簡易檢索 / 詳目顯示

研究生: 陳憲融
Chen, Hsien-Jung
論文名稱: 在玻璃基板上製作有機材料橫向BJT應用於大面積高性能光感測之研究
The Study of Organic Lateral BJT on Glass Substrate for Large Area and High Performance Photo-Detecting Applications
指導教授: 方炎坤
Fang, Yean-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 114
中文關鍵詞: 摻雜五環素有機
外文關鍵詞: pentacene
相關次數: 點閱:58下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文係研究利用碘與鈉摻雜來成長P/N-type五環素有機薄膜,並首次應用於玻璃上成長出有機橫向雙載子接面電晶體之研究。吾人利用SEM來檢查有機薄膜的表面形態、AFM來觀察薄膜表面的粗糙程度、FTIR來研究各原子間的鍵結、PL來量測能隙大小、EDS來檢視無機物摻雜的有效性。並利用P/N Si基板成長有機薄膜製造P/N 二極體來判定摻雜後有機薄膜的正負型,且比較各種不同成長參數所完成二極體的電流-電壓特性。最後再以所得最佳參數在玻璃上研製有機橫向雙載子接面光電晶體。實驗結果證實碘摻雜能使有機材料產生P-type的特性,而鈉的無機鹽化合物摻雜能使有機材料產生N-type的特性。
    本研究使用醯銨鈉及醋酸鈉兩種無機鹽化合物。實驗結果顯示,NPN元件中,常溫下摻雜醯銨鈉的元件在照射鎢絲燈光(3mW/cm2)後電流增益約為2.81,而摻雜醋酸鈉的元件在同樣條件光照後電流增益則為3.11,但在PNP元件中,摻雜醋酸鈉的元件在同樣瓦特數光照下電流增益為2.5低於摻雜醯銨鈉的3.4,故選擇摻雜醯銨鈉/醋酸鈉的N層研製有機橫向PNP/NPN雙載子接面光電晶體元件。比較已發表的在矽基板上有機二極體光感測元件,在同樣偏壓4.5V下,照射20mW/cm2光源後的光電增益為16,假設光照強度正比於增益,經換算本研究的NPN元件光電增益約為1.3倍,PNP元件則為1.42倍。因此吾人研發的元件具有更高的潛能來發展大面積低成本有機光感測器。

    In this thesis, we utilized Na dopant, and I2 dopant to prepare P type, and N type Pentacene organic thin films, and then with the doped organic thin films to develop the organic lateral bipolar junction transistor on glass substrate. We used SEM to observe the films’ morphology; AFM to measure surface roughness; FTIR to analyze the bond structure, PL to found the band gap, and EDS to examine the dopant in the films. In addition, the parameters including the weight ratio of Pentacene to dopant in evaporation and growth rate were investigated and optimized. With the optimized parameters, the organic lateral bipolar junction transistors were prepared on glass substrate. Experiment results showed the developed NPN device with NaNH2 doped N emitter and collector has a current gain of 2.81, and 3.11.for CH3COONa doped with and without the illumination of tungsten lamp with light power of 3mW/cm2. For PNP device under the same condition, the gains are 2.5, and 3.4 for the CH3COONa, and NaNH2 doped N layer, respectively. If the intensity of illumination was in proportion to gain, these results are better than that 2.4 of reported organic photodetecting diode.

    中文摘要 Ⅰ 英文摘要 Ⅲ 目錄 Ⅳ 附表目錄 Ⅵ 附圖目錄 Ⅶ 第一章、前言 1 第二章、PN二極體、雙載子接面電晶體元件介紹、有機材料摻雜原理及有機元件電極與電荷注入材料之理論 5 §2-1 PN二極體元件結構與工作原理 5 §2-2 雙載子接面電晶體元件結構與工作原理 6 §2-3 有機橫向雙載子接面電晶體元件結構與工作原理 9 §2-4 光電晶體元件結構及工作原理 9 §2-5 有機材料摻雜碘與鈉原理 10 §2-5-1 有機材料摻雜碘與鈉之特性及理論 10 §2-5-2碘與鈉摻雜有機雙載子光電晶體元件之研究動機 11 §2-6有機元件電極與電荷注入材料之理論 12 §2-6-1 陽極材料 12 §2-6-2 陰極材料 13 §2-6-3 電洞注入層(HIM)理論 14 §2-6-4 電子注入層(EIM)理論 15 第三章、成長系統、製備流程與量測儀器介紹 17 §3-1成長系統 17 §3-1-1 真空蒸著系統(Thermal Vacuum Evaporation System) 17 §3-1-2 退火系統(Annealing System) 18 §3-2有機PN二極體元件製備流程 18 §3-2-1 矽基板清洗 18 §3-2-2 成長有機薄膜 19 §3-3 有機雙極性光電晶體元件製備流程 20 §3-3-1 矽基板清洗 20 §3-3-2 成長有機薄膜 20 §3-4量測儀器 21 §3-4-1 原子力顯微鏡(Atomic Force Microscope, AFM) 21 §3-4-2 場發射掃瞄式電子顯微鏡(Field Emission Scanning Electron Microscope, FESEM) 22 §3-4-3 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy, FTIR) 22 §3-4-4 膜厚量測儀(α-step) 23 §3-4-5 光致螢光光譜儀(PL) 23 第四章、實驗結果與探討 24 §4-1 鈉摻雜與碘摻雜五環素有機薄膜正負型之探討 25 §4-1-1 鈉摻雜與碘摻雜五環素有機薄膜於P型矽基板上之電流-電壓特性分析 27 §4-1-2 鈉摻雜與碘摻雜五環素有機薄膜於N型矽基板上之電流-電壓特性分析 30 §4-2 鈉摻雜與碘摻雜五環素有機薄膜特性分析 32 §4-2-1 鈉摻雜與碘摻雜五環素有機薄膜SEM分析 32 §4-2-2 鈉摻雜與碘摻雜五環素有機薄膜AFM分析 34 §4-2-3 鈉摻雜與碘摻雜五環素有機薄膜FTIR分析 36 §4-2-4 鈉摻雜與碘摻雜五環素有機薄膜PL分析 37 §4-2-5 鈉摻雜與碘摻雜五環素有機薄膜EDS分析 37 §4-3 有機橫向雙載子接面光電晶體元件之電流-電壓特性分析 38 §4-3-1有機橫向NPN雙載子接面光電晶體元件之電流-電壓特性分析 40 §4-3-2有機橫向PNP雙載子接面光電晶體元件之電流-電壓特性分析 42 §4-4 結論 44 第五章、結論與未來展望 45 §5-1結論 45 §5-2 未來展望 46 參考文獻 48 附表 52 附圖 58 誌謝 113 自述 114

    [1] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, “EL properties of organic light-emitting diodes using TPD derivates with diphenylstylyl groups as hole transport layer”, Thin Solid Films, Vol.363, pp.33-36 (2000).
    [2] C. O. Poon, F. L. Wong, S. W. Tong, R. Q. Zhang, C. S. Lee, and S. T. Lee, ”Improved performance and stability of organic light-emitting devices with silicon oxy-nitride buffer layer”, Appl. Phys. Lett., Vol.83, pp.1038-1040 (2003).
    [3] Z. Bao, A. Dodabalapur, and A. J. Lovinger, ”Soluble and processable regioregular poly (3-hexylthiophene) for thin film field-effect transistor applications with high mobility”, Appl. Phys. Lett., Vol.69, pp.4108-4110 (1996).
    [4] Yanbo Jin, Zhenlin Rang, Marshall I. Nathan, P. Paul Ruden, Christopher R. Newman, and C. Daniel Frisbie, “Pentacene organic field-effect transistor on metal substrate with spin-coated smoothing layer”, Appl. Phys. Lett., Vol.85, pp.4406-4408 (2004).
    [5] S. S. Kim, Y. S. Choi, Kibum Kim, J. H. Kim, and Seongil Im, “Fabrication of p-pentacene/n-Si organic photodiodes and Characterization of their photoelectric properties”, Appl. Phys. Lett., Vol.82, pp.639-641, (2002).
    [6] Jiyoul Lee, S. S. Kim, Kibum Kim, Jae Hoon Kim, and Seongil Im, “Correlation between photoelectric and optical absorption spectra of thermally evaporated pentacene films”, Appl. Phys. Lett., Vol.84, pp.1701-1703, (2004).
    [7] C. W. Tang, “Two-layer organic photovoltaic cell”, Appl. Phys. Lett., Vol.48, pp.183-185,(1985).
    [8] J. Drechsel, B. Mannig, F. Kozlowski, D. Gebeyehu, A. Werner, M. Koch, K. Leo, M. Pfeiffer, “High efficiency organic solar cells based on single or multiple PIN structures”, Thin Solid Films, Vol.451-452, pp.515-517, (2004).
    [9] 陳金鑫,黃孝文,”有機電激發光材料與元件”,五南圖書出版公司, (2006).
    [10] T. H. Chou, S. F. Chen, Y. K. Fang, S. C. Hou, F. S. Lin, and C. Y. Lin, “Significantly Improved Luminance of Organic Light-Emitting Diodes by Doping Iodine and Nitrogen Treatment”, Japanese Journal of Applied Physics, Vol.46, pp.2753-2757 (2007).
    [11] F. Huang, A. G. MacDiarmid, and B. R. Hsieh, “An Iodine-doped polymer light-emitting diode”, Appl. Phys. Lett., Vol.71, pp.2415-2417 (1997).
    [12] C. K. Chiang, S. C. Gau, C. R. Fincher, Jr., Y. W. Park, A. G. MacDiarmid, and A. J. Heeger,”Polyacetylene, (Ch)x: N-type and p-type doping and compensation.”, Appl. Phys. Lett., Vol.33, pp.18-20 (1978).
    [13] Y. -Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, “Pentacene Organic Thin-Film Transistors – molecular Ordering and Mobility.”, IEEE Electron. Device Lett., Vol.18, NO.3, pp.87-89 (1997).
    [14] S. P. Park, S. S. Kim, J. H. Kim, C. N. Whang, and S. Im, “Optical and luminescence characteristics of thermally evaporated pentacene films on Si”, Appl. Phys. Lett., Vol.80, pp.2872-2874, (2002).
    [15] J. M. Shannon, “A majority-carrier camel diode”, Appl. Phys. Lett., Vol.35, pp.63-65, (1979).
    [16] C.Y. Chang, B.S. Wu, Y.K. Fang, R.H. Lee “Optical and electrical current gain in an amorphous silicon bulk barrier phototransistor”, IEEE EDL, Vol.6, pp.3 (1985).
    [17] J. Kido, T. Matsumoto, “Bright organic electroluminescent devices having a metal-doped electron-injecting layer.”, Appl. Phys. Lett., Vol.73, pp.2866-2868,(1998).
    [18] J. H. Cho, H. S. Lee, Minkyu Hwang, H. H. Choi, W. K. Kim, J. L. Lee, and Kilwon Cho,” Enhancement of Hole Injection in Organic TFTs by Ozone Treatment of Indium Tin Oxide Electrodes”, ECS, Vol.10, pp.H156-H159 (2007).
    [19] F.C. Chen, L.J. Kung, T.H. Chen, and Y.S. Lin,” Copper phthalocyanine buffer layer to enhance the charge injection in organic thin-film transistors”, Appl. Phys. Lett., Vol.90, pp.H073504 (2007).
    [20] T. Wakimoto, Y, Fukuda, K. Nagayama, A. Yokoi, H. Nakada, M. Tsuchida, “Organic EL Cells Using Alkaline Metal Compounds as Electron Injection Materials.”, IEEE Trans. Electron. Devices, Vol. 44, NO. 8, pp.1245-1248, (1997).
    [21] C. Ganzorig, M. Fujihira, “Evidence for alkali metal formation at a cathode interface of organic electroluminescent devices by thermal decomposition of alkali metal carboxylates during their vapor deposition.”, Appl. Phys. Lett., Vol.85, pp.4774-4776,(2001).
    [22] The Noble Prize in Chemistry 2000- Information for public
    (http://www.noble.se/chemistry /laureates/2000/public.html)
    [23] Jeong-M. Choi, D. K. Hwang, Jae Hoon Kim, and Seongil Im, “Transparent thin-film transistors with pentacene channel, AlOX gate, and NiOX electrodes”, Appl. Phys. Lett., Vol.86, pp.123505, (2005).

    下載圖示 校內:2013-07-11公開
    校外:2013-07-11公開
    QR CODE