| 研究生: |
陳婉玲 Chen, Wan-Ling |
|---|---|
| 論文名稱: |
Magnolol於離體海馬迴培養缺血時的神經保護劑量及治療期效之研究 Neuroprotective dose-response and threapeutic window of Magnolol in an in vitro ischemic of organotypic model hippocampal slices |
| 指導教授: |
張冠諒
Chang, Quan-Liang 李宜堅 Lee, E-Jian |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 醫學工程研究所 Institute of Biomedical Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 神經細胞 、海馬迴組織培養 、局部缺血 、缺氧-葡萄糖實驗 |
| 外文關鍵詞: | Magnolol, Neuron cell, Hippocampal slice cultures, Ischemia, OGD(oxygen-glucose deprivation) |
| 相關次數: | 點閱:86 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醫學臨床中,全世界每年因死於心血管疾病、蜘蛛膜下腔出血、頭部創傷、或休克引起的腦部缺血及大腦損傷的病患有數百萬人。這些病人也因缺乏有效率的即時治療,所以腦神經病引起的病狀和死亡情形是常見的結果。因為在當細胞處於一個缺氧-缺血的狀況下,神經細胞的死亡過程相關因素包括有:較差的細胞代謝過程、細胞毒性、細胞內鈣離子濃度平衡和氧化的壓力......等。而最終將導致細胞的壞死和/或細胞程式死亡的情形發生。
本研究中選用的實驗藥物--Magnolol, 是由中藥材「厚朴」裡萃取出的Mognolia 化合物。為一種脂溶性化合物。早在數千年前,已被中國人民拿來當藥草使用,用於治療胃部疾病,心血管及過敏疾病,或輕微氣喘等病症。根據中藥的調查報告中指出, Magnolol含有強烈的抗氧化及清除自由基之功能。並可以減少過氧化反應的損害,保護神經細胞對抗鉀氰化物引起的化學缺氧死亡。也間接指出Magnolol能保護神經元在缺氧-缺血後造成的細胞程式死亡。
研究中利用海馬迴切片組織這種介於體內及離體間的實驗,模擬因局部缺血而造成的腦部疾病實驗。並利用缺氧及葡萄糖的實驗模式,模擬體內中組織局部缺血的狀況。實驗中的海馬迴神經細胞損傷,都是利用短時間缺氧及葡萄糖的實驗造成的損傷,其可以模擬出在體內中,暫時性的缺血而造成的神經細胞損傷。
研究結果顯示,Magnolol藥物在適當的100μM濃度下,對於離體海馬迴組織的神經細胞,處於一個不同於化學毒性傷害的缺氧及缺葡萄糖環境下,擁有一定程度的神經細胞保護效果。並且,在神經細胞暴露於缺氧及缺葡萄糖環境後四小時內,Magnolol藥物亦有神經保護及修護的效果。
In the medical clinical, millions die annually from hypoxic- ischemic brain damage due to cerebrovascular disease, subarachnoid hemorrhage, head trauma, shock, and postischemic injury following resuscitation. Neurologic morbidity and mortality are the common consequences because of the lack of efficient therapeutic alternatives. Neuronal death in hypoxia/ischemia injury is a complex event involving failure of metabolic processes, excitotoxicity, loss of calcium homeostasis and oxidative stress, among other factors. They eventually lead to necrotic and/or apoptotic cell death.
Magnolol, an active component extracted from Mognolia officinalis. Meanwhile, M officinalis, as known in Chinese folk medicine as houpo, has long been utilized for treating stomach disorders, cardiovascular and allergic diseases such as thrombosis, bronchial asthma. On the basis of those reported investigations and traditional effect of the herb, it was strongly conceivable that magnolol can be a suitable compound for the development of free radical scavengers (antioxidant).
Among the in vitro systems used to study ischemia-induced injuries, organotypic hippocampal slice cultures, combined with oxygen-glucose deprivation (OGD), offer great advantages in that they mimic closely the situation in vivo. In hippocampal slice cultures, a brief ischemic insult by depriving the cultures of oxygen and glucose can cause a delayed cell death specific to the neuron. Thus, organotypic hippocampal slice cultures combined with OGD could provide a surrogate system for investigation of neuronal cell loss following ischemic injury to the brain.
The results of our study obviously shows that 100μM Magnolol can protect hippocampal neuron cell from dying that suffer from OGD damage. Furthermore, after OGD 4 hours, Magnolol has the ability of repairing neuron cell injury. Unfortunately, OGD 6 hours later, Magnolol could not protect or recover neuron cell damage. Therefore, Magnolol can protect and repair hippocampal neuron cell damage caused by OGD in appropriate concentration and timing.
1. 吳進安. 基礎神經學. 國立編譯館. 1996
2. 蔡宜殷. 以Melotonin治療暫時性局部腦缺血白鼠有助其電生理及神經行為之改善. 國立成功大學醫學工程研究所碩士論文. 2003
3. Newman MF, Grocott HP, Mathew JP, et al. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery. Stroke. 2001;32:2874-2881
4. Raghupathi R, Graham DI, McIntosh TK. Apoptosis after traumatic brain injury. J neurotrauma. 2000;17:927-938
5. Martin LJ, Sieber FE, Traystman RJ. Apoptosis and necrosis occur in separate neuronal populations in hippocampus and cerebellum, after ischemic and are associated with differential alterations in metabotropic glutamate receptor signaling [pathways. J Cereb Blood Flow Metab. 2000;20:153-167
6. Fiskum G. Mechanisms of neuronal death and neuroprotection. J Neurosurg Anesthesiol 2004;16:108-110
7. Dajas F, Rivera-Megret F, Blasina F, Arredondo F, Abin-Carriquiry JA, Costa G, Echeverry C, Lafon L, Heizen H, Ferreira M, Morquio A. Neuroprotection by flavonoids. Braz J Med Bio Res 2003;36:1613-1620
8. Alexi T, Borlongan c, Faull C, Williams C, Clark R, Gluckman P, Hughes P. Neuroprotective strategies for basal ganglia degeneration: Parikinson’s and Huntington’s diseases. Progress in Neurobioloty 2000;60:409-470
9. Nicholls D, Attwell D. The release and uptake of excitatory amino acids. Trends in Pharmacological sciences. 1990;11:462-468
10. Nicotera P, Lipton S. Excitotoxins in neuronal apoptosis and necrosis. J Cerebral Blood flow and metabolism. 1999, 19:583-591
11. Picq M, Dubios M, Munri-Silem Y, Prugent AF, Pacheco H. Flavonoid modulation of protein kinase C activation. Life Sciences. 1989;44:1563-1571
12. Dugan LL, Choi DW. Hypoxic-ischemic brain injury and oxidative stress. In: Siegel Gj, Agranoff BW, Albers RW, Fischer SK, Uhler MD, eds. Basic Neurochemistry. Lippinocott-Raven Pulishers, Philadelphia, New York
13. Maher P, Schubert D. Signaling by reactive oxygen species in the nervous system. CMLS cellular and molecular life sciences. 2000;57:1287-1305
14. http://life.nthu.edu.tw/~g864264/Neuroscience/neuron/cell.htm
15. 小泰生物週刊vol.32 2002.06.22
16. http://users.rcn.com/jkimball.ma.ultranet/BiologyPages/A/Apoptosis.html
17. http://www.cellsalive.com/apop.htm
18. Arai K, Nishiyama N, Matsuki N, Ikegaya Y. Neuroprotective effects of lipoxygenase inhibitors against ischemic injury in rat hippocampal slice cultures. Brain Research 2001;904:167-172
19. Michael JO, Caroline AH, Mark AW, et al. LY393615, a novel neuronal Ca2+ and Na+ channel blocker with neuroprotective effects in models of in vitro and in vivo cerebral ischemia. Brain Research 2001;888:138-149
20. Oguro K, Miyawaki T, Yokota H, et al. Upregulation of GluR2 decreases intracellular Ca2+ following ischemia in developing gerbils. Neuroscience Letter 2004
21. Laura MD, Crystal LM, Dale RC, Frederick C. Post-ischemia diazepam does not reduce hippocampal CA1 injury and does not improve hypothermic neuroprotection after forebrain ischemia in gerbils. Brain Research 2004;1013:223-229
22. Johnson EM, Greenlund LJS, Akins PT, Hsu CY. Neuronal apoptosis: Current understanding of molecular mechanisms and potential role in ischemia brain injury. J. Neurotrama 1995;12:843-852
23. http://www.psycheducation.org/emotion/hippocampus.htm
24. Lee MM, Hseih MT, Kuo JS, Yeh FT, Huang HM. Magnolol protects cortical neuronal cells from chemical hypoxia in rats. Neuroreport 1998;9:3451-3456
25. Chen JH, Wu CC, George H, Yen MH. Magnolol induces apoptosis vascular smooth muscle. Naunyn-Schmiedberg’s Arch Pharmacology 2003;368:127-133
26. Hong CY, Huang SS, Tsai SK. Clin Exp Pharmacol Physiol 1996;23:660-
27. Wang JP, Raung SL, Chen CC, Kuo JS, Teng CM. Naunyn-Schmiedebergs Arch Pharm 1993;348:663
28. Wang JP, Hsu MF, Chen CC, Kuo JS, Teng CM. Naunyn-Schmiedebergs Arch Pharm 1992;346:707
29. Wang JP, Ho TF, Chang LC, Chen CC. Anti-inflammatory effect of magnolol, isolated from Magnolia officinalis, on A23187-induced pleurisy in mice. J Pharm Pharmacol 1995;47:857-860
30. Chiu JH, Wang JC, Lui WY, Wu CW, Hong CY. Effect of magnolol on in vitro mitochondrial lipid peroxidation and isolated cold-preserved warm-reperfused rat livers. J Surg Res 1999;82:11-16
31. Chen YL, Lin KF, Shiao MS, Chen YT, Hong CY, Lin SJ. Magnolol, a potent antioxidant from Magnolia officinalis, attenuates intimal thickening and MCP-1 expression after balloon injury of the aorta in cholesterol-fed rabbit. Basic Res Cardiol 2001;96:353-363
32. Chen YH, Lin SJ, Chen JW, Ku HH, Chen YL. Magnolol attenuates VCAM-1 expression in vitro in TNF--treated human aortic endothelial cells and in vivo in the aorta of cholesterol-fed rabbits. Br J Pharmacol 2002;135:37-47
33. Kong CW, Tsai K, Chin JH, Chan WL, Hong CY. Shock 2000;13:24-
34. Wang JP, Ho TF, Chang LC et al. J Pharm Pharmacol 1995;47:857-860
35. Pringle AK, Iannotti F, Wilde GJC, et al. Neuroprotection by both NMDA and non-NMDA receptor antagonists in in vitro ischemia. Brain Research 1997;755:36-46
36. Michael F, Denise F, Danni L, et al. Functional validation of adult hippocampal organotypic cultures as an in vitro model of brain injury. Brain Research 2004;1001:125-132
37. Anna R, Tobias C, Fredrik A, Sailasree N, Tadeusz W. Mouse Hippocampal Organotypic Tissue Cultures Exposed to In Vitro “Ischemia ”Show Selective and Delayed CA1 Damage That Is Aggravated by Glucose. J Cerebral Blood Flow & Metabolism 2003;23;(1):23-33
38. Brana C, Benham C, Sundstrom L. A method for characterizing cell death in vitro by combining propidium iodide staining with immunohistochemistry. Brain Research Protocols 2002;10:109-114
39. McManus T, Sadgrove M, Pringle AK, et al. Intraischaemic hypothermia reduces free radical production and protects against ischaemic insults in cultured hippocampal. J Neurochemistry 2004;91:327-336
40. Bickler PE, Fahlman CS. Moderate increases in intracellular calcium activate neuroprotection signals in hippocampal neurons. Neuroscience 2004;127:673-683
41. Miyawaki T, Yokota H, Oguro K, et al. Ischemic preconditioning decreases intracellular zinc accumulation induced by oxygen-glucose deprivation in gerbil hippocampal CA1 neurons. Neuroscience Letters 2004;362:216-219
42. Sullivan BL, Leu D, Taylor D, et al. Isoflurane Prevents Delayed Cell Death in an Organotypic Slice Culture Model of Cerebral Ischemia. Anesthesiology 2002;96:189-95
43. Lawrence EJ, Dentcheva E, Curtis KM, et al. Neuroprotection with delayed initiation of prolonged hypothermia after in vitro transient global ischemia. Resuscitation 2005;64:383-388
44. Stoppini L, Parisi L, Oropesa C, Muller D. Sprouting and functional recovery in co-cultures between old and young hippocampal organotypic slices. Neurosience 1997;80:1127-1136
45. Strasser U, Fischer G. Quantitative measurement of neuronal degeneration in organotypic hippocampal cultures after combined oxygen/glucose deprivation. J Neurosci. Methods 1995;57:177-186
46. Laake JH, Haug FM, Wieloch T, Ottersen OP. A simple in vitro model of ischemic based on hippocampal slice cultures and propidium iodide fluorescence. Brain Res Protocols. 1999;4:173-184
47. Cho S, Liu D, Fairman D, Li P, Jenkins L, McGonigle P, Wood A. Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures. Neurochemistry International 2004;45:117-127
48. Stoppini L, Buchs PA, Muller D. A simple method for organotypic cultures of nervous tissue. J Neruosci Methods 1991;37:173-182
49. Strasser N, Fischer G. Protection from neuronal damage induced by combined oxygen and glucose deprivation in organotypic hippocampal cultures by glutamate receptor antagonists. Brain Res. 1995;687:167-174
50. Michelle EP, Irwin L. Effects of Acute and Chronic Reboxetine Treatment on Stress-induced Monoamine Efflux in the Rat Frontal Cortex. Neuropsycho--pharmacology. 2002;27;(2):237-247
51. Chen SF, Huang CC,Wu HM, et al. Seizure, Neuron Loss, and Mossy Fiber Sprouting in Herpes Simplex Virus Type 1-Infected Organotypic Hippocampal Cultures. Epilepsia. 2004;45;(4):322-332
52. http://olddoc.tmu.edu.tw/chiaungo/h-check/h-chk-LDH.htm
53. http://www.accuspeedy.com.tw