簡易檢索 / 詳目顯示

研究生: 李雨柔
Lee, Yu-Jou
論文名稱: 藍色群青之合成研究
A study on the synthesis of ultramarine blue
指導教授: 雷大同
Ray, Dah-Tong
學位類別: 碩士
Master
系所名稱: 工學院 - 資源工程學系
Department of Resources Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 151
中文關鍵詞: 絹雲母水熱氫氧鈣霞石群青
外文關鍵詞: sericite, hydrothermal, hydroxycancrinite, ultramarine
相關次數: 點閱:72下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺東縣海端鄉利稻村西北方約2公里處賦存相當豐富的雲母礦,屬絹雲母-葉蠟石-石英片岩型礦床。可開採量達1500萬噸,是臺灣地區最具經濟價值的工業礦物之ㄧ。向陽絹雲母礦經水洗後粒徑細於400號篩,雲母粉之礦物組成以絹雲母及葉蠟石為主, 絹雲母含量約60%,葉蠟石約40%。
    本研究以洗選後雲母原樣、球磨樣以及水熱法合成之氫氧鈣霞石為原料與碳酸鈉、硫粉及活性碳等原料研磨混合,並高溫煅燒,以XRD、FT-IR、Raman及分光光度儀進行性質分析,探討煅燒溫度、持溫時間及Na2CO3/S莫爾比對產物性質之影響。根據試驗結果結論如下:
    1. 以氫氧鈣霞石作為原料相較於絹雲母,可在較低的溫度、較低的Na2CO3/S比合成群青。
    2. 雲母可直接以固態反應法合成群青。
    3. 溫度、Na2CO3/S莫爾比及不同的起始原料對群青結構之生成皆有影響,且彼此相互關聯。
    4. 產物結構不隨持溫時間發生改變,但結構與色彩屬性無絕對的關係。
    5. 原料粒徑對群青之色彩表現有重大之影響。

    A tremendous reserve of mica deposit is located at about 2 kilometers in the northweast direction of Li-dao Village, Hai-duan Borough, Taitung County. The recoverable amount is estimated to be about 15 million tons. This mica deposit belongs to a sericite-pyrophyllite-quartz schist type and is one of the most economically valued industrial minerals in Taiwan, R.O.C. The run-of-mine is proceeded by classification to remove , the particle size of finished sericite powder is smaller than 400 mesh. The mineral compositions are 60% sericite and 40% pyrophyllite.
    In this study, the mica (as received from mica), grounded mica and hydroxycancrinite hydrothermally synthesized were used as the starting materials. The starting mixed with sodium carbonate, sulfur and activated carbon, and calcined. The ultramarine product was examined by XRD, FT-IR, Raman, and spectrophotometer to investigate the influences of calcination temperature, holding time and Na2CO3/S molar ratio on its property. According to the results of the experiments, the following conclusions are obtained:
    1. Ultramarine could be synthesized from hydroxycancrinite at lower temperature and lower Na2CO3/S ratio, as comparing to that synthesized from mica.
    2. Ultramarine can also be directly synthesized from mica in a one-step calcination .
    3. Temperature, Na2CO3/S ratio and starting materials all affect the structures of ultramarine, and these factors are mutually-correlated.
    4. The structure of ultramarine do not mutate with the holding time, however, whether the the structure is persistent or not does not reflect the color attributes.
    5. The particle size of the staring material is an important factor imfluencing the color performance.

    摘要.......................I Abstract...................II 誌謝.......................III 表目錄......................VIII 圖目錄......................IX 第1章 緒論........................................1 1.1研究背景.......................................1 1.2研究背景........................................3 第2章 理論基礎與前人研究.............................4 2.1層狀矽酸鹽礦物之結晶構造..........................4 2.1.1 絹雲母.......................................7 2.1.2 葉蠟石.......................................7 2.2 氫氧鈣霞石.....................................10 2.3 顏料與染料.....................................14 2.4顏料的分類......................................16 2.5顏色形成的機制...................................18 2.5.1 價電子的轉移..................................20 2.6 色彩學理論......................................22 2.6.1 色彩屬性......................................22 2.6.2 CIE表色系統...................................23 2.7 群青............................................28 2.7.1 群青之結構與性質................................ 29 2.7.2 群青之性質與用途................................ 30 2.7.3 群青之合成..................................... 33 2.8其他藍色顏料...................................... 44 2.8.1鐵藍 ............................................44 2.8.2綠松石.......................................... 46 2.8.3埃及藍.......................................... 48 2.8.4鈷藍 ............................................49 2.8.5藍銅礦與孔雀石................................... 50 第3章 實驗........................................... 51 3.1材料及設備........................................ 51 3.1.1雲母原礦........................................ 51 3.1.2藥品 ............................................53 3.1.3設備............................................54 3.2 步驟.............................................55 3.2.1研磨試驗........................................ 55 3.2.2合成氫氧鈣霞石 ...................................55 3.2.3空白煅燒之試驗 ...................................55 3.2.4合成群青.........................................55 3.3.性質分析..........................................58 3.3.1粒徑測定......................................58 3.3.2比表面積測定......................................58 3.3.3掃描式電子顯微鏡(SEM)影像分析.....................58 3.3.4 X光繞射(XRD)分析.............................. .58 3.3.5傅立葉轉換紅外光譜( FT-IR )分析....................58 3.3.6色度測定..........................................59 3.3.7 顯微拉曼光譜......................................59 第4章 結果與討論........................................60 4.1 起始原料之合成及熱性質...............................60 4.1.1 氫氧鈣霞石之合成..................................60 4.1.2氫氧鈣霞石之煅燒...................................62 4.1.3雲母之煅燒.........................................62 4.2.氫氧鈣霞石為原料和成群青.............................69 4.2.1 煅燒溫度與Na2CO3/S比之影響.........................69 4.2.2 持溫時間之影響.................................80 4.3以雲母原樣合成之群青..................................83 4.3.1 Na2CO3/S比之影響...............................83 4.3.2持溫時間之影響...................................90 4.4 以雲母研磨樣合成群青.................................99 4.4.1 Na2CO3/S比之影響..................................99 4.4.2持溫時間之影響..................................105 4.5活性碳添加量之影響...................................114 4.6 群青中發色陰離子團之定性分析.........................116 第5章 結論............................................118 參考文獻..............................................120 附錄A 色彩屬性資料.....................................126 附錄B 群青產物之照片...................................135 附錄C 產物之粒徑分佈...................................139 附錄D群青產物之SEM照片.................................142 附錄E安德利森瓶(Andreasen pipette)粒徑分佈量測步驟.......146 附錄F燒失量紀錄........................................149 附錄G群青產物XRF分析...................................151

    1. 魏稽生,向陽礦業專業區規劃開發計畫報告,經濟部礦務局,1995。
    2. 魏稽生及譚立平,臺灣非金屬經濟礦物,經濟部中央地質調查所,1999。
    3. Google 地圖︰http://maps.google.com.tw/
    4. 陳其瑞,臺東縣向陽雲母礦成因之初步研究,經濟部中央地質調查所特刊3號,1984。
    5. 何宗祐,向陽絹雲母水熱合成方沸石、氫氧鈣霞石及氫氧方鈉石之研究,國立成功大學資源工程學系碩士論文,2007。
    6. 曾健倫,以絹雲母合成群青顏料之研究,國立成功大學資源工程學系碩士論文,2011。
    7. 王光明,土壤環境礦物學,藝軒圖書出版社,2000。
    8. 趙杏媛及張有瑜,黏土礦物與黏土礦物分析,海洋出版社,1990。
    9. Klein, C., Mineral science, John Wiley & Sons, Inc., 2002.
    10. 陳培源、劉德慶及黃怡禎,台灣之礦物,經濟部中央地質調查所,2004。
    11. 王光明,氧化物/層狀矽酸鹽之構造、特性、鑑定、反應、生成及用途,國立編譯館,2009。
    12. 溫紹炳、雷大同及黃紀嚴,台灣片狀矽酸鹽礦物之利用開發,經濟部礦業司,2000。
    13. 台灣大百科全書︰http://taiwanpedia.culture.tw/web/index
    14. Klein, C. and C.S. Hurlbut, Jr., “Manual of mineralogy,” Revised 21th ed., John Wiley & Sons, Inc., New York, 1999.
    15. Kowalak, S., M. Pawlowska, M. Miluska, M. Strozyk, J. Kania and W. Przystajko, “Synthesis of ultramarine form synthetic molecular sieves,” Colloids and Surfaces, Vol.101, No.2-3, pp. 179-185, 1995.
    16. Kowalak, S., A. Jankowska, S. Zeider and A.B. Wieckowski, “Sulfur radicals embedded in various cages of ultramarine analogs prepared from zeolites,” Journal of Solid State Chemistry, Vol.180, No.3, pp. 1119-1124, 2007.
    17. Henmi, T., “Synthesis of hydroxy-sodalite (zeolite) from waste coal ash,” Soil Science and Plant Nutrition, Vol.33, No.3, pp. 517-521, 1987.
    18. 魯桂梅,方鈉石的合成及其吸附性能研究,大連理工大學碩士論文,2008。
    19. 蔡豔,光致變色材料研究的新進展,東北師範大學碩士論文,2009。
    20. Fleet, M.E. and X. Liu, “X-ray absorption spectroscopy of ultramarine pigments: A new analytical method for the polysulfide radical anion S3- chromophore,” Spectrochimica Acta Part B-Atomic Spectroscopy, Vol.65, No.1, pp. 75-79, 2010.
    21. Thomson, K.T. and R.M. Wentzcovitch, “A density functional study of the electronic structure of sodalite,” Journal of Chemical Physics, Vol.108, No.20, pp. 8584-8588, 1998.
    22. 工業技術研究院化學工業研究所,染料與顏料研發規劃資料,經濟部工業局,1999。
    23. 林瀚淵及嚴永熊,染顏料產業發展透析,經濟部技術處,2007。
    24. 廖明隆,顏料化學,台灣文源書局有限公司,1988。
    25. 舒昌明,苯駢咪唑酮紅色顏料之製程改進及產品性質研究,國立中正大學化學工程研究所碩士論文,2002。
    26. 詹啟仁,光安定劑對聚氯乙烯塑膠內部顏料的影響,朝陽科技大學應用化學系碩士論文,2002。
    27. 戴濟,顏料及塗料,台灣商務印書館股份有限公司,1973。
    28. 吳宗嶽,塗料工藝講座,國立編譯館,1990。
    29. 染化資訊網︰http://www.dfmg.com.tw/
    30. Reinen, D. and G.G. Lindner, “The nature of the chalcogen colour centres in ultramarine-type solids,” Chemical Society Reviews, Vol.28, No.2, pp. 75-84, 1999.
    31. Sancho, J.P., O.J. Restrepo, P. Garcia, J. Ayala, B. Fernandez and L.F. Verdeja, “Ultramarine blue from Asturian "hard" kaolins,” Applied Clay Science, Vol.41, No.3-4, pp. 133-142, 2008.
    32. Del Federico, E., W. Shofberger, J. Schelvis, S. Kapetanaki, L. Tyne and A. Jerschow, “Insight into framework destruction in ultramarine pigments,” Inorganic Chemistry, Vol.45, No.3, pp. 1270-1276, 2006.
    33. Climent-Pascual, E., R. Saez-Puche, A. Gomez-Herrero and J.R. de Paz, “Cluster ordering in synthetic ultramarine pigments,” Microporous and Mesoporous Materials, Vol.116, No.1-3, pp. 344-351, 2008.
    34. Landman, A.A. and D. De Waal, “Fly ash as a potential starting reagent for the synthesis of ultramarine blue,” Materials Research Bulletin, Vol.39, No.4-5, pp. 655-667, 2004.
    35. Kowalak, S., A. Jankowska, and S. Laczkowska, “Preparation of various color ultramarine from zeolite A under environment-friendly conditions,” Catalysis Today, Vol.90, No.1-2, pp. 167-172, 2004.
    36. Climent-Pascual, E., J.R. de Paz, J. Rodriguez-Carvajal, E. Surad, and R. Saez-Puche, “Synthesis and Characterization of the Ultramarine-Type Analog Na8-x(Si6Al6O24)‧(S2,S3,CO3)1-2,” Inorganic Chemistry, Vol.48, No.14, pp. 6526-6533, 2009.
    37. Clark, R.J.H. and D.G. Cobbold, “Characterization of sulfur radical-anions in solutions of alkali polysulfides in dimethylformamide and hexamethylphosphoramide and in solid-state in ultramarine blue, green, and red,” Inorganic Chemistry, Vol.17, No.11, pp. 3169-3174, 1978.
    38. Booth, D.G., S.E. Dann and M.T. Weller, “The effect of the cation composition on the synthesis and properties of ultramarine blue,” Dyes and Pigments, Vol.58, No.1, pp. 73-82, 2003.
    39. Lindner, G.G., K. Witke, H. Schlaich, and D. Reinen, “Blue-green ultramarine-type zeolites with dimeric tellurium colour centres,” Inorganica Chimica Acta, Vol.252, No.1-2, pp. 39-45, 1996.
    40. Gobeltz, N., A. Demortier, J.P. Lelieur and C. Duhayon, “Encapsulation of the chromophores into the sodalite structure during the synthesis of the blue ultramarine pigment,” Journal of the Chemical Society-Faraday Transactions, Vol.94, No.15, pp. 2257-2260, 1998.
    41. 易發成、楊劍、宋綿新、李虎杰及蒙勇,“利用禾樂石黏土製備群青藍的研究,”礦產綜合利用,4卷,8-12頁,2000。
    42. Kowalak, S., A. Jankowska, and S. Zeidler, “Ultramarine analogs synthesized from cancrinite,” Microporous and Mesoporous Materials, Vol.93, No.1-3, pp. 111-118, 2006.
    43. Jankowska, A. and S. Kowalak, “Synthesis of ultramarine analogs from erionite,” Microporous and Mesoporous Materials, Vol.110, No.2-3, pp. 570-578, 2008.
    44. Kowalak, S., A. Jankowska and E. Mikolajska, “Using of zeolite LOS for preparation of sulfur pigments,” Microporous and Mesoporous Materials, Vol.127, No.1-2, pp. 126-132, 2010.
    45. Kohler, P., G. Winter, F. Seel, and K.P. Klos, “Ultramarine-yellow preparation and characterization of a rarity,” Zeitschrift Fur Naturforschung Section B-a Journal of Chemical Sciences, Vol.42, No.6, pp. 663, 1987.
    46. 曾啓雄,色彩的科學與文化,耶魯國際文化事業有限公司,2003。
    47. 鄭柏左,色彩理論與數位影像,新文京出版社,2004。
    48. 大田登,陳鴻興及陳詩涵譯,色彩工程學︰理論與應用,全華科技圖書股份有限公司,2007。
    49. 大田登,陳鴻興及陳君彥譯,基礎色彩再現工程,全華科技圖書股份有限公司,2003。
    50. Gobeltz N., A. Demortier, B. Lede, J.P. Lelieur and C. Duhayon, “Occupancy of the sodalite cages in the blue ultramarine pigments,” Inorganic Chemistry, Vol.41, No.11, pp. 2848-2854, 2002.
    51. 香港百科︰http://www.internet.hk/doc-view-50165.html
    52. David, E.W. V., H. P. Yennawar , A. J. Perrotta and A. J. Benesi “Structure comparison of co-crystallized 6- and 12-sided large cancrinite crystals,” Vol.123, pp. 274-279, 2009.
    53. Baerlocher, Ch., W.M. Meier, D.H. Olson, “Atlas of zeolite framework types,” Elsevier, Amsterdam, revised fifth ed., pp. 86, 2001.
    54. Merlino, S., and W.L. Brown, Feldspars and feldspathoids , W. L. Brown ed., Reidel., Vol.137, pp. 461, 1984.
    55. Hackbarth, K., Th.M. Gesing, M. Fechtelkord, F. Stief, J.-Ch. Buhl O. Jarchow and Z. Kristallogr. “Synthesis and crystal structure of carbonate cancrinite Na8[AlSiO4]6CO3(H2O)3.4, grown under low-temperature hydrothermal conditions,” Microporous and Mesoporous Materials, Vol.30, pp. 347-358, 1999.
    56. Henmi, T., “Synthesis of hydroxy-sodalite (zeolite) from waste coal ash,” Soil Science and Plant Nutrition, Vol.33, No.3, pp. 517-521, 1987.
    57. Barrer, R.M., and D.E.W. Vaughan, “Trapping of inert gases in sodalite and cancrinite crystals,” J. Phys. Chem. Solids, Vol.32, pp. 731, 1971.
    58. Lindner, G, -G., K. Hoffmann, K. Witke, D. Reinen, Ch. Heinemann, W. Koch, J. Ch. Buhl., and W. Hoffmann, Catal. Today , Vol. 8, pp. 415, 1991.
    59. Baerlocher, C.H., L.B. McCusker and D.H. Olson “Atlas of zeolite framework types,” 2007.
    60. Hua Shao, and T. J. Pinnavaia “Synthesis and properties of nanoparticle form saponite clay, cancrinite and phase mixture,” Microporous and Mesoporous Materials, Vol.133, pp. 10-17, 2010.
    61. http://www.webexhibits.org/causesofcolor/8.html
    62. Nassau K., The physics and chemistry of color: the fifteen causes of color, pp. 146-149.
    63. Dix, M. F., and A. D. Rae, J. Oil Colour Chem. Assoc, Vol.61, pp. 69, 1978.
    64. David A. Scott,馬清林等譯,藝術品中的銅與青銅,科學出版社,2009。
    65. http://www.irocks.com
    66. Fizhugh, E. W., Egyptian blue. In artists pigments, Vol.3, pp. 23-46, Oxford univ. press, Washington D.C., National Gallery of Art.

    下載圖示 校內:2015-08-23公開
    校外:2015-08-23公開
    QR CODE