Asymmetric Resonance Tunneling”, Phys. Stat. sol (a),Vol. 180, page(s): 121-124, (2000).
    [68] S.C. Wei, Y.K. Su, S.J. Change, “Electrostatic Discharge Engineering of Nitride-Based Light Emitting Diodes”, (2007).
    [69] S. J. Chang, S. C. Wei, Y. K. Su, R. W. Chuang, S. M. Chen and Li, “Nitride-Based LEDs With MQW Active Regions Grown by Different Temperature Profiles” IEEE Photon. Technol. Lett., Vol. 17, page(s): 1806-1808, (2005).
    [70] S. J. Chang, L. W. Wu, Y. K. Su, Y. P. Hsu, W. C. Lai, J. M. Tsai, J. K. Sheu and C. T. Lee, “Nitride-Based LEDs With 800 C Grown p-AlInGaN–GaN Double-Cap Layers” IEEE Photon. Technol. Lett., Vol. 16, page(s): 1447-1449, (2004).
    [71] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, page(s): 256, (2001).
    [72] J. I. Pankove, Gallium Nitride (GaN) I Semiconductors and Semimetals, Academic, page(s): 131, (1998).
    [73] C. H. Chen, Y. K. Su, S. J. Chang, G. C. Chi, J. K. Sheu, J. F. Chen, C. H. Liu and U. H. Liaw, “High Brightness Green Light Emitting Diodes With Charge Asymmetric Resonance Tunneling Structure” IEEE Electron. Dev. Lett., Vol. 23, page(s): 130-132, (2002).
    [74] T. C. Wen, S. J. Chang, L. W. Wu, Y. K. Su, W. C. Lai C. H. Kuo, C. H. Chen, J. K. Sheu and J. F. Chen, “InGaN/GaN tunnel-injection blue light-emitting diodes” IEEE Tran. Electron. Dev., Vol. 49, page(s): 1093-1095, (2002).
    [75] P. Venne´gue` s,B. Beaumont, V. Bousquet, M. Vaille, and P. Gibart, “Reduction mechanisms for defect densities in GaN using one- or two-step epitaxial lateral overgrowth methods”, JOURNAL OF APPLIED PHYSICS, Vol. 87, No. 9, page(s): 4175-4181, (2000).
    [76] E. Fred Schubert, Light-Emitting Diodes, page: 36, (2007).
    [77] S. Nakamura, “GaN Growth Using GaN Buffer Layer”, Japanese Journal of Applied Physics, Vol. 30, page(s): L1705-L1707, (1991).
    [78] C.H. Chen, Y.K. Su, S.J. Chang, “III-Nitride Based Semiconductors and Related Optical Electronic Devices Grown by Metalorganic Vapor Phase Epitaxy”, (2002).
    [79] C. Huh, K.S. Lee, E.K. Kang and S.J. Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface”, J. Appl Phys Vol. 93, No. 11, page(s): 9383-9385, (2003).
    [80] R. Windisch, B. Dutta, M. Kuijk, A. Knobloch, S. Meinlschmidt,S. Schoberth, P. Kiesel, G. Borghs, G. H. Döhler, and P. Heremans, “40% Efficient Thin-Film Surface-Textured Light-Emitting Diodes by Optimization of Natural Lithography”, IEEE TRANSACTIONS ON ELECTRON DEVICES, Vol. 47, No. 7, page(s): 1492-1498, (2000).
    [81] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening”, Appl. Phys. Lett., Vol. 84, No. 6, page(s): 855-857, (2004).
    [82] Y. P. Hsu, S. J. Chang, Y. K. Su, S. C. Chen, J. M. Tsai, W. C. Lai, C. H. Kuo, and C. S. Chang, “InGaN–GaN MQW LEDs With Si Treatment”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 17, No. 8, page(s): 1620-1622, (2005).
    [83] S. X. Jin, J. Li, J. Y. Lin, and H. X. Jiang, “InGaN/GaN quantum well interconnected microdisk light emitting diodes”, Appl. Phys. Lett., Vol. 77, No. 20, page(s): 3236-3238, (2000).
    [84] C. F. Shen, S. J. Chang, T. K. Ko, C. T. Kuo, S. C. Shei, W. S. Chen, C. T. Lee, C. S. Chang, and Y. Z. Chiou, “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 18, No. 23, page(s): 2517-2519, (2006).
    [85] C. H. Kuo and H. C. Feng, “Nitride-Based Near-Ultraviolet Mesh MQW Light-Emitting Diodes”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 19, No. 23, page(s): 1901-1903, (2007).
    [86] C. S. Chang, S. J. Chang, Y. K. Su, C. T. Lee, Y. C. Lin, W. C. Lai, S. C. Shei, J. C. Ke, and H. M. Lo, “Nitride-Based LEDs With Textured Side Walls”, IEEE PHOTONICS TECHNOLOGY LETTERS, Vol. 16, No. 3,page(s): 750-752, (2004).
    [87] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo ,T. K. Ko, S. C. Shei and J.K. Sheu, “Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography”, Appl. Phys. Lett. Vol. 91, page(s): 013504-013506, (2007).
    [88] J.K. Sheu, C. M. Tsai, M. L. Lee, S. C. Shei and W. C. Lai, “InGaN light-emitting diodes with naturally formed truncated micropyramids on top surface”, Appl. Phys. Lett. Vol. 88, page(s): 113505-113507, (2006).

    下載圖示 校內:2011-06-23公開
    校外:2014-06-23公開
    QR CODE