簡易檢索 / 詳目顯示

研究生: 林佩瑩
Lin, Pei-Ying
論文名稱: 電噴塗法製備有機鹵化鉛鈣鈦礦太陽電池以及電極界面層於元件性能的影響
Electrospray Technique in Fabricating Organolead Halide Perovskite-based Solar Cells and The Influence of Electrode Interlayer on Device performance
指導教授: 郭宗枋
Guo, Tzung-Fang
學位類別: 博士
Doctor
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 178
中文關鍵詞: 鈣鈦礦太陽電池電噴塗固態晶體解離非輻射/輻射再復合界面缺陷介電效應
外文關鍵詞: Perovskite solar cells, Electrospray, Solid crystal, Solid state reaction, Dissociation, Non-radiative/radiative recombination, Interfacial traps, Dielectric effects
相關次數: 點閱:143下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分別針對有機鹵化鉛鈣鈦礦太陽能對電池吸光層鈣鈦礦材料的製備與電極界面層於元件效能的影響作探討。在第一項工作中,我們利用電噴塗法沉積固態的前驅物晶體於基板上並探討其轉變成斜方晶甲基碘化鉛鈣鈦礦薄膜的形成機制,以電噴塗法所製備的固態晶體改善了塗佈法成膜時候的去濕潤現象。經調變電噴塗過程中施加的電壓可得到合適晶粒尺寸的固態反應物,並在穩定熱源下進行鹵素交換形成連續的薄膜,此電噴塗技術並配合後續固態反應機制的成膜方法將有助於大面積化沉積鈣鈦礦層。第二項工作中,我們設計實驗並證明以氧化鎳取代poly (3,4-ethylenedioxythiophene) poly (styrenesulfonate) (PEDOT:PSS)當作p-i-n結構平板式鈣鈦礦太陽電池的電洞傳輸層,可同時促進載子解離與抑制載子再復合行為。經由不同施加偏壓下磁光電流、電場相依性光致發光以及光誘導電容-電壓特性的量測,我們證明內建場大小與減少鈣鈦礦/氧化鎳界面層的界面缺陷與增強界面極化之間有協同效應。此研究了解氧化鎳電洞傳輸層對載子解離、再復合和收集的影響,提供了界面合理設計的方針,期待能進一步推進鈣鈦礦太陽電池性能的提升。

    This thesis focus on organometal halide perovskite solar cells, we investigated the preparation of perovskite active layer and the Influence of electrode interlayer on device performance, respectively. In the first part: we utilized the electrospray technique to deposit the solidified crystal precursors on the substrate and investigate the transition processes in forming the orthorhombic methylammonium lead iodide film for fabricating perovskite planar heterojunction solar cells. The formation of solidified crystal precursors by the electrospray technique improves the de-wetting of the perovskite film on the substrate. Judicious selection of the applied voltage in the electrospray process generates crystal precursors with appropriate dimensions. These as-electrosprayed crystals are the solid-state reactants for the halogen exchanging and form a uniformly covered film on substrate under suitable annealing conditions. The hybrid device prepared by the electrospray technique exhibits a power conversion efficiency of 9.3 %, a short-circuit current of 19.71 mA/cm2, an open-circuit voltage of 0.87 V, and a fill factor of 0.55. The electrospray technique with the solid-state reaction mechanism proposed in this manuscript would be ideal for large-area coating of a perovskite active layer, and thus has potential for using in real mass production. In the second part: we demonstrate that the NiOX HTL can simultaneously facilitate the bulk charge dissociation and suppress nonradiative/radiative recombination processes in the inverted perovskite solar cells By combining magneto-photocurrent measurements under external bias, time-resolved and field-dependent PL measurements, and photoinduced capacitance-voltage characterizations, we demonstrate that these synergistic effects can be attributed to the enhanced built-in field that essentially results from both the reduced interfacial traps and increased interfacial polarization at CH3NH3PbI3/NiOX interface as compared to CH3NH3PbI3/PEDOT:PSS interface. Clearly, revealing the effects of NiOX HTL on the bulk charge dissociation, recombination, and collection provides guidance on the rational design of interface engineering towards further advancement of photovoltaic actions in organo-metal halide perovskites.

    摘要 I Electrospray Technique in Fabricating Organolead Halide Perovskite-based Solar Cells II The Influence of Electrode Interlayer on Device Perovskite-based Performance XIII 致謝 XXV 目錄 XXVIII 圖目錄 XXXII 表目錄 XL 第一章 緒論 1 1.1 前言 1 1.2 太陽電池種類簡介 2 1.2.1 無機太陽電池(Inorganic solar cells) 3 1.2.2 有機太陽電池(Organic solar cells) 4 1.2.3 有機鹵化金屬鈣鈦礦太陽電池(Oorganometal halide perovskite solar cells) 6 1.3 研究動機 9 1.4 論文大綱 11 第二章 文獻回顧與理論背景 12 2.1 鈣鈦礦太陽電池發展歷史 12 2.2 鈣鈦礦薄膜製備方法 21 2.2.1 一階段溶液沉積法(One step solution process) 22 2.2.2 二階段溶液沉積法(Two step solution process) 33 2.2.3 噴塗法(Spray process) 40 2.3 電噴塗法介紹(Electrospray technique) 44 2.3.1 電噴塗法基礎理論 44 2.3.2 電噴塗法的應用 48 2.4 電極界面層於鈣鈦礦太陽電池中的角色 50 2.4.1 n-i-p結構中的電極界面層 51 2.4.2 p-i-n結構中的電極界面層 54 2.4.3 界面工程(Interface engineering) 62 2.5 有機磁場效應理論機制(Magnetic field effects (MFEs) on organic semiconductors) 64 2.5.1 氫原子模型自旋相依量子效應 65 2.5.2 激發態磁場效應 73 2.6 太陽電池中的光伏效應 78 2.6.1 空氣質量(Air Mass) 78 2.6.2 太陽能電池等效電路 79 2-7 本章結論 82 第三章 實驗步驟與量測方法 84 3.1 元件製備過程 84 3.1.1 材料與元件結構 85 3.1.2 製備過程 86 3.2 元件光電特性量測 93 3.2.1 電流密度-電壓量測(Current density-voltage (J-V) measurement) 93 3.2.2 光電轉化效率量測(Incident photo-to current conversion efficiency (IPCE) measurement) 94 3.3 表面分析(Surface analysis) 94 3.3.1 紫外-可見光吸收光譜儀(UV-VIS spectroscopy) 94 3.3.2 光致發光光譜(Photoluminescence spectra, PL) 95 3.3.3 掃瞄式電子顯微鏡(Scanning electron microscope, SEM) 95 3.3.4 X-ray 繞射儀(X-Ray Diffraction, XRD) 95 3.4 磁場量測與數據分析(Magnetic field effects measurements and results analysis) 96 3.4.1 磁場量測 96 3.2.2 數據分析 97 3.5 電容-電壓量測(Capacitance voltage (C-V) measurement) 98 3.6 結論 98 第四章 電噴塗法製備有機鹵化鉛鈣鈦礦太陽能電池 99 4.1 前言 99 4.2 電噴塗法製備鈣鈦礦薄膜機制探討 101 4.3 不同電壓下之結晶分布情形 104 4.4 Orthorhombic CH3NH3PbI3形成機制探討 107 4.5 不同溫度對鈣鈦礦薄膜形貌探討 111 4.6 元件光伏特性探討 112 4.6.1 鈣鈦礦層於不同下溫度退火對元件性能的影響 113 4.6.2 不同鈣鈦礦前驅物成分對元件性能的影響 115 4.6.3元件平均性能與光電轉化效率 117 4.7 本章結論 120 第五章 電極界面層對鈣鈦礦太陽電池內部光伏行為之研究 122 5.1 前言 122 5.2 元件光伏特性分析 125 5.3 探討氧化鎳電洞傳輸層對內部載子解離的影響 129 5.3.1 不同電洞傳輸層於無外加電場情況下之磁光電流效應研究 132 5-3-2 內建場對磁光電流效應之影響 135 5.4 氧化鎳電洞傳輸層對內建場的探討 140 5-4-1 載子於不同電洞傳輸層/鈣鈦礦層累積的情形 141 5-4-2 內建電場數值解析 143 5.5 氧化鎳電洞傳輸層對內部載子再復合的影響 144 5.5.1 非輻射再復合(Non-radiative recombination) 145 5.5.2 輻射再復合(Radiative recombination) 147 5.6 本章結論 151 第六章 結論與未來工作 153 6-1 結論 153 6-2 未來工作展望 155 參考文獻 158 Curriculum Vita 177

    [1] http://www.ren21.net/status-of-renewables/global-status-report/ (Renewables 2017 Global Status Report, accessed July. 1, 2017.)
    [2] D. Cahen, J. M. Gilet, C. Schmitz, L. Chernyak, K. Gartsman, A. Jakubowicz, “Room-temperature, electric field-induced creation of stable devices in CulnSe2 crystals”, Science 258, 271-274 (1992).
    [3] U. Mehmood, I. A Hussein, K. Harrabi, M. B. Mekki, S. Ahmed, N. Tabet, “Hybrid TiO2-multiwall carbon nanotube (MWCNTs) photoanodes for efficient dye sensitized solar cells (DSSCs)”, Sol. Energy Mater. Sol. Cells 140, 174-179 (2015).
    [4] J. Zhao, A. Wang, M. A. Green, “19.8 % efficient honeycomb textured multicrystalline and 24.4 % monocrystalline silicon solar cells”, Appl. Phys. Lett. 73, 1991-1993 (1998).
    [5] A. -E. Becquerel, “Mémoire sur les effets électriques produits sous l’influence des rayons solaires”, Comptes Rendus. 9, 561-567 (1839).
    [6] J. Jean, P. R. Brown, R. L. Jaffe, T. Buonassisi, V. Bulovic “Pathways for Solar Photovoltaics”, Energy Environ. Sci. 8, 1200-1219 (2015).
    [7] W. G. Adams, R. Day, “The action of light on selenium”, Proc. R. Soc. London, 25, 113-117 (1876).
    [8] D. M. Chapin, C. S. Fuller, G. L. Pearson, “A new silicon p‐n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys. 25, 676-677 (1954).
    [9] C. J. Brabec, “Organic photovoltaics: technology and market”, Sol. Energy Mater. Sol. Cells 83, 273-292 (2004).
    [10] T. Ameri, P. Khoram, J. Min, C. J. Brabec, “Organic ternary solar cells: A review”, Adv. Mater. 25, 4245-4266 (2013).
    [11] J. Ahmad, K. Bazaka, L. J. Anderson, R. D. White, M. V. Jacob, “Materials and methods for encapsulation of OPV: A review”, Renew Sust Energ Rev. 27, 104-117 (2013).
    [12] N. Jain, M. K. Hudait, “Design for metamorphic dual junction InGaP GaAs solar cell on Si with efficiency greater than 29 % using finite element analysis”, 28th IEEE Photovoltaic Spec. Conf. 2056-2060 (2012).
    [13] A. K. Gosh, T. Feng, “Rectification, space‐charge-limited current, photovoltaic and photoconductive properties of Al/tetracene/Au sandwich cell”, Appl. Phys. Lett. 44, 2781 (1973).
    [14] C. W. Tang, “Two layer organic photovoltaic cell”, Appl. Phys. Lett. 48, 183 (1986).
    [15] D. Kearns, M. Calvin, “Photovoltaic effect and photoconductivity in organic laminated systems”, J. Chem. Phys. 29, 950-951(1958).
    [16] H. W. Kroto, J. R. Heath, S. C. Obrien, R. F. Curl, R. E. Smalley, “C60: Buckminsterfullerence”, Nature 318, 162-163 (1985).
    [17] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, F. Wudl, “Photoinduced electron transfer from a conducting polymer to buckminsterfullerene”, Science 258, 1474-1476 (1992).
    [18] G. Yu, K. Pakbaz, A. J. Heeger, “Semiconducting polymer diodes: Large size, low cost photodetectors with excellent visible-ultraviolet sensitivity”, Appl. Phys. Lett. 64, 3422 (1994).
    [19] B. O’regan, M. Grätzel, “A low cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature 353, 737-740 (1991).
    [20] W. Ma, C. Yang, X. Gong, K. Lee, A. J. Heeger, “Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology”, Adv. Funct. Mater. 15, 1617-1622 (2005).
    [21] G. Li, V. Shortriya, J. Huang, T. Moriarty, K. Emery, Y. Yang, “High-efficiency solution processible polymer photovoltaic cells by self-organization of polymer blends”, Nat. Mater. 4, 864-868 (2005).
    [22] S. E. Shaheen, C. J. Brebec, N. S. Sariciftci, F. Padinger, T. Fromhert, J. C. Hummelen, “2.5 % efficient organic plastic solar cells”, Appl. Phys. Lett. 78, 841 (2001).
    [23] F. Padinger, R. S. Rittberger, N. S. Sariciftci, “Effects of postproduction treatment on plastic solar cells”, Adv. Funct. Mater. 13, 85-88 (2003).
    [24] J. Drechsel, B. Männig, F. Kozlowski, M. Pfeiffer, K. Leo, H. Hoppe, “Efficient organic solar cells based on a double p-i-n architecture using doped wide-gap transport layers”, Appl. Phys. Lett. 86, 244102 (2005).
    [25] Y. Shao, Y. Yang, “Efficient organic heterojunction photovoltaic cells basd on triplet materials”, Appl. Phys. Lett. 17, 1841(2005).
    [26] J. You, L. Dou, K. Yoshimura, T. Kato, K. Ohya, T. Moriarty, K. Emery, C. C. Chen, J. Gao, G. Li, Y. Yang, “A polymer tandem solar cell with 10.6% power conversion efficiency”, Nat. Commun. 4, 1446 (2013).
    [27] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, “Organometal halide perovskites as visible-light sensitizers for photovoltaic cells”, J. Am. Chem. Soc. 131, 6050-6051 (2009).
    [28] W. J. Yin, T. T. Shi, Y. F. Yan, “Unique properties of halide perovskites as possible origins of the superior solar cell performance”, Adv. Mater. 26, 4653-4658 (2014).
    [29] C. Wehrenfennig, G. E. Eperon, M. B. Johnston, H. J. Snaith, L. M. Herz, “High charge carrier mobilities and lifetimes in organolead trihalide perovskites”, Adv. Mater. 26, 1584-1589 (2014).
    [30] J. -H. Im, C. -R. Lee, J. -W. Lee, Park, S. -W. N. -G. Park, “6.5% Efficient perovskite quantum-dot-sensitized solar cell”, Nanoscale 3, 4088-4093 (2011).
    [31] S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, “Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber”, Science 342, 341-344 (2013).
    [32] G. C. Xing, N. Mathews, S. Y. Sun, S. S. Lim, Y. M. Lam, M. Grätzel, S. M Haisalkar, T. C. Sum, “Long-range balanced electron-and hole-transport lengths inorganic-inorganic CH3NH3PbI3”, Science 342, 344-347 (2013).
    [33] http://www.nrel.gov/ncpv/images/efficiency_chart.jpg (National Renewable Energy Laboratory, NREAL, accessed July. 1, 2017.)
    [34] J. C. Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438-1439 (2013).
    [35] S. Wei, X. Ren, L Chen, W. C. H. Choy, “The efficiency limit of CH3NH3PbI3 perovskite solar cells”, Appl. Phys. Lett. 106, 221104 (2015).
    [36] J. -Y. Jeng, Y. -F. Chiang, M. -H. Lee, S. -R. Peng, T. -F. Guo, P. Chen, T. -C. Wen, CH3NH3PbI3 perovskite/fullerene planar-heterojunction hybrid solar cells, Adv. Mater. 25, 3727-3732 (2013).
    [37] S. Bai, Y. Jin, F. Gao, “Organometal halide perovskites for photovoltaic applications”, 2nd edition, Wiley-VCH ISBN: 9781118998977 (2015).
    [38] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phys. Chem. C 118, 5615-5625 (2014).
    [39] G. Kieslich, S. Sun, A. K. Cheethm, “Solid-state principles applied to organic-inorganic perovskites: new tricks for an old dog”, Chem. Sci. 5, 4712 -4715 (2014).
    [40] C. Li, X. Lu, W. Ding, L. Feng, Y. Gao, Z. Guo, “Formability of ABX3 (X = F, Cl, Br, I) halide perovskites”, Acta Crystallogr. Sect. B: Struct. Sci. 64, 702-707 (2008).
    [41] R. J. Cava, B. Batlogg, J. J. Krajewski, R. Farrow, L. W. Rupp Jr, A. E. White, K. Short, W. F. Peck, T. Kometani, “Superconductivity near 30K without copper: the Ba0.6K0.4BiO3 perovskite”, Nature 332, 814-816 (1988).
    [42] R. J. Cava, B. Batlogg, J. J. Krajewski, L. W. Rupp, L. F. Schneemeyer, T. Siegrist, R. B. vanDover, P. Marsh, W. F. Peck Jr, P. K. Gallagher, S. H. Glarum, J. H. Marshall, R. C. Farrow, J. V. Waszczak, R. Hull, P. Trevor, “Superconductivity near 70 K in a new family of layered copper oxides”, Nature 336, 211-214 (1988).
    [43] A. M. Salau, “Fundamental absorption edge in PbI2:KI alloys”, Sol. Energy Mater. 2, 327-332 (1980).
    [44] A. G. Chynoweth, “Surface space-charge layers in barium titanate”, Phys. Rev. 102, 705 (1956).
    [45] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes “Light-emitting diodes based on conjugated polymers”, Nature 347, 539-541 (1990).
    [46] C. R. Kagan, D. B. Mitzi, C. D. Dimitrakopoulos, “Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors”, Science 286, 945-947 (1999).
    [47] G. C. Papavassiliou, “Three-and low-dimensional inorganic semiconductors”, Prog. Solid St. Chem. 25, 125-270 (1997).
    [48] K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, “Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3”, Solid State Commun. 127, 619-623 (2003).
    [49] A. Kojima, K. Teshima, T. Miyasaka, Y. Shirai, “Novel photoelectrochemical cell with mesoscopic electrods sensitized by lead-halide compounds (2)”, 210th ECS Meeting, Cancun, Mexico (2006).
    [50] A. Kojima, K. Teshima, Y. Shirai, T. Miyasake, “Novel photoelectrochemical cell with mesoscopic electrods sensitized by lead-halide compounds (5)”, 212th ECS Meeting, Washington, D.C., (2007).
    [51] H. -S. Kim, C. -R. Lee, J. -H. Im, K. -B. Lee, T. Moehl, A. Marchioro, S. -J. Moon, R. H. Baker, J. -H. Yum, J. E. Moser, M. Grätzel, N.-G. Park, “Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%”, Sci. Rep. 2, 591 (2012).
    [52] J. Burschka, N. Pellet, S. -J. Moon, R. H. Baker, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Sequential deposition as a route to high-performance perovskite-sensitized solar cells”, Nature 499, 316-319 (2013).
    [53] M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, “Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites”, Science 338, 643-647 (2012).
    [54] A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M. K. Nazeeruddin, M. Grätzel, “Effect of annealing temperature on film morphology of organic-inorganic hybrid pervoskite solid-state solar cells”, Adv. Funct. Mater. 24, 3250-3258 (2014).
    [55] J. T. -W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M. Saliba, I. Mora-Sero, J. Bisquert, H. J. Snaith, R. J. Nicholas, “Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells”, Nano Lett. 14, 724-730 (2014).
    [56] L. Etgar, P. Gao, Z. Xue, Q. Peng, A. K. Chandiran, B. Liu, M. K. Nazeeruddin, M. Grätzel, “Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells”, J. Am. Chem. Soc. 134, 17396-17399 (2012).
    [57] S. Sun, T. Salim, N. Mathews, M. Duchamp, C. Boothroyd, G. Xing, T. C. Sum, Y. M. Lam, “The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells”, Energy Environ. Sci. 7, 399-407 (2014).
    [58] O. Malinkiewicz, A. Yella, Y. -H. Lee, G. M. Espallargas, M. Grätzel, M. K. Nazeeruddin, H. J. Bolink, “Perovskite solar cells employing organic charge-transport layers”, Nat. Photonics 8, 128-132 (2014).
    [59] J. You, Z. Hong, Y. M. Yang, Q. Chen, M. Cai, T. -B. Song, C. -C. Chen, S. Lu, Y. Liu, H. Zhou, Y. Yang, “Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility”, ACS Nano 8, 1674-1680 (2014).
    [60] J. -H. Im, H. -S. Kim, N. -G. Park, “Morphology-photovoltaic property correlation in perovskite solar cells: one-step versus two-step deposition of CH3NH3PbI3”, APL Mater. 2, 081510 (2014).
    [61] B. Conings, L. Baeten, C. D. Dobbelaere, J. D'Haen, J. Manca, H. G. Boyen, “Perovskite-based hybrid solar cells exceeding 10 % efficiency with high reproducibility using a thin film sandwich approach”, Adv. Mater. 26, 2041-2046 (2013).
    [62] G. E. Eperon, V. M. Burlakov, P. Docampo, A. Goriely, H. J. Snaith, “Morphological control for high performance solution processed planar heterojunction perovskite solar cells”, Adv. Funct. Mater. 24, 151-157 (2014).
    [63] G. E. Eperon, V. M. Burlakov, A. Goriely, H. J. Snaith. “Neutral color semitransparent microstructured perovskite solar cells”, ACS Nano 8, 591-598 (2014).
    [64] W. Nie, H. Tsai, R. Asadpour, J. -C. Blancon, A. J. Neukirch, G. Gupta, J. J. Crochet, M. Chhowalla, S. Tretiak, M. A. Alam, H. -L. Wang, A. D. Mohite, “Solar cells. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains”, Science 347, 522-525 (2015).
    [65] Y. Zhao K. Zhu, “CH3NH3Cl-assisted one-step solution growth of CH3NH3PbI3: structure, charge-carrier dynamics, and photovoltaic properties of perovskite solar cells”, J. Phys. Chem. C 118, 9412-9418 (2014).
    [66] Y. Chen, Y. Zhao, Z. Liang, “Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl”, Chem. Mater. 27, 1448-1451 (2015).
    [67] P. -W. Liang, C. -Y. Liao, C. -C. Chueh, F. Zuo, S. T. Williams, X. -K. Xin, J. Lin, A. K. -Y. Jen, “Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells”, Adv. Mater. 26, 3748-3754 (2014).
    [68] C. -C. Chueh, C. -Y. Liao, F. Zuo, S. T. Williams, P. -W. Liang, A. K. -Y. Jen, “The roles of alkyl halide additives in enhancing perovskite solar cell performance”, J. Mater. Chem. A 3, 9058-9062 (2015).
    [69] C. -Y. Chang, C. -Y. Chu, Y. -C. Huang, C. -W. Huang, S. -Y. Chang, C. -A. Chen, C. -Y. Chao, W. -F. Su, “Simultaneous improvement in short circuit current, open circuit voltage, and fill factor of polymer solar cells through ternary strategy”, ACS Appl. Mater. Interfaces 7, 4955-4961 (2015).
    [70] H. -B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J. -Y. Kim, “Mixed solvents for the optimization of morphology in solution-processed, inverted-type perovskite/fullerene hybrid solar cells”, Nanoscale 6, 6679-6683 (2014).
    [71] N. -J. Jeon, J. -H. Noh, Y. -C. Kim, W. -S. Yang, S. Ryu, S. -I. Seok, “Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells”, Nat. Mater. 13, 897-903 (2014).
    [72] M. Xiao, F. Huang, W. Huang, Y. Dkhissi, Y. Zhu, J. Etheridge, A. G. Weale, U. Bach, Y.-B. Cheng, L. Spiccia, “A fast deposition-crystallization procedure for highly efficient lead iodide perovskite thin-film solar cells”, Angew. Chem. Int. Ed. 126, 10056-10061 (2014).
    [73] F. Huang, Y. Dkhissi, W. Huang, M. Xiao, I. Benesperi, S. Rubanov, Y. Zhu, X. Lin, L. Jiang, Y. Zhou, A. G. Weale, J. Etheridge, C. R. McNeill, R. A. Caruso, U. Bach, L. Spiccia, Y. -B. Cheng, “Gas-assisted preparation of lead iodide perovskite films consisting of a monolayer of single crystalline grains for high efficiency planar solar cells”, Nano Energy 10, 10-18 (2014).
    [74] J. You, Y. M. Yang, Z. Hong, T. -B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W. -H. Chang, G. Li, Y. Yang, “Moisture assisted perovskite film growth for high performance solar cells”, Appl. Phys. Lett. 105, 183902 (2014).
    [75] H. Zhou, Q. Chen, G. Li, S. Luo, T. -B. Song, H. -S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science 345, 542-546 (2014).
    [76] Y. Rong, Z. Tang, Y. Zhao, X. Zhong, S. Venkatesan, H. Graham, M. Patton, Y. Jing, A. M. Guloy, Y. Yao, “Solvent engineering towards controlled grain growth in perovskite planar heterojunction solar cells”, Nanoscale 7, 10595-10599 (2015).
    [77] H. Chen, Z. Wei, H. He, X. Zheng, K. S. Wong, S. Yang, “Solvent Engineering Boosts the Efficiency of Paintable Carbon-Based Perovskite Solar Cells to Beyond 14% “, Adv. Energy Mater. 6, 1502087 (2016).
    [78] M. Liu, M. B. Johnston, H. J. Snaith, “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature 501, 395-398 (2013).
    [79] B. -S. Kim, T. -M. Kim, M. -S. Choi, H. -S. Shim, J. -J. Kim, “Fully vacuum-processed perovskite solar cells with high open circuit voltage using MoO3/NPB as hole extraction layers”, Org. Electron. 17, 102-106 (2015).
    [80] L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K. Leo, “Hole-transport material variation in fully vacuum deposited perovskite solar cells”, APL Mater. 2, 081503 (2014).
    [81] Z. Xiao, C. Bi, Y. Shao, Q. Dong, Q. Wang, Y. Yuan, C. Wang, Y. Gao, J. Huang, “Efficient, high yield perovskite photovoltaic devices grown by interdiffusion of solution-processed precursor stacking layers”, Energy Environ. Sci. 7, 2619-2623 (2014).
    [82] C. Bi, Y. Shao, Y. Yuan, Z. Xiao, C. Wang, Y. Gao, J. Huang, “Understanding the formation and evolution of interdiffusion grown organolead halide perovskite thin films by thermal annealing”, J. Mater. Chem. A 2, 18508-18514 (2014).
    [83] Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, J. Huang, “Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement”, Adv. Mater. 26, 6503-6509 (2014).
    [84] Q. Chen, H. Zhou, Z. Hong, S. Luo, H. -S. Duan, H. -H. Wang, Y. Liu, G. Li, Y. Yang, “Planar heterojunction perovskite solar cells via vapor-assisted solution process”, J. Am. Chem. Soc. 136, 622-625 (2014).
    [85] Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N. P. Padture, G. Cui, “Methylamine-Gas-Induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells”, Angew. Chem. Int. Ed. 54, 9705-9709 (2015).
    [86] S. Pang, Y. Zhou, Z. Wang, M. Yang, A. R. Krause, Z. Zhou, K. Zhu, N. P. Padture, G. Cui, “Transformative evolution of organolead triiodide perovskite thin films from strong room-temperature solid-gas interaction between HPbI3-CH3NH2 precursor pair”, J. Am. Chem. Soc. 138, 750-753 (2016).
    [87] A. T. Barrows, A. J. Pearson, C. K. Kwak, A. D. F. Dunbar, A. R. Buckley, D. G. Lidzey, “Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition”, Energy Environ. Sci. 7, 2944-2950 (2014).
    [88] D. K. Mohamad, J. Griffin, C. Bracher, A. T. Barrows, D. G. Lidzey, “Spray-Cast Multilayer Organometal Perovskite Solar Cells Fabricated in Air”, Adv. Energy Mater. 6, 1600994 (2016).
    [89] S. Gamliel, A. Dymshits, S. Aharon, E. Terkieltaub, L. Etgar, “Micrometer sized perovskite crystals in planar hole conductor free solar cells”, J. Phys. Chem. C 119, 19722-19728 (2015).
    [90] S. Das, B. Yang, G. Gu, P. C. Joshi, I. N. Ivanov, C. M. Rouleau, T. Aytug, D. B. Geohegan, K. Xiao, “High-performance flexible perovskite solar cells by using a combination of ultrasonic spray-coating and low thermal budget photonic curing”, ACS Photonics 2, 680-668 (2015).
    [91] K. M. Boopathi, M. Ramesh, P. Perumal, Y. -C. Huang, C. -S. Tsao, Y. -F. Chen, C. -H. Lee, C. -W. Chu, “Preparation of metal halide perovskite solar cells through a liquid droplet assisted method”, J. Mater. Chem. A 3, 9257-9263 (2015).
    [92] J. Zeleny, “Instability of Electrified Liquid Surfaces”, Phys. Rev. 10, 1-6 (1917).
    [93] G. Taylor, “Disintegration of water drops in an electric field”, Proc R. Soc. A 208, 22-24 (1964).
    [94] H. -H. Kim, J. -H. Kim, A. Ogata, “Time-resolved high-speed camera observation of electrospray”, J. Aerosol Sci. 42, 249-263 (2011).
    [95] N. Radacsi, R. Ambrus, T. Szunyogh, P. Szabó-Révész, A. Stankiewicz, A. van der Heijden, J. H. ter Horst, “Electrospray crystallization for nanosized pharmaceuticals with improved properties”, Cryst. Growth Des. 12, 3514-3520 (2012).
    [96] Y. He, Y. Huang, W. Wang, Y. Cheng, “Integrating micromixer precipitation and electrospray drying toward continuous production of drug nanoparticles”, Chem. Eng. J. 168, 931-937 (2011).
    [97] J. Xie, J. Jiang, P. Davoodi, M. P. Srinivasan, C. H. Wang, “Electrohydrodynamic atomization: A two-decade effort to produce and process micro-/nanoparticulate materials”, Chem. Eng. Sci. 125, 32-57 (2015).
    [98] A. Jaworek, A. T. Sobczyk, “Electrospraying route to nanotechnology: An overview”, J. Electrostat. 66, 197-219 (2008).
    [99] I. W. Lenggoro, K. Okuyama, J. F. de la Mora, N. Tohge, “Preparation of ZnS nanoparticles by electrospray pyrolysis”, J. Aerosol Sci. 31, 121-136 (2000).
    [100] E. M. Kelder, O. C. J. Nijs, J. Schoonman, “Low-temperature synthesis of thin films of YSZ and BaCeO3 using electrostatic spray pyrolysis (ESP)”, Solid State Ion. 68, 5-7 (1994).
    [101] B. Su, M. Wei, K. L. Choy, “Microstructure of nanocrystalline CdS powders and thin films by electrostatic assisted aerosol jet decomposition/deposition method”, Mater. Lett. 47, 83-88 (2001).
    [102] T. Nguyen, E. Djurado, “Deposition and characterization of nanocrystalline tetragonal zirconia films using electrostatic spray deposition”, Solid State Ion. 138, 191-197 (2001).
    [103] R. Chandrasekhar, K. L. Choy, “Electrostatic spray assisted vapour deposition of fluorine doped tin oxide”, J. Cryst. Growth 231, 215-221 (2001).
    [104] H. Lee, D. Hwang, S. M. Jo, D. Kim,Y. Seo, D. Y. Kim, “Low-Temperature fabrication of TiO2 electrodes for flexible dye-sensitized solar cells using an electrospray process”, ACS Appl. Mater. Interfaces 4, 3308-3315 (2012).
    [105] M. A. Reus, G. Hoetmer, A. E. D. M. van der Heijde, J. H. ter Horst, “Concomitant crystallization for in situ encapsulation of organic materials”, Cryst. Growth Des. 12, 3514-3520 (2012).
    [106] D. -R. Chen, D. Y. H. Pui, L. Kaufman, “Electrospraying of conducting liquids for monodisperse aerosol generation in the 4 nm to 1.8 mm diameter range”, J. Aerosol Sci. 26, 936-977 (1995).
    [107] A. Bohr, J. Kristensen, E. Stride, M. Dyas, M. Edirisinghe, “Preparation of microspheres containing low solubility drug compound by electrohydrodynamic spraying”, Int. J. Pharm. 412, 59-67 (2011).
    [108]L. Francis, J. Venugopal, M. P. Prabhakaran, V. Thavasi, E. Marsano, S. Ramakrishna, “Simultaneous electrospin-electrosprayed biocomposite nanofibrous scaffolds for bone tissue regeneration”, Acta Biomater. 6, 4100-4109 (2010).
    [109] D. -H. Kim, K. -G. Lim, J. H. Park, T. -W. Lee, “Controlling surface enrichment in polymeric hole extraction layers to achieve high-efficiency organic photovoltaic cells”, ChemSusChem 5, 2053-2057 (2012).
    [110] S. D. Stranks, V. M. Burlakov, T. Leijtens, J. M. Ball, A. Goriely, H. J. Snaith, “Recombination kinetics in organic-inorganic perovskites: excitons, free charge, and subgap states”, Phys. Rev. Appl. 2, 034007 (2014).
    [111] S. Ryu, J. H. Noh, N. J. Jeon, Y. Chan Kim, W. S. Yang, J. Seo, S. Il Seok, “Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor”, Energy Environ. Sci. 7, 2614-2618 (2014).
    [112] B. Cai, Y. Xing, Z. Yang, W. -H. Zhang, J. Qiu, “High performance hybrid solar cells sensitized by organolead halide perovskites”, Energy Environ. Sci. 6, 1480-1485 (2013).
    [113] T. -W. Lee, K. -G. Lim, D. -H. Kim, “Approaches toward efficient and stable electron extraction contact in organic photovoltaic cells: Inspiration from organic light-emitting diodes”, Electron. Mater. Lett. 6, 41-50 (2010).
    [114] T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee, H. J. Snaith, “Overcoming ultraviolet light instability of sensitized TiO2 with meso-superstructured organometal tri-halide perovskite solar cells”, Nat. Commun. 4, 2885 (2013).
    [115] W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, H. J. Snaith, “Enhancement of perovskite-based solar cells employing core-shell metal nanoparticles”, Nano Lett. 13, 4505-4510 (2013).
    [116] D. Bi, G. Boschloo, S. Schwarzmüller, L. Yang, E. M. J. Johansson, A. Hagfeldt, “Efficient and stable CH3NH3PbI3-sensitized ZnO nanorod array solid-state solar cells”, Nanoscale 5, 11686-11691 (2013).
    [117] D. -Y. Son, J. -H. Im, H. -S. Kim, N. -G. Park, “11% efficient perovskite solar cell based on ZnO nanorods: an effective charge collection system”, J. Phys. Chem. C 118, 16567-16573 (2014).
    [118] Q. Jiang, L. Zhang, H.Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang, J. You “Enhanced electron extraction using SnO2 for high-efficiency planar-structure HC(NH2)2PbI3-based perovskite solar cells”, Nat. Energy 2, 16177 (2017).
    [119] L. E. Polander, P. Pahner, M. Schwarze, M. Saalfrank, C. Koerner, K. Leo, “Hole-transport material variation in fully vacuum deposited perovskite solar cells”, APL Mater. 2, 081503 (2014).
    [120]J. -Y. Jeng, K. -C. Chen, T. -Y. Chiang, P. -Y. Lin, T. -D. Tsai, Y. -C. Chang, T. -F. Guo, P. Chen, T. -C. Wen, Y. -J Hsu, “Nickel oxide electrode interlayer in CH3NH3PbI3 perovskite/PCBM planar-heterojunction hybrid solar cells”, Adv. Mater. 26, 4107-4113 (2014).
    [121] A. Garcia, G. C. Welch, E. L. Ratcliff, D. S. Ginley, G. C. Bazan, D. C. Olson, “Improvement of interfacial contacts for new small-molecule bulk-heterojunction organic photovoltaics”, Adv. Mater. 24, 5368-5373 (2012).
    [122] Q. Lin, A. Armin, R. C. R. Nagiri, P. L. Burn, P. Meredith, “Electro-optics of perovskite solar cells”, Nat. Photonics 9, 106-112 (2015).
    [123] D. Zhao, M. Sexton, H. -Y. Park, G. Baure, J. C. Nino, F. So, “High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer”, Adv. Energy Mater. 5, 1401855-1401859 (2015).
    [124] W. Zhang, M. Saliba, D. T. Moore, S. K. Pathak, M. T. Horantner, T. Stergiopoulos, S. D. Stranks, G. E. Eperon, J. A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R. H. Friend, L. A. Estroff, U. Wiesner, H. J. Snaith, “Ultrasmooth organic-inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells”, Nat. Commun. 6, 6142 (2015).
    [125] P. Docampo, J. M. Ball, M. Darwich, G. E. Eperon, H. J. Snaith, “Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates”, Nat. Commun. 4, 2761 (2013).
    [126] J. -H. Kim, P. -W. Liang, S. T. Williams, N. Cho, C. -C. Chueh, M. S. Glaz, D. S. Ginger, A. K.-Y. Jen, “High-performance and environmentally stable planar heterojunction perovskite solar cells based on a solution-processed copper-doped nickel oxide hole-transporting layer”, Adv. Mater. 27, 695-701 (2015).
    [127] W. Chen, Y. Wu, Y. Yue, J. Liu, W. Zhang, X. Yang, H. Chen, E. Bi, I. Ashraful, M. Grätzel, L. Han, “Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers”, Science 350, 944-948 (2015).
    [128] K. -C. Wang, J. -Y. Jeng, P. -S. Shen, Y. -C. Chang, E. W. -G. Diau, C. -H. Tsai, T. -Y. Chao, H .-C. Hsu, P. -Y. Lin, P. Chen, T. -F. Guo, T. -C.Wen, “P-type mesoscopic nickel oxide/organometallic perovskite heterojunction solar cells”, Sci. Rep. 4, 4756 (2014).
    [129] K. -C. Wang, P. -S. Shen, M. -C. Li, S. Chen, M. -W. Lin, P. Chen, T. -F. Guo, “Low-temperature sputtered nickel oxide compact thin film as effective electron blocking layer for mesoscopic NiO/CH3NH3PbI3 perovskite heterojunction solar cells”, ACS Appl. Mater. Interfaces 6, 11851-11858 (2014).
    [130] W. Chen, Y. Wu, J. Liu, C. Qin, X. Yang, A. Islam, Y. -B. Cheng, L. Han, “Hybrid interfacial layer leads to solid performance improvement of inverted perovskite solar cells”, Energy Environ. Sci. 8, 629-640 (2015).
    [131] P. -W. Liang, C. -C. Chueh, S. T. Williams, A. K. -Y. Jen, “Roles of Fullerene-based interlayers in enhancing the performance of organometal perovskite thin-film solar cells”, Adv. Energy Mater. 5, 1402321 (2015).
    [132]J. You, L. Meng, T. -B. Song, T. -F. Guo, Y. (Michael) Yang, W. -H. Chang, Z. Hong, H. Chen, H. Zhou, Qi Chen, Y. Liu, N. D. Marco, Y. Yang, “Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers”, Nature Nanotech. 11, 75-81 (2016).
    [133] H. Kim, K. -G. Lim, T. -W. Lee, “Planar heterojunction organometal halide perovskite solar cells: roles of interfacial layers”, Energy Environ. Sci. 9, 12-30 (2016).
    [134] A .Abrusci, S. D. Stranks, P. Docampo, H. -L. Yip, A. K. Y. Jen, H. J. Snaith, “Hgh-performance perovskite-polymer hybrid solar cells via electronic coupling with fullerene monolayers” Nano Lett. 13, 3124-3128 (2013).
    [135] H. L. Yip, A. K. Y. Jen, “Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells”, Energy Environ. Sci. 5, 5994-66011 (2012).
    [136] H. Zhang, H. Azimi, Y. Hou, T. Ameri, T. Przybilla, E. Spiecker, M. Kraft, U. Scherf and C. J. Brabec, “Improved high-efficiency perovskite planar heterojunction solar cells via incorporation of a polyelectrolyte interlayer”, Chem. Mater. 26, 5190-5193 (2014).
    [137] C. J. Brabec, S. E. Shaheen, C. Winder, N. S. Sariciftci, P. Denk, “Effect of LiF/metal electrodes on the performance of plastic solar cells”, Appl. Phys. Lett. 80, 1288 (2002).
    [138] J. Seo, S. Park, Y. C. Kim, N. J. Jeon, J. H. Noh, S. C. Yoon, S. I. Seok, “Benefits of very thin PCBM and LiF layers for solution-processed p-i-n perovskite solar cells”, Energy Environ. Sci. 7, 2642-2646 (2014).
    [139] C. Li, S. Tscheuschner, F. Paulus, P. E. Hopkinson, J. Kiessling, A. Kohler, Y. Vaynzof, S. Huettner, “Iodine migration and its effect on hysteresis in perovskite solar cells”, Adv. Mater. 28, 2446-2454 (2016).
    [140] M. De Bastiani, G. Dell'Erba, M. Gandini, V. D'Innocenzo, S. Neutzner, A. R. S. Kandada, G. Grancini, M. Binda, M. Prato, J. M. Ball, M. Caironi, A. Petrozza, “Ion migration and the role of preconditioning cycles in the stabilization of the J-V characteristics of inverted hybrid perovskite solar cells”, Adv. Energy Mater. 6, 1501453 (2016).
    [141] Q. Wang, Y. Shao, Q. Dong, Z. Xiao, Y. Yuan, J. Huang, “Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process”, Energy Environ. Sci. 7, 2359-2365 (2014).
    [142] Y. Shao, Z. Xiao, C. Bi, Y. Yuan, J. Huang, “Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells”, Nat. Commun. 5, 5784 (2014).
    [143] S. Gasiorowicz, “Quantum physics”, 3rd edition, Wiley-VCH ISBN 0-471-42945-7 (2003).
    [144] D. J. Griffiths, “Introduction to Quantum Mechanics, 2nd edition”, Prentice Hall, ISBN 0-13-111892-7 (2005).
    [145] R. Eisberg, and R. Resnick, “Quantum physics of atoms, molecules, solids, nuclei, and particles”, 2nd edition, Wiley-VCH ISBN 0-471-87373 (1985)
    [146] M. Pope, and C. E. Swenberg, “Electronic processes in organic crystals”, 2nd edition, Oxford university press, ISBN 978-0-19-512963-2 (1999).
    [147] A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett, and S. Navaratnam, “Triplet energies of π-conjugated polymers”, Phys. Rev. Lett. 86, 1358 (2001).
    [148] A. Kadashchuk, A. Vakhnin, I. Blonski, D. Beljonne, Z. Shuai, J. L. Brédas, V. I. Arkhipov, P. Heremans, E. V. Emelianova, and H. Bässler, “Singlet-triplet splitting of geminate electron-hole pairs in conjugated polymers”, Phys. Rev. Lett. 93, 066803 (2004).
    [149] B. Hu, L. Yan, and M. Shao, “Magnetic-field effects in organic semiconducting materials and devices”, Adv. Mater. 21, 1500-1516 (2009).
    [150] Z. Xu, Y. Wu, B. Hu, “Dissociation processes of singlet and triplet excitons in organic photovoltaic cells”, Appl. Phys. Lett. 89, 131116 (2006).
    [151] P. W. Atkins, “Kurzlehrbuch physikalische Chemie”, Wiley-VCH., ISBN 978-3527304332 (2001).
    [152] V. Shrotriya, G. Li, Y. Yao, T. Moriarty, K. Emery, Y. Yang”,Accurate measurement and characterization of organic solar cells”, Adv. Funct. Mater. 16, 2016-2023 (2006).
    [153] A. Moliton, J. -M. Nunzi, “How to model the behavior of organic photovoltaic cells”, Polym. Int. 55, 583-600 (2006).
    [154] H. Ishihara, W. Chen, Y. -C. Chen, S. Sarang, N. D. Marco, O. Lin, S. Ghosh, V. C. Tung, “Electrohydrodynamically assisted deposition of efficient perovskite photovoltaics”, Adv. Mater. Interfaces 3, 1500762 (2016).
    [155] Y. Guo, K. Shoyama, W. Sato, E. Nakamura, “Polymer stabilization of lead(II) perovskite cubic nanocrystals for semitransparent solar cells”, Adv. Energy Mater. 6, 1502317 (2016).
    [156] R. A. Wibowo, W. H. Jung, M. H. Al-Faruqi, I. Amal, K. H. Kim, “Crystallization of Cu2ZnSnSe4 compound by solid state reaction using elemental powders”, Mater. Chem. Phys. 124, 1006-1010 (2010).
    [157]W. K. Kim, S. Kim, E. A. Payzant, S. A. Speakman, S. Yoon, R. M. Kaczynski, R. D. Acher, T. J. Anderson, O. D. Crisalle, S. S. Li, V. Craciun, “Reaction kinetics of α-CuInSe2 formation from an In2Se3/CuSe bilayer precursor film”, J. Phys. Chem. Solids 66, 1915-1919 (2005).
    [158] K. -C. Hsu, Y. -S. Fu, P. -Y. Lin, I. -T. Tang, J. -D. Liao, “Fabrication and characterization of CuInSe2 thin film applicable for a solar energy light absorption material via a low temperature solid state reaction”, Int. J. Photoenergy 2013, 156964-156970 (2013).
    [159] D. Son, S. M. Hughes, Y. D. Yin, A. P. Alivisatos, Cation exchange reactions in ionic nanocrystals, Science 306, 1009-1012 (2004).
    [160] B. Dudout, J. C. M. Marijnissen, B. Scarlett, “Use of EHDA for the production of nanoparticles”, J. Aerosol Sci. 30, 687-688 (1999).
    [161] I. W. Lenggoro, K. Okuyama, “Preparation of nanometer-sized zinc sulfide particles by electrospray pyrolysis”, J. Aerosol Sci. 28, 351-352 (1997).
    [162] S. Basak, D. R. Chen, P. Biswas, “Electrospray of ionic precursor solutions to synthesize iron oxide nanoparticles: Modified scaling law”, Chem. Eng. Sci. 62, 1263-1268 (2007).
    [163] K. Balasubramanian, S. N. Jayasinghe, M. J. Edirisinghe, “Coaxial electrohydrodynamic atomization of ceramic suspensions”, Int. J. Appl. Ceram. Technol. 3, 55-60 (2006).
    [164] S. N. Jayasinghe, M. J. Edirisinghe, D. Z. Wang, “Controlled deposition of nanoparticle clusters by electrohydrodynamic atomization”, Nanotechnology 15, 1519-1523 (2004).
    [165] Q. Z. Chen, A. R. Boccaccini, H. B. Zhang, D. Z. Wang, M. J. Edirisinghe, “Improved mechanical reliability of bone tissue engineering (zirconia) scaffolds by electrospraying”, J. Am. Ceram. Soc. 89, 1534-1539 (2006).
    [166] L. Rayleigh, “On the equilibrium of liquid conducting masses charged with electricity”, Phil. Mag. 14, 184-186 (1882).
    [167] L. Wannatong, A. Sirivat, P. Supaphol, “Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene”, Polym. Int. 53, 1851-1859 (2004).
    [168] S. R. Raga, M. -C. Jung, M. V. Lee, M. R. Leyden, Y. Kato, Y. Qi, “Influence of air annealing on high efficiency planar structure perovskite solar cells”, Chem. Mater. 27, 1597-1603 (2015).
    [169] B. Wang, K. Y. Wong, X. Xiao, T. Chen, “Elucidating the reaction pathways in the synthesis of organolead trihalide perovskite for high-performance solar cells”, Sci. Rep. 5, 10557 (2015).
    [170] I. Persson, K. Lyczko, D. Lundberg, L. Eriksson A., Płaczek, “Coordination chemistry study of hydrated and solvated lead (II) ions in solution and solid state”, Inorg. Chem. 50, 1058-1072 (2011).
    [171] N. Yantara, F. Yanan, C. Shi, H. A. Dewi, P. P. Boix, S. G. Mhaisalkar, N. Mathews, “Unravelling the effects of Cl addition in single step CH3NH3PbI3 Perovskite Solar Cells”, Chem. Mater. 27, 2309-2314 (2015).
    [172] T. -B. Song, Q. Chen, H. Zhou, C. Jiang, H. -H. Wang, Y. M. Yang, Y. Liu, J. You, Y. Yang, “Perovskite solar cells: Film formation and properties”, J. Mater. Chem. A 3, 9032-9050 (2015).
    [173] A. Polman, M. Knight, E. C. Garnett, B. Ehrler, W. C. Sinke, “Photovoltaic materials: Present efficiencies and future challenges”, Science 352, 4424 (2016).
    [174] K. T. Cho, S. Paek, G. Grancini, C. Roldán-Carmona, P. Gao, Y. Lee, M. K. Nazeeruddin, “Highly efficient perovskite solar cells with a compositionally engineered perovskite/hole transporting material interface”, Energy Environ. Sci. 10, 621-627 (2017).
    [175] N. D. Marco, H. Zhou, Q. Chen, P. Sun, Z. Liu, L. Meng, E. -P. Yao, Y. Liu, A. Schiffer, Y. Yang, “Guanidinium: A route to enhanced carrier lifetime and open-circuit voltage in hybrid perovskite solar cells”, Nano Lett. 16, 1009-1016 (2016).
    [176] M. J. Simpson, B. Doughty, B. Yang, K. Xiao, Y. -Z. Ma, “Imaging electronic trap states inperovskite thin films with combined fluorescence and femtosecond transient absorption microscopy”, J. Phys. Chem. Lett. 7, 1725-1731 (2016).
    [177]H. Zhou, Q. Chen, G. Li, S. Luo, T. -B. Song, H. -S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, “Interface engineering of highly efficient perovskite solar cells”, Science 345, 542-546 (2014).
    [178] T. -Y. Chiang, G. -L. Fan, J. -Y. Jeng, K. -C. Chen, P. Chen, T. -C. Wen, T. -F. Guo, K. -T. Wong, “Functional p‑type, polymerized organic electrode interlayer in CH3NH3PbI3 perovskite/fullerene planar heterojunction hybrid solar cells.” ACS Appl. Mater. Interfaces 7, 24973-24981 (2015).
    [179] C. Liu, Z. Su, W. Li, F. Jin, B. Chu, J. Wang, H. Zhao, C. S. Lee, J. Tang, B. Kang, “Improved performance of perovskite solar cells with a TiO2/MoO3 core/shell nanoparticles doped PEDOT:PSS hole-transporter”, Org. Electron. : Phys. Mater. Appl. 33, 221-226 (2016).
    [180] G. Divitini, S. Cacovich, F. Matteocci, L. Cinà, A. Di Carlo, C. Ducati, “In situ observation of heat-induced degradation of perovskite solar cells”, Nat. Energy 1, 15012 (2016).
    [181] C. -H. Chiang, C. -G. Wu, “Bulk heterojunction perovskite-PCBM solar cells with high fill factor”, Nat. Photonics 10, 196-200 (2016).
    [182] Z. Zhu, Q. Xue, H. He, K. Jiang, Z. Hu, Y. Bai, T. Zhang, S. Xiao, K. Gundogdu, B. R. Gautam, H. Ade, F. Huang, K. S. Wong, H. -L. Yip, S. Yang, H. Yan, “A PCBM electron transport layer containing small amounts of dual polymer additives that enables enhanced perovskite solar cell performance”, Adv. Sci. 3, 1500353 (2016).
    [183] K. V. Rao, A. Smakula, “Dielectric properties of cobalt oxide, nickel oxide, and their mixed crystals”, J. Appl. Phys. 36, 2031-2038 (1965).
    [184] S. A. Mahmoud, A. Shereen, M. A. Tarawnh, “Structural and optical dispersion characterisation of sprayed nickel oxide thin films”, J. Mod. Phys. 2, 1178-1186 (2011).
    [185] C. -W. Chen, S. -Y. Hsiao, C. -Y. Chen, H. -W. Kang, Z. -Y. Huang, H. -W. Lin, “Optical properties of organometal halide perovskite thin films and general device structure design rules for perovskite single and tandem solar cells”, J. Mater. Chem. A 3, 9152-9159 (2015).
    [186] T. Wu, Y. -C. Hsiao, M. Li, N. -G. Kang, J. W. Mays, B. Hu, “Dynamic coupling between electrode interface and donor/acceptor interface via charge dissociation in organic solar cells at device-operating condition”, J. Phys. Chem. C 119, 2727-2732 (2015).
    [187]Q. Zhang, B. Kan, F. Liu, G. Long, X. Wan, X. Chen, Y. Zuo, W. Ni, H. Zhang, M. Li, Z. Hu, F. Huang , Y. Cao, Z. Liang, M. Zhang, T. P. Russell, Y. Chen, “Small-molecule solar cells with efficiency over 9 %”, Nat. Photonics 9, 35-41 (2015).
    [188] Z. He, B. Xiao, F. Liu, H. Wu, Y. Yang, S. Xiao, C. Wang, T. P. Russell, Y. Cao, “Single-junction polymer solar cells with high efficiency and photovoltage”, Nat. photonics 9, 174-179 (2015).
    [189] M. Ahmadi, Y. -C. Hsiao, T. Wu, Q. Liu, Q. Wei, B. Hu, “Effect of photogenerated dipoles in the hole transport layer on photovoltaic performance of organic-inorganic perovskite solar cells”, Adv. Energy Mater. 7, 1601575 (2016).
    [190] Y. Shao, Y. Yuan, J. Huang, “Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells”, Nat. Energy 1, 15001 (2016).
    [191] N. K. Elumalai, A. Uddin, “Open circuit voltage of organic solar cells: an in-depth review”, Energy Environ. Sci. 9, 391-410 (2016).
    [192] Y. -C. Hsiao, H Zang, I Ivanov, T Xu, L Lu, L. Yu, B. Hu, “Dielectric interface effects on surface charge accumulation and collection towards high-efficiency organic solar cells”, J. Appl. Phys. 115, 154506 (2014).
    [193] G. Perrier, R. de Bettignies, S. Berson, N. Lemaître, S. Guillerez, “Impedance spectrometry of optimized standard and inverted P3HT-PCBM organic solar cells”, Sol. Energ. Mat. Sol. Cells 101, 210-216 (2012).
    [194] F. Fabregat-Santiago, G. Garcia-Belmonte, J. Bisquert, P. Bogdanoff, A. Zaban, “Mott-Schottky Analysis of nanoporous semiconductor electrodes in dielectric state deposited on SnO2 conducting substrates”, J. Electrochem. Soc. 150, 293 (2003).
    [195]Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y .-S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater. 28, 8687-8694 (2016).
    [196] A. Marchioro, J. Teuscher, D. Friedrich, M. Kunst, R. van de Krol, T. Moehl, M. Grätzel, J. -E. Moser, “Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells”, Nat. Photonics 8, 250-255 (2014).
    [197] W. Tress, N. Marinova, O. Inganäs, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Grätzel, “Predicting the open-circuit voltage of CH3NH3PbI3 perovskite solar cells using electroluminescence and photovoltaic quantum efficiency spectra: the role of radiative and non-radiative recombination”, Adv. Energy Mater. 5, 1400812 (2015).
    [198] J. Yao, T. Kirchartz, M. S.Vezie, M. A. Faist, W. Gong, Z. He, H. Wu, J. Troughton, T. Watson, D. Bryant, J. Nelson “Quantifying losses in open-circuit voltage in solution-processable solar cells”, Phys. Rev. Applied 4, 014020 (2015).
    [199] W. Tress, “Maximum efficiency and open-circuit voltage of perovskite solar cells”, Springer International Publishing: Cham., 53-77 (2016).
    [200] T. Leijtens, G. E. Eperon, A. J. Barker, G. Grancini, W. Zhang, J. M. Ball, A. R. S. Kandada, H. J. Snaith, A. Petrozza, “Carrier trapping and recombination: the role of defect physics in enhancing the open circuit voltage of metal halide perovskite solar cells”, Energy Environ. Sci. 9, 3472-3481 (2016).
    [201]A. H. Wetzelaer, M. Scheepers, A. M. Sempere, C. Momblona, J. Ávila, H. J. Bolink, “Trap-assisted non-radiative recombination in organic-inorganic perovskite solar cells”, Adv. Mater. 27, 1837-1841 (2015).
    [202] J. -C. Blancon, W. Nie, A. J. Neukirch, G. Gupta, S. Tretiak, L. Cognet, L. Cognet, A. D. Mohite, J. J. Crochet, “The effects of electronic impurities and electron-hole recombination dynamics on large-grain organic-inorganic perovskite photovoltaic efficiencies”, Adv. Funct. Mater. 26, 4283-4292 (2016).
    [203] K. Tvingstedt, O. Malinkiewicz, A. Baumann, C. Deibel, H. J. Snaith, V. Dyakonov, H. J. Bolink, “Radiative efficiency of lead iodide based perovskite solar cells”, Sci. Rep. 4, 6071 (2014).
    [204]P. Löper, M. Stuckelberger, B. Niesen, J. Werner, M. Filipič, S. -J. Moon, J. -H. Yum, M. Topič, S. De Wolf, C. Ballif, “Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry”, J. Phys. Chem. Lett. 6, 66-71 (2015).
    [205] V. D’Innocenzo, G. Grancini, M. J. Alcocer, A. R. Kandada, S. D. Stranks, M. M. Lee, G. Lanzani, H. J. Snaith, A. Petrozza, “Excitons versus free charges in organo-lead tri-halide perovskites”, Nat. Commun. 5, 3586 (2014).
    [206] B. Almería, W. Deng, T. M. Fahmy, A. Gomez, “Controlling the morphology of electrospray-generated PLGA microparticlesfor drug delivery”, J. Colloid Interface Sci. 343, 125-133 (2010).
    [207] W. -S. Huang, Z. -R. Xu, K. -C. Chen, T. -F. Guo, J. C. A. Huang, T. -C. Wen, “Modulations in line shapes of magnetoconductance curves for diodes of pentacene:fullerene charge transfer complexes”, Org. Electron. 15, 3076-3081 (2014).

    無法下載圖示 校內:2022-08-03公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE