| 研究生: |
劉建宏 Liu, Chien-Hung |
|---|---|
| 論文名稱: |
Ku/Ka頻帶寬頻次諧波混頻器之研製 Implementation of Broadband Sub-harmonic Mixers for Ku/Ka-band Applications |
| 指導教授: |
王永和
Wang, Yeong-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 單石微波晶片 、次諧波混頻器 、半循環器 、倍頻器 、鏡頻抑制 |
| 外文關鍵詞: | MMIC, Sub-harmonic mixers, Quasi-circulator, Frequency doublers, Image rejection |
| 相關次數: | 點閱:165 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要在研製射頻微波電路中,二次諧波混頻器與次諧波鏡頻抑制混頻器單石晶片。前兩章簡單介紹此篇論文的研究背景與基礎理論,第三章包含了三個改良式的次諧波混頻器,首先提出〈高隔離度寬頻次諧波升頻混頻器〉,是利用半循環器的各埠隔離特性,用以提高隔離度,量測的轉換損耗為16.1-19.3 dB,各埠的隔離度皆大於21.6 dB。〈23-40 GHz隔離度提升寬頻二次諧波混頻器〉,則是利用兩組藍吉耦合器與兩組放大器,有效提升次諧波混頻器的各埠隔離度與轉換増益,量測的轉換増益為6-12.5 dB,各埠的隔離度皆大於19 dB以上。最後提出的是〈7.5-20.5 GHz離散式寬頻二次諧波混頻器〉,主要利用離散式架構來解決主動混頻器頻寬不足的問題,量測的轉換損耗為9.1-13 dB,所有埠之間的隔離度皆大於23.5 dB。第四章則利用一個具有IF抽取特性的帶通濾波器,以縮減電路面積的〈20-31 GHz二次諧波鏡頻抑制混頻器〉,轉換損耗在次諧波混頻與一次諧波混頻下,量測值分別為15.5-18.5 dB與14.6-17.6 dB,最大鏡頻抑制率分別為33 dB與22 dB,各埠間的隔離度也都大於23 dB。附錄為一個被動電路與偏壓電路結合以節省面積的〈18-38 GHz寬頻倍頻器〉,量測得轉換損耗為0.5-5 dB,最大基頻抑制為18 dB。
The implementation of Sub-harmonic mixers in MMIC Ku/Ka-band applications is presented. The broadband sub-harmonic up-conversion mixer exhibits a high isolation, which enhances the isolation by inserting the quasi-circulator in front of the mixer core. The measured conversion loss ranges from 16.1-19.3 dB, and all the measured isolations are higher than 21.6 dB over a wide band width of 15-27 GHz. In the 23-40 GHz isolation-enhanced broadband sub-harmonic mixer, conversion gain and isolation can be enhanced by employing the couplers and amplifiers. The measured conversion gain is between 6-12.5 dB, and all the isolations are higher than 19 dB. The 7.5-20.5 GHz distributed broadband sub-harmonic mixer is more suitable in extending bandwidth in active sub-harmonic mixers that are typically narrower than passive sub-harmonic mixers. This is accomplished by utilizing the distributed topology. The measured conversion loss is between 9.1-13 dB, and the measured isolations are all higher than 23.5 dB. The fourth chapter presents the fabrication of a 20-31 GHz sub-harmonic image rejection mixer. The measured conversion loss is from 15.5-18.5 dB and 14.6-17.6 dB in subharmonic and fundamental mixers, respectively. The best IRR exhibited in the subharmonic and fundamental mixers is 33 dB and 22 dB, respectively. The isolations are all higher than 23 dB. The Appendix shows the design of an 9-19GHz broadband doubler. The chip size can be reduced by combining bias circuits and balun circuits, and using a new band pass filter with IF extraction. The measured conversion loss is between 0.5-5 dB, and the highest fundamental rejection ratio is 18 dB.
[1] C. M. Lin, H. K. Lin, Y. A. Lai, C. P. Chang, and Y.H. Wang, “A 10–40 GHz broadband subharmonic monolithic mixer in 0.18um CMOS technology”, IEEE Microw. Wireless Compon. Lett., vol. 19, no. 2, pp.95-97, Feb 2009.
[2] C. M. Lin, J. T. Chang, C.C. Su, S.H. Hung, and Y.H. Wang, “A 16-31 GHz miniature quadruple subharmonic monolithic mixer with lumped diplexer,” Progress In Electromagnetics Research Lett., vol. 11, pp.21-30, 2009.
[3] J. H. Tsai, H. Y. Yang, T. W. Huang, and H. Wang, “A 30–100 GHz wideband sub-harmonic active Mixer in 90 nm CMOS technology,” IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 8, pp. 554-556, Aug. 2008.
[4] C. L. Kuo, C. C. Kuo, C. H. Lien, J. H. Tsai, and H. Wang, “A Novel Reduced-Size Rat-Race Broadside Coupler and Its Application for CMOS Distributed Sub-Harmonic Mixer,” IEEE Microw. Wireless Compon. Lett., Vol. 18, No. 3, March 2008
[5] T. K. Johansen, J. Vidkjer, V. Krozer, A. Konczykowska, M. Riet, F. Jorge, and T. Durhuus, “A High Conversion-Gain Q-Band InP DHBT Subharmonic Mixer Using LO Frequency Doubler,” IEEE Trans. Microwave Theory Techniques, vol. 56, no. 3, March 2008.
[6] H. K. Chiou, W. R. Lian, and T. Y. Yang, “A Miniature Q-Band Balanced Sub-Harmonically Pumped Image Rejection Mixer,” IEEE Microw. Wireless Compon. Lett., vol. 17, no.6, pp.463-465, June 2007
[7] F. C. Chang, P. S. Wu, M. F. Lei, and H. Wang,, “A 4–41 GHz Singly Balanced Distributed Mixer Using GaAs pHEMT Technology,” in IEEE Microw. Wireless Compon Lett, vol. 17, no. 2, Feb 2007.
[8] C. H. Lin, Y. A. Lai, J. C. Chiu, and Y. H. Wang, “A23–37 GHz miniature MMIC subharmonic mixer,” IEEE Microw. Wireless Compon. Lett, vol. 17, no. 9, pp. 679–681, Sep. 2007.
[9] J. H. Tsai, and T. W. Huang, “35–65-GHz CMOS broadband modulator and demodulator with sub-harmonic pumping for MMW wireless gigabit applications,” IEEE Trans. Microwave Theory Techniques, vol. 55, no. 10, pp. 2075-2085, Oct 2007.
[10] M. Bao, H. Jacobsson, L. Aspemyr, G. Carchon, and X. Sun, “A 9–31-GHz subharmonic passive mixer in 90-nm CMOS technology,” IEEE J. Solid-State Circuits, vol. 41, no. 10, pp. 2257-2264, Oct 2006.
[11] S. E. Gunnarsson, D. Kuylenstierna, and H. Zirath, “A 60 GHz MMIC pHEMT Image Rekect Mixer with Integrated Ultra Wideband IF Hybrid and 30 dB Image Rejection Ratio,” Microwave Conference Proceedings, 2005.
[12] B. H. Lee, S. C. Kim, M. K. Lee, W. S. Sul, B. O. Lim, W. Y. Uhm, and J. K. Rhee, “Q-band high conversion gain active sub-harmonic mixer,” Current Applied Physics, no. 4, pp. 69-73, 2004.
[13] M.Q. Lee, S.M. Moon, K.K. Ryu, D.P. Jang, and I.B Yom, “Sub-harmonically pumped image rejection mixer for K-band applications,” Proc. Gallium Arsenide Appl. Symp. (GAAS), pp. 151–154, Oct. 2004.
[14] K. Fujii, M. Adamski, P. Bianco, D, Gunyan, J. Hall, R. Kishimura, C. Lesko, M. Schefer, S. Hessel, H. Morkner, and A. Niedzwiecki, “A 60 GHz MMIC chipset for 1-Gbit/s wireless links,” IEEE MTT-S International Microwave Symposium Digest, 2002, vol. 3, Pages: 1725 – 1728, 2-7 June 2002.
[15] H. I. Fujishiro, Y. Ogawa, T. Hamada, and T. Kimura, “SSB MMIC mixer with subharmonic LO and CPW circuits for 38 GHz band applications,” Electron. Lett., vol. 37, pp. 435-436, March 2001.
[16] K. Kawakami, M. Shimozawa, H. Ikematsu, K. Itoh, Y. Isota, and O. Ishida, “A millimeter-wave broadband monolithic even harmonic image rejection mixer,” IEEE MTT-S International Microwave Symposium Digest, vol. 3, Pages:1443 - 1446 , 7-12 June 1998.
[17] Y. J. Hwang, H. Wang, and T. H. Chu, “A W-Band Subharmonically Pumped Monolithic GaAs-Based HEMT Gate Mixer,” IEEE Trans. Micow. Wireless Compon. Lett., vol. 14, no. 7, pp. 313-315, Jul. 2004.
[18] R. S. Pengelly, J. R. Suffolk, J. R. Cockrill, and J. A. Turner, “A comparison between actively and passively matched S-band GaAs monolithic FET amplifiers,” IEEE MTT-S Digest, pp. 367–369, 1981.
[19] Tang, O. S. A., and C. S. Aitchison, “A very wideband microwave MESFET mixer using the distributed mixing principle,” IEEE Trans. Microwave Theory Tech., vol. 33, pp. 1470, 1985.
[20] K. Mimmagadda, and G. Rebeiz, “A 1.9 GHz double-balanced subharmonic mixer for direct conversion receivers,” Proceedings of IEEE Radio Frequency Integrated Circuits Symposium, Phoenix, Arizona, USA, pp.253-256, May 20-22, 2001
[21] S. E. Gunnarsson, D. Kuylenstierna, and H. Zirath, “Analysis and Design of Millimeter-Wave FET-Based Image Reject Mixers,” IEEE Trans. Microwave Theory Tech, vol. 55, no. 10, pp.2065-2074, Octover 2007.
[22] C. Fager, L. Landen, and H. Zirath, “High output power, broadband 28–56 GHz frequency doubler,” IEEE MTT-S Symp. Dig., vol. 3, June,2000, pp. 1589–1591.
[23] F. van Raay and G. Kompa, “Design and stability test of a 2–40 GHz frequency doubler with active balun,” IEEE MTT-S Symp. Dig., vol. 3, June 2000, pp. 1573–1576.
[24] B. Bitzer, “Planar broadband MIC balanced frequency doublers,” IEEE MTT-S Symp. Dig., vol. 3, June 1991, pp. 273–276.
[25] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, “A broadband and miniaturized V-band PHEMT frequency doubler,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 276–278, July 2000.
[26] A. M. Pavio, S. D. Bingham, R. H. Halladay, and C. A. Sapashe, “A distributed broadband monolithic frequency multiplier,” IEEE MTT-S Symp. Dig., vol. 1, pp. 503–504, June 1988.
[27] K. L. Deng and H. Wang, “A miniature broadband PHEMT MMIC bal- anced distributed doubler,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1257–1261, Apr. 2003.
[28] Y. L. Tang, P. O. Chen, and H. Wang, “A Broadband PHEMT MMIC Distributed Doubler Using Hign-Pass Drain Line Topology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp.291-293, May 2004.
[29] G. Gonzalez, “Microwave Transistor Amplifier Analysis and Design,” Pearson Education Taiwan Ltd, 2nd Edition, 2008.
[30] C. Fager, L. Landen, and H. Zirath, “High output power, broadband 28–56 GHz frequency doubler,” IEEE MTT-S Symp. Dig., vol. 3, June,2000, pp. 1589–1591.
[31] F. van Raay and G. Kompa, “Design and stability test of a 2–40 GHz frequency doubler with active balun,” IEEE MTT-S Symp. Dig., vol. 3, June 2000, pp. 1573–1576.
[32] B. Piernas, H. Hayashi, K. Nishikawa, K. Kamogawa, and T. Nakagawa, “A broadband and miniaturized V-band PHEMT frequency doubler,” IEEE Microwave Guided Wave Lett., vol. 10, pp. 276–278, July 2000.
[33] A. M. Pavio, S. D. Bingham, R. H. Halladay, and C. A. Sapashe, “A distributed broadband monolithic frequency multiplier,” IEEE MTT-SSymp. Dig., vol. 1, June 1988, pp. 503–504.
[34] K.-L. Deng and H. Wang, “A miniature broadband PHEMT MMIC bal- anced distributed doubler,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1257–1261, Apr. 2003
[35] Y.L. Tang, P.O. Chen, and H. Wang, “A Broadband PHEMT MMIC Distributed Doubler Using Hign-Pass Drain Line Topology,” IEEE Microw. Wireless Compon. Lett., vol. 14, no. 5, pp.291-293, May 2004