簡易檢索 / 詳目顯示

研究生: 高維泰
Korawich Trangwachirachai
論文名稱: 以氮化鎵觸媒行甲烷轉化為乙腈之研究
The Anaerobic Conversion of Methane to Acetonitrile over GaN-based Catalysts
指導教授: 林裕川
Lin, Yu-Chuan
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 173
中文關鍵詞: 乙腈氮化鎵甲烷氮氣
外文關鍵詞: Acetonitrile, Gallium Nitride, Methane, Nitrogen
ORCID: https://orcid.org/0000-0002-9427-631X
相關次數: 點閱:56下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討了以固態裂解法和氨氣氮化法合成氮化鎵並測試其對甲烷轉化為乙腈(ACN)之能力,固態裂解法將氮源與硝酸鎵前驅物進行超音波前處理,其中氮源包括三聚氰胺、蜜勒胺和g-C3N4,然後在800 °C下進行鍛燒;氨氣氮化法的氮化鎵觸媒通過含浸-鍛燒-氮化製備。製備的觸媒通過X光繞射(XRD)、X光吸收光譜(XAS)、氮氣等溫吸脫附(BET)、傅立葉轉換紅外光譜(FTIR)和X射線光電子能譜(XPS)進行鑑定。觸媒的活性在水平連續式固定化填充床反應器中進行測試,研究了鎵擔載量(固態裂解法製備觸媒為5% 和50%,氨氣氮化法製備觸媒為1%、3%、5% 和10%)、進料中加入H2和NH3以及載體(SiO2、S1和HZ)對觸媒的影響。在鍛燒後觀察到表面殘留CN物質,這些物質參與了甲烷轉化成ACN的反應,且氮化鎵小型晶體的存在可以提高ACN的產率,ACN通過甲基化表面的CN物質來生成。進料中H2和NH3的存在通過與甲烷的競爭吸附抑制了甲烷的轉化和ACN的產量,在甲烷轉化反應過程中,碳物質同時被生成,這些物質與氮化鎵表面的氮反應,形成了促進甲烷合成ACN的CN物質。

    This work presented the synthesis of GaN by solid-state pyrolysis and ammonia nitridation methods and tested for methane conversion to acetonitrile (ACN). Nitrogen sources, including melamine, melem, and g-C3N4, were sonicated with gallium nitrate precursor and pyrolyzed at 800 °C. The ammonia-nitridized GaN catalysts were prepared by the impregnation-calcination-nitridation method. The prepared catalysts were characterized by X-ray diffraction (XRD), X-ray absorption spectroscopy (XAS), nitrogen adsorption (BET), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) techniques. The activity of the catalysts was tested in a horizontal fixed-bed flow reactor. The effect of Ga loading (5 and 50% for solid-state made catalysts and 1, 3, 5, and 10% for ammonia nitridation catalysts), presence of H2 and NH3 in the feed, and supports (SiO2, S1, and HZ) were investigated. Surface CN residual species were observed after pyrolysis, which participated in methane conversion to ACN. The ACN productivity could be enhanced with the presence of small GaN crystallites. ACN was produced by methylation of surface CN species. The presence of H2 and NH3 in the feed stream suppressed both methane conversion and ACN productivity by competitive adsorption with methane. During the methane conversion reaction, carbonaceous species were concurrently produced. Such species interacted with the surface nitrogen of GaN, forming CN species that facilitated the ACN synthesis from methane.

    摘要 I Abstract II CHAPTER 1 1 1.1 Motivation 1 1.2 Scope of this study 5 CHAPTER 2 7 2.1 Gallium nitride (GaN) 7 2.2 ACN synthesis from light hydrocarbons 10 2.2.1 Ammodehydrogenation 10 2.2.2 Ammoxidation 10 2.2.3 Ammodehydrogenation of ethylene 11 2.2.4 Ammoxidation of ethylene 12 2.2.5 ACN synthesis from ethane 14 2.3 Cyanation of C-H bond 18 2.4 C-H activation by GaN 18 CHAPTER 3 21 3.1 Chemicals 21 3.2 Catalyst preparation 22 3.2.1 Synthesis of solid-state pyrolyzed GaN (ss-GaN) 22 3.2.2 Synthesis of SiO2-supported ss-GaN 22 3.2.3 Preparation of impregnation-calcination-nitridation supported GaN 22 3.3 Catalyst characterization 23 3.3.1 Bulk properties 23 3.3.2 Surface properties 24 3.4 Reaction testing 24 3.4.1 Temperature-programmed surface reaction (TPSR) 24 3.4.2 Activity evaluation 25 CHAPTER 4 27 4.1 Overview 27 4.2 Introduction 27 4.3 Experimental 29 4.3.1 H2 co-feeding experiment 29 4.4 Results and discussion 30 4.4.1 Characterization of as-synthesized solid-state-made GaN catalysts 30 4.4.2 Activity evaluation 41 4.4.3 Characterization of post-reaction catalysts 46 4.4.4 Proposed reaction mechanism 54 4.5 Conclusions 58 CHAPTER 5 59 5.1 Overview 59 5.2 Introduction 60 5.3 Experimental 61 5.3.1 Preparation of nitrogen precursors (melem and g-C3N4) 61 5.3.2 Preparation of GaN catalysts 61 5.3.3 Activity test 62 5.4 Results 62 5.4.1 Activity evaluation 62 5.4.2 Catalysts characterization 68 5.5 Discussion 78 5.5.1 Physicochemical properties of GaN-C3N4-X and their activity in CH4 conversion 78 5.5.2 Structure-activity correlation 79 5.5.3 Synthesis mechanism of GaN made by g-C3N4 80 5.5.4 Catalyst deactivation and regeneration 82 5.6 Conclusions 84 CHAPTER 6 85 6.1 Overview 85 6.2 Introduction 86 6.3 Experimental 89 6.3.1 Temperature-programmed experiments and regeneration testing 89 6.3.2 Fourier-transform infrared spectra of pyridine-adsorbed catalysts (Py-IR) 90 6.3.3 Near-ambient pressure XPS (NAP-XPS) and operando pulse CH4-IR. 91 6.3.4 DFT calculations 91 6.4 Results and discussion 96 6.4.1 Characterization 96 6.4.2 Temperature-programmed reduction of hydrogen (H2-TPR) 107 6.4.3 The temperature-programmed surface reaction of methane (CH4-TPSR) 113 6.4.4 Structure-activity correlation 117 6.4.5 Catalyst deactivation and regeneration 121 6.4.6 Proposed reaction pathway and ACN formation mechanism 124 6.5 Conclusions 133 CHAPTER 7 135 References 138 ‎APPENDIX A 160 APPENDIX B 173

    [1] X. Meng, X. Cui, N.P. Rajan, L. Yu, D. Deng, X. Bao, Direct methane conversion under mild condition by thermo-, electro-, or photocatalysis, Chem, 5 (2019) 2296-2325.
    [2] Z. Zhu, W. Guo, Y. Zhang, C. Pan, J. Xu, Y. Zhu, Y. Lou, Research progress on methane conversion coupling photocatalysis and thermocatalysis, Carbon Energy, 3 (2021) 519-540.
    [3] P. Schwach, X. Pan, X. Bao, Direct conversion of methane to value-added chemicals over heterogeneous catalysts: challenges and prospects, Chem. Rev., 117 (2017) 8497-8520.
    [4] X. Guo, G. Fang, G. Li, H. Ma, H. Fan, L. Yu, C. Ma, X. Wu, D. Deng, M. Wei, Direct, nonoxidative conversion of methane to ethylene, aromatics, and hydrogen, Science, 344 (2014) 616-619.
    [5] A. Holmen, Direct conversion of methane to fuels and chemicals, Catal. Today, 142 (2009) 2-8.
    [6] L. Li, G.D. Li, C. Yan, X.Y. Mu, X.L. Pan, X.X. Zou, K.X. Wang, J.S. Chen, Efficient sunlight‐driven dehydrogenative coupling of methane to ethane over a Zn+‐modified zeolite, Angew. Chem. Int. Ed., 50 (2011) 8299-8303.
    [7] H. Song, X. Meng, Z.-j. Wang, H. Liu, J. Ye, Solar-energy-mediated methane conversion, Joule, 3 (2019) 1606-1636.
    [8] BP, Statistical review of world energy 2019, BP, London.
    [9] L. Meng, Z. Chen, Z. Ma, S. He, Y. Hou, H.-H. Li, R. Yuan, X.-H. Huang, X. Wang, X. Wang, Gold plasmon-induced photocatalytic dehydrogenative coupling of methane to ethane on polar oxide surfaces, Energy Environ. Sci., 11 (2018) 294-298.
    [10] A.I. Olivos-Suarez, À. Szécsényi, E.J. Hensen, J. Ruiz-Martinez, E.A. Pidko, J. Gascon, Strategies for the direct catalytic valorization of methane using heterogeneous catalysis: Challenges and opportunities, ACS Catal., 6 (2016) 2965-2981.
    [11] C.-G. Zhan, J.A. Nichols, D.A. Dixon, Ionization potential, electron affinity, electronegativity, hardness, and electron excitation energy: Molecular properties from density functional theory orbital energies, J. Phys. Chem. A, 107 (2003) 4184-4195.
    [12] A. Komornicki, D.A. Dixon, Accurate proton affinities: Ab initio proton binding energies for N2, CO, CO2, and CH4, J. Chem. Phys., 97 (1992) 1087-1094.
    [13] M.C. Paganini, M. Chiesa, P. Martino, E. Giamello, E. Garrone, EPR study of the surface basicity of calcium oxide. 2: The interaction with alkanes, J. Phys. Chem. B, 107 (2003) 2575-2580.
    [14] R. Amos, An accurate ab initio study of the multipole moments and polarizabilities of methane, Mol. Phys., 38 (1979) 33-45.
    [15] W. Hu, J. Lan, Y. Guo, X.-M. Cao, P. Hu, Origin of efficient catalytic combustion of methane over Co3O4 (110): Active low-coordination lattice oxygen and cooperation of multiple active sites, ACS Catal., 6 (2016) 5508-5519.
    [16] Y.-R. Luo, Comprehensive handbook of chemical bond energies, CRC Press, (2007) 1688.
    [17] C. Li, W. Yan, Q. Xin, Interaction of methane with surface of alumina studied by FT-IR spectroscopy, Catal. Lett., 24 (1994) 249-256.
    [18] J. Berkowitz, J. Greene, H. Cho, B. Ruscić, The ionization potentials of CH4 and CD4, J. Chem. Phys., 86 (1987) 674-676.
    [19] P. Tang, Q. Zhu, Z. Wu, D. Ma, Methane activation: The past and future, Energy Environ. Sci., 7 (2014) 2580-2591.
    [20] X. Yu, L. Zhong, S. Li, Catalytic cycle of the partial oxidation of methane to methanol over Cu-ZSM-5 revealed using DFT calculations, PCCP, 23 (2021) 4963-4974.
    [21] J. Niu, Y. Wang, Y. Qi, A.H. Dam, H. Wang, Y.-A. Zhu, A. Holmen, J. Ran, D. Chen, New mechanism insights into methane steam reforming on Pt/Ni from DFT and experimental kinetic study, Fuel, 266 (2020) 117143.
    [22] J. Niu, S.E. Liland, J. Yang, K.R. Rout, J. Ran, D. Chen, Effect of oxide additives on the hydrotalcite derived Ni catalysts for CO2 reforming of methane, Chem. Eng. J., 377 (2019) 119763.
    [23] A. Abdulrasheed, A.A. Jalil, Y. Gambo, M. Ibrahim, H.U. Hambali, M.Y.S. Hamid, A review on catalyst development for dry reforming of methane to syngas: Recent advances, Renew. Sust. Energ. Rev., 108 (2019) 175-193.
    [24] S.D. Angeli, G. Monteleone, A. Giaconia, A.A. Lemonidou, State-of-the-art catalysts for CH4 steam reforming at low temperature, Int. J. Hydrogen Energy, 39 (2014) 1979-1997.
    [25] B. Wang, S. Albarracín-Suazo, Y. Pagán-Torres, E. Nikolla, Advances in methane conversion processes, Catal. Today, 285 (2017) 147-158.
    [26] G.P. Van Der Laan, A. Beenackers, Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review, Catal. Rev., 41 (1999) 255-318.
    [27] K. Cheng, W. Zhou, J. Kang, S. He, S. Shi, Q. Zhang, Y. Pan, W. Wen, Y. Wang, Bifunctional catalysts for one-step conversion of syngas into aromatics with excellent selectivity and stability, Chem, 3 (2017) 334-347.
    [28] F. Jiang, B. Liu, W. Li, M. Zhang, Z. Li, X. Liu, Two-dimensional graphene-directed formation of cylindrical iron carbide nanocapsules for Fischer–Tropsch synthesis, Catal. Sci. Technol., 7 (2017) 4609-4621.
    [29] T. Lv, W. Weng, J. Zhou, D. Gu, W. Xiao, Effects of K and Mn promoters over Fe2O3 on Fischer–Tropsch synthesis, J. Energy Chem., 47 (2020) 118-127.
    [30] E. McFarland, Unconventional chemistry for unconventional natural gas, Science, 338 (2012) 340-342.
    [31] F. Che, J.T. Gray, S. Ha, J.-S. McEwen, Improving Ni catalysts using electric fields: A DFT and experimental study of the methane steam reforming reaction, ACS Catal., 7 (2017) 551-562.
    [32] P. Kechagiopoulos, S. Angeli, A. Lemonidou, Low temperature steam reforming of methane: A combined isotopic and microkinetic study, Appl. Catal., B, 205 (2017) 238-253.
    [33] W. Taifan, J. Baltrusaitis, CH4 conversion to value added products: Potential, limitations and extensions of a single step heterogeneous catalysis, Appl. Catal., B, 198 (2016) 525-547.
    [34] L. Sun, Y. Wang, N. Guan, L. Li, Methane activation and utilization: Current status and future challenges, Energy Technol., 8 (2019) 1900826.
    [35] X. Cui, H. Li, Y. Wang, Y. Hu, L. Hua, H. Li, X. Han, Q. Liu, F. Yang, L. He, Room-temperature methane conversion by graphene-confined single iron atoms, Chem, 4 (2018) 1902-1910.
    [36] T. Ikuno, J. Zheng, A. Vjunov, M. Sanchez-Sanchez, M.A. Ortuño, D.R. Pahls, J.L. Fulton, D.M. Camaioni, Z. Li, D. Ray, Methane oxidation to methanol catalyzed by Cu-oxo clusters stabilized in NU-1000 metal–organic framework, J. Am. Chem. Soc., 139 (2017) 10294-10301.
    [37] Y. Tang, Y. Li, V. Fung, D.-e. Jiang, W. Huang, S. Zhang, Y. Iwasawa, T. Sakata, L. Nguyen, X. Zhang, Single rhodium atoms anchored in micropores for efficient transformation of methane under mild conditions, Nat. Commun., 9 (2018) 1231.
    [38] N. Kosinov, E.J.M. Hensen, Reactivity, selectivity, and stability of zeolite-based catalysts for methane dehydroaromatization, Adv. Mater., 32 (2020) 2002565.
    [39] I.F. McConvey, D. Woods, M. Lewis, Q. Gan, P. Nancarrow, The importance of acetonitrile in the pharmaceutical industry and opportunities for its recovery from waste, Org. Process Res. Dev., 16 (2012) 612-624.
    [40] E. Rojas, J.J. Delgado, M.O. Guerrero-Pérez, M.A. Bañares, Performance of NiO and Ni–Nb–O active phases during the ethane ammoxidation into acetonitrile, Catal. Sci. Technol., 3 (2013) 3173-3182.
    [41] E. Rojas, M.O. Guerrero-Pérez, M.A. Bañares, Niobia-supported nanoscaled bulk-NiO catalysts for the ammoxidation of ethane into acetonitrile, Catal. Lett., 143 (2013) 31-42.
    [42] X. Yang, S. Wang, G. Li, F. Zhao, Z. Feng, X. Chen, Z. Zhu, Y. Wang, J. Gao, Process design and comprehensive analysis of the ethanol amination process to improve acetonitrile production, Ind. Eng. Chem. Res., 59 (2020) 5047-5055.
    [43] Z. Yuan, X. Zhang, Q. Yao, Y. Zhang, Y. Fu, Production of acetonitrile via catalytic fast pyrolysis of biomass derived polylactic acid under ammonia atmosphere, J. Anal. Appl. Pyrolysis, 140 (2019) 376-384.
    [44] X. Zhang, Z. Yuan, Q. Yao, Y. Zhang, Y. Fu, Catalytic fast pyrolysis of corn cob in ammonia with Ga/HZSM-5 catalyst for selective production of acetonitrile, Bioresour. Technol., 290 (2019) 121800.
    [45] P. Pollak, G. Romeder, F. Hagedorn, H.-P. Gelbke, Nitriles, Ullmann's Encyclopedia of Industrial Chemistry2000.
    [46] H.A. Deepa, R. Anusha, P. Asha, Evaluation on production and economics of acrylonitrile by Sohio process, IJERT, 4 (2016) 1-6.
    [47] F. Folco, J. Velasquez Ochoa, F. Cavani, L. Ott, M. Janssen, Ethanol gas-phase ammoxidation to acetonitrile: the reactivity of supported vanadium oxide catalysts, Catal. Sci. Technol., 7 (2017) 200-212.
    [48] A. Tripodi, D. Ripamonti, R. Martinazzo, F. Folco, T. Tabanelli, F. Cavani, I. Rossetti, Kinetic model for the ammoxidation of ethanol to acetonitrile, Chem. Eng. Sci., 207 (2019) 862-875.
    [49] S.J. Kulkarni, R.R. Rao, M. Subrahmanyam, A.V.R. Rao, Ammoxidation of ethanol to acetonitrile over molecular sieves, J. Chem. Soc., Chem. Commun., (1994) 273-273.
    [50] Y. Lou, P. He, L. Zhao, W. Cheng, H. Song, Olefin Upgrading over Ir/ZSM-5 catalysts under methane environment, Appl. Catal., B, 201 (2017) 278-289.
    [51] Intratec, Commodity Price Benchmarks, 2022.
    [52] B. Venu, B. Vishali, G. Naresh, V.V. Kumar, M. Sudhakar, R. Kishore, J. Beltramini, M. Konarova, A. Venugopal, C–H bond cyanation of arenes using N,N-dimethylformamide and NH4HCO3 as a CN source over a hydroxyapatite supported copper catalyst, Catal. Sci. Technol., 6 (2016) 8055-8062.
    [53] J.S.J. Hargreaves, Heterogeneous catalysis with metal nitrides, Coord. Chem. Rev., 257 (2013) 2015-2031.
    [54] A. Daisley, J.S.J. Hargreaves, Metal nitrides, the Mars-van Krevelen mechanism and heterogeneously catalysed ammonia synthesis, Catal. Today, (2022).
    [55] R. Michalsky, A.M. Avram, B.A. Peterson, P.H. Pfromm, A.A. Peterson, Chemical looping of metal nitride catalysts: Low-pressure ammonia synthesis for energy storage, Chem. Sci., 6 (2015) 3965-3974.
    [56] F.A. Ponce, D.P. Bour, Nitride-based semiconductors for blue and green light-emitting devices, Nature, 386 (1997) 351-359.
    [57] O. Ambacher, Growth and applications of Group III-nitrides, J. Phys. D: Appl. Phys., 31 (1998) 2653.
    [58] G. Avit, K. Lekhal, Y. André, C. Bougerol, F. Réveret, J. Leymarie, E. Gil, G. Monier, D. Castelluci, A. Trassoudaine, Ultralong and defect-free GaN nanowires grown by the HVPE process, Nano Lett., 14 (2014) 559-562.
    [59] T. Kente, S.D. Mhlanga, Gallium nitride nanostructures: Synthesis, characterization and applications, J. Cryst. Growth, 444 (2016) 55-72.
    [60] Y.-C. Yao, J.-M. Hwang, Z.-P. Yang, J.-Y. Haung, C.-C. Lin, W.-C. Shen, C.-Y. Chou, M.-T. Wang, C.-Y. Huang, C.-Y. Chen, M.-T. Tsai, T.-N. Lin, J.-L. Shen, Y.-J. Lee, Enhanced external quantum efficiency in GaN-based vertical-type light-emitting diodes by localized surface plasmons, Sci. Rep., 6 (2016) 22659.
    [61] M.G. Kibria, F.A. Chowdhury, S. Zhao, B. AlOtaibi, M.L. Trudeau, H. Guo, Z. Mi, Visible light-driven efficient overall water splitting using p-type metal-nitride nanowire arrays, Nat. Commun., 6 (2015) 6797.
    [62] M.G. Kibria, Z. Mi, Artificial photosynthesis using metal/nonmetal-nitride semiconductors: Current status, prospects, and challenges, J. Mater. Chem. A, 4 (2016) 2801-2820.
    [63] B. Zhou, X. Kong, S. Vanka, S. Chu, P. Ghamari, Y. Wang, N. Pant, I. Shih, H. Guo, Z. Mi, Gallium nitride nanowire as a linker of molybdenum sulfides and silicon for photoelectrocatalytic water splitting, Nat. Commun., 9 (2018) 3856.
    [64] Z. Wang, J. Han, Z. Li, M. Li, H. Wang, X. Zong, C. Li, Moisture-Assisted Preparation of Compact GaN:ZnO Photoanode Toward Efficient Photoelectrochemical Water Oxidation, Advanced Energy Materials, 6 (2016) 1600864.
    [65] M. Liu, L. Tan, R.T. Rashid, Y. Cen, S. Cheng, G. Botton, Z. Mi, C.-J. Li, GaN nanowires as a reusable photoredox catalyst for radical coupling of carbonyl under blacklight irradiation, Chem. Sci., 11 (2020) 7864-7870.
    [66] L. Zhang, Z.-Y. Wang, J. Song, Y. Lang, J.-G. Chen, Q.-X. Luo, Z.-H. He, K. Wang, Z.-W. Liu, Z.-T. Liu, Facile synthesis of SiO2 supported GaN as an active catalyst for CO2 enhanced dehydrogenation of propane, J. CO2 Util., 38 (2020) 306-313.
    [67] T. Xing, Y. Lang, J.-G. Chen, Q.-X. Luo, C. Liu, J. Song, Z.-W. Liu, Z.-T. Liu, Catalytic oxidative dehydrogenation of n-butane on gallium nitride-containing titanosilicate catalyst, Can. J. Chem. Eng., 97 (2019) 3115-3124.
    [68] L. Li, X. Mu, W. Liu, X. Kong, S. Fan, Z. Mi, C.J. Li, Thermal non-oxidative aromatization of light alkanes catalyzed by gallium nitride, Angew. Chem. Int. Ed. Engl., 53 (2014) 14106-14109.
    [69] K. Dutta, L. Li, P. Gupta, D.P. Gutierrez, J. Kopyscinski, Direct non-oxidative methane aromatization over gallium nitride catalyst in a continuous flow reactor, Catal. Commun., 106 (2018) 16-19.
    [70] K. Dutta, M. Shahryari, J. Kopyscinski, Direct nonoxidative methane coupling to ethylene over gallium nitride: A catalyst regeneration study, Ind. Eng. Chem. Res., 59 (2020) 4245-4256.
    [71] K. Dutta, V. Chaudhari, C.-J. Li, J. Kopyscinski, Methane conversion to ethylene over GaN catalysts. Effect of catalyst nitridation, Appl. Catal., A, 595 (2020) 117430.
    [72] V. Chaudhari, K. Dutta, C.-J. Li, J. Kopyscinski, Mechanistic insights of methane conversion to ethylene over gallium oxide and gallium nitride using density functional theory, Mol. Catal., 482 (2020) 110606.
    [73] N. Zainal, S. Novikov, A. Akimov, C. Staddon, C. Foxon, A. Kent, Hexagonal (wurtzite) GaN inclusions as a defect in cubic (zinc-blende) GaN, Physica B: Condensed Matter, 407 (2012) 2964-2966.
    [74] X. Ding, Y. Zhou, J. Cheng, A review of gallium nitride power device and its applications in motor drive, CES trans. electr. mach. syst., 3 (2019) 54-64.
    [75] M.A.H. Khan, M.V. Rao, Gallium nitride (GaN) nanostructures and their gas sensing properties: a review, Sensors, 20 (2020) 3889.
    [76] M. Liu, Z. Qiu, L. Tan, R.T. Rashid, S. Chu, Y. Cen, Z. Luo, R.Z. Khaliullin, Z. Mi, C.-J. Li, Photocatalytic methylation of nonactivated sp3 and sp2 C–H bonds using methanol on GaN, ACS Catal., 10 (2020) 6248-6253.
    [77] G. Chen, S. Fadaeerayeni, L. Fang, E. Sarnello, T. Li, H. Toghiani, Y. Xiang, Acetonitrile formation from ethane or ethylene through anaerobic ammodehydrogenation, Catal. Today, 416 (2023) 113751.
    [78] W.I. Denton, R.B. Bishop, Production of acetonitrile and other low molecular weight nitriles, Ind. Eng. Chem., 45 (1953) 282-286.
    [79] N. Takahashi, H. Minoshima, H. Iwadera, Acetonitrile formation from ethylene and ammonia over Zn2+ and Cd2+ exchanged Y-zeolites, Chem. Lett., 23 (1994) 1323-1324.
    [80] N. Takahashi, H. Sakagami, N. Okabe, Y. Sekimura, H. Minami, N. Okazaki, T. Matsuda, Y. Imizu, Catalytic behavior of Zn2+ or Cd2+ supported Y-zeolite for acetonitrile formation from ethene and ammonia, Appl. Catal., A, 164 (1997) 281-289.
    [81] M. Deeba, M.E. Ford, T.A. Johnson, Direct amination of ethylene by zeolite catalysis, J. Chem. Soc., Chem. Commun., (1987) 562-563.
    [82] I. Peeters, A.W.D. van der Gon, M.A. Reijme, P.J. Kooyman, A.M. de Jong, J. van Grondelle, H.H. Brongersma, R.A. van Santen, Structure–activity relationships in the ammoxidation of ethylene in the absence of molecular oxygen over γ-Al2O3-supported molybdenum oxide catalysts, J. Catal., 173 (1998) 28-42.
    [83] F. Ayari, M. Mhamdi, D.P. Debecker, E.M. Gaigneaux, J. Alvarez-Rodriguez, A. Guerrero-Ruiz, G. Delahay, A. Ghorbel, Effect of the chromium precursor nature on the physicochemical and catalytic properties of Cr–ZSM-5 catalysts: Application to the ammoxidation of ethylene, J. Mol. Catal. A: Chem., 339 (2011) 8-16.
    [84] F. Ayari, M. Mhamdi, J. Álvarez-Rodríguez, A.R. Guerrero Ruiz, G. Delahay, A. Ghorbel, Ammoxidation of ethylene over low and over-exchanged Cr–ZSM-5 catalysts, Appl. Catal., A, 415-416 (2012) 132-140.
    [85] B. Rhimi, M. Mhamdi, A. Ghorbel, V.N. Kalevaru, A. Martin, M. Perez-Cadenas, A. Guerrero-Ruiz, Ammoxidation of ethylene to acetonitrile over vanadium and molybdenum supported zeolite catalysts prepared by solid-state ion exchange, J. Mol. Catal. A: Chem., 416 (2016) 127-139.
    [86] B. Rhimi, M. Mhamdi, V.N. Kalevaru, A. Martin, Synergy between vanadium and molybdenum in bimetallic ZSM-5 supported catalysts for ethylene ammoxidation, RSC Adv., 6 (2016) 65866-65878.
    [87] R. Catani, G. Centi, Selective ethane ammoxidation to acetonitrile on alumina-supported niobium–antimony oxides, J. Chem. Soc., Chem. Commun., (1991) 1081-1083.
    [88] V.M. Bondareva, V.M. Bondareva, T.V. Andrushkevich, T.V. Andrushkevich, G.I. Aleshina, G.I. Aleshina, L.M. Plyasova, L.M. Plyasova, L.S. Dovlitova, L.S. Dovlitova, O.B. Lapina, O.B. Lapina, D.F. Khabibulin, D.F. Khabibulin, A.A. Vlasov, Ammoxidation of ethane on V-Mo-Nb oxide catalysts<span lang=EN-US style='font-size:10.0pt;mso-ansi-language:EN-US'>, React. Kinet. Catal. Lett., 87 (2006) 377-386.
    [89] E. Rojas, M.O. Guerrero-Pérez, M.A. Bañares, Direct ammoxidation of ethane: An approach to tackle the worldwide shortage of acetonitrile, Catal. Commun., 10 (2009) 1555-1557.
    [90] F. Rubio-Marcos, E. Rojas, R. López-Medina, M.O. Guerrero-Pérez, M.A. Bañares, J.F. Fernandez, Tuning of active sites in NiNbO catalysts for the direct conversion of ethane to acetonitrile or ethylene, ChemCatChem, 3 (2011) 1637-1645.
    [91] Y. Li, J.N. Armor, Ammoxidation of ethane to acetonitrile over metal–zeolite catalysts, J. Catal., 173 (1998) 511-518.
    [92] R. Bulánek, K. Novoveská, B. Wichterlová, Oxidative dehydrogenation and ammoxidation of ethane and propane over pentasil ring Co-zeolites, Appl. Catal., A, 235 (2002) 181-191.
    [93] S. Essid, F. Ayari, R. Bulánek, J. Vaculík, M. Mhamdi, G. Delahay, A. Ghorbel, Improvement of the conventional preparation methods in Co/BEA zeolites: Characterization and ethane ammoxidation, Solid State Sci., 93 (2019) 13-23.
    [94] X. Liu, T. Liang, R. Barbosa, G. Chen, H. Toghiani, Y. Xiang, Ammoxidation of ethane to acetonitrile and ethylene: Reaction transient analysis for the Co/HZSM-5 catalyst, ACS Omega, 5 (2020) 1669-1678.
    [95] T. Liang, X. Liu, Y. He, R. Barbosa, G. Chen, W. Fan, Y. Xiang, Highly selective Sn/HZSM-5 catalyst for ethane ammoxidation to acetonitrile and ethylene, Appl. Catal., A, 610 (2021) 117942.
    [96] G. Chen, T. Liang, P. Yoo, S. Fadaeerayeni, E. Sarnello, T. Li, P. Liao, Y. Xiang, Catalytic light alkanes conversion through anaerobic ammodehydrogenation, ACS Catal., 11 (2021) 7987-7995.
    [97] B. Ravel, M. Newville, ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT, J. Synchrotron Rad., 12 (2005) 537-541.
    [98] K. Trangwachirachai, Y.-C. Lin, Light hydrocarbon conversion to acrylonitrile and acetonitrile – A review, Dalton Trans., 52 (2023) 6211-6225.
    [99] E.M. Research, Global acetonitrile market, 2021.
    [100] K. Trangwachirachai, C.-H. Chen, Y.-C. Lin, Anaerobic conversion of methane to acetonitrile over solid-state-pyrolysis-synthesized GaN catalysts, Mol. Catal., 516 (2021) 111961.
    [101] Y. Zhang, T. Ma, J. Zhao, Study on the conversion of glycerol to nitriles over a Fe19.2K0.2/γ-Al2O3 catalyst, J. Catal., 313 (2014) 92-103.
    [102] T. Ishida, H. Watanabe, T. Takei, A. Hamasaki, M. Tokunaga, M. Haruta, Metal oxide-catalyzed ammoxidation of alcohols to nitriles and promotion effect of gold nanoparticles for one-pot amide synthesis, Appl. Catal., A, 425-426 (2012) 85-90.
    [103] K.-N.T. Tseng, A.M. Rizzi, N.K. Szymczak, Oxidant-free conversion of primary amines to nitriles, J. Am. Chem. Soc., 135 (2013) 16352-16355.
    [104] P. Roose, K. Eller, E. Henkes, R. Rossbacher, H. Höke, Amines, aliphatic, Ullmann's Encyclopedia of Industrial Chemistry2015, pp. 1-55.
    [105] Y. Nishikawa, Y. Ohtsuka, H. Ogihara, R. Rattanawan, M. Gao, A. Nakayama, J.-y. Hasegawa, I. Yamanaka, Catalytic mechanism of liquid-metal indium for direct dehydrogenative conversion of methane to higher hydrocarbons, ACS Omega, 5 (2020) 28158-28167.
    [106] P. Schwach, X. Pan, X. Bao, Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects, Chem. Rev., 117 (2017) 8497-8520.
    [107] A. Galadima, O. Muraza, Advances in catalyst design for the conversion of methane to aromatics: A critical review, Catal. Surv. Asia, 23 (2019) 149-170.
    [108] Z. Li, S. Wei, Y. Wang, X. Zhang, K. Lu, X. Chen, Local structures of nanocrystalline GaN studied by XAFS, J. Synchrotron Rad., 8 (2001) 830-832.
    [109] J.W. Chiou, S. Mookerjee, K.V.R. Rao, J.C. Jan, H.M. Tsai, K. Asokan, W.F. Pong, F.Z. Chien, M.H. Tsai, Y.K. Chang, Y.Y. Chen, J.F. Lee, C.C. Lee, G.C. Chi, Angle-dependent X-ray absorption spectroscopy study of Zn-doped GaN, Appl. Phys. Lett., 81 (2002) 3389-3391.
    [110] J. Brendt, D. Samuelis, T.E. Weirich, M. Martin, An in situ XAS investigation of the kinetics of the ammonolysis of Ga2O3 and the oxidation of GaN, PCCP, 11 (2009) 3127-3137.
    [111] N. Abdullah, H. Bahruji, S.M. Rogers, P.P. Wells, C.R.A. Catlow, M. Bowker, Pd local structure and size correlations to the activity of Pd/TiO2 for photocatalytic reforming of methanol, PCCP, 21 (2019) 16154-16160.
    [112] J. Timoshenko, B. Roldan Cuenya, In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy, Chem. Rev., 121 (2021) 882-961.
    [113] K. Lawniczak-Jablonska, T. Suski, I. Gorczyca, N.E. Christensen, K.E. Attenkofer, R.C.C. Perera, E.M. Gullikson, J.H. Underwood, D.L. Ederer, Z. Liliental Weber, Electronic states in valence and conduction bands of group-III nitrides: Experiment and theory, Phys. Rev. B, 61 (2000) 16623-16632.
    [114] C.W. Pao, P.D. Babu, H.M. Tsai, J.W. Chiou, S.C. Ray, S.C. Yang, F.Z. Chien, W.F. Pong, M.H. Tsai, C.W. Hsu, L.C. Chen, C.C. Chen, K.H. Chen, H.J. Lin, J.F. Lee, J.H. Guo, Electronic structures of group-III–nitride nanorods studied by X-ray absorption, X-ray emission, and Raman spectroscopy, Appl. Phys. Lett., 88 (2006) 223113.
    [115] K.-H. Lee, J.-W. Chiou, J.-M. Chen, J.-F. Lee, A. Braud, K. Lorenz, E. Alves, I.-G. Chen, The characterization of N interstitials and dangling bond point defects on ion-implanted GaN nanowires studied by photoluminescence and X-ray absorption spectroscopy, J. Am. Ceram. Soc., 93 (2010) 3531-3534.
    [116] Z. Mo, X. Zhu, Z. Jiang, Y. Song, D. Liu, H. Li, X. Yang, Y. She, Y. Lei, S. Yuan, H. Li, L. Song, Q. Yan, H. Xu, Porous nitrogen-rich g-C3N4 nanotubes for efficient photocatalytic CO2 reduction, Appl. Catal., B, 256 (2019) 117854.
    [117] P. Li, T. Xiong, L. Wang, S. Sun, C. Chen, Facile Au-assisted epitaxy of nearly strain-free GaN films on sapphire substrates, RSC Adv., 10 (2020) 2096-2103.
    [118] O. Elbanna, M. Fujitsuka, T. Majima, g-C3N4/TiO2 mesocrystals composite for H2 evolution under visible-light irradiation and its charge carrier dynamics, ACS Appl. Mater. Interfaces, 9 (2017) 34844-34854.
    [119] M. Cai, F. Zhang, C. Zhang, C. Lu, Y. He, Y. Qu, H. Tian, X. Feng, X. Zhuang, Cobaloxime anchored MoS2 nanosheets as electrocatalysts for the hydrogen evolution reaction, J. Mater. Chem. A, 6 (2018) 138-144.
    [120] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G.I.N. Waterhouse, L.-Z. Wu, C.-H. Tung, T. Zhang, Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible-light-driven hydrogen evolution, Adv. Mater., 29 (2017) 1605148.
    [121] J. Zou, Y. Yu, W. Yan, J. Meng, S. Zhang, J. Wang, A facile route to synthesize boron-doped g-C3N4 nanosheets with enhanced visible-light photocatalytic activity, J. Mater. Sci., 54 (2019) 6867-6881.
    [122] A. Jindal, S. Basu, A.C. P, Electrospun carbon nitride supported on poly(vinyl) alcohol as an electrocatalyst for oxygen reduction reactions, RSC Adv., 5 (2015) 69378-69387.
    [123] T.S. Miller, A.B. Jorge, T.M. Suter, A. Sella, F. Corà, P.F. McMillan, Carbon nitrides: synthesis and characterization of a new class of functional materials, PCCP, 19 (2017) 15613-15638.
    [124] L. Ravi, K. Boopathi, P. Panigrahi, B. Krishnan, Growth of gallium nitride nanowires on sapphire and silicon by chemical vapor deposition for water splitting applications, Appl. Surf. Sci., 449 (2018) 213-220.
    [125] T. Narkbuakaew, P. Sujaridworakun, Synthesis of tri-s-triazine based g-C3N4 photocatalyst for cationic rhodamine B degradation under visible light, Top. Catal., 63 (2020) 1086-1096.
    [126] Z.J. Zhang, S. Fan, C.M. Lieber, Growth and composition of covalent carbon nitride solids, Appl. Phys. Lett., 66 (1995) 3582-3584.
    [127] P. Praus, L. Svoboda, M. Ritz, I. Troppová, M. Šihor, K. Kočí, Graphitic carbon nitride: Synthesis, characterization and photocatalytic decomposition of nitrous oxide, Mater. Chem. Phys., 193 (2017) 438-446.
    [128] Y. Zhao, R. Wei, X. Feng, L. Sun, P. Liu, Y. Su, L. Shi, Dual-mode luminescent nanopaper based on ultrathin g–C3N4 nanosheets grafted with rare-earth upconversion nanoparticles, ACS Appl. Mater. Interfaces, 8 (2016) 21555-21562.
    [129] J.J. Cuomo, P.A. Leary, D. Yu, W. Reuter, M. Frisch, Reactive sputtering of carbon and carbide targets in nitrogen, J. Vac. Sci. Technol. A, 16 (1979) 299-302.
    [130] L. Maya, Paracyanogen reexamined, J. Polym. Sci., Part A: Polym. Chem., 31 (1993) 2595-2600.
    [131] N.N. Greenwood, A. Earnshaw, Chemistry of the elements, Elsevier2012.
    [132] M.V. Luzgin, A.A. Gabrienko, V.A. Rogov, A.V. Toktarev, V.N. Parmon, A.G. Stepanov, The “alkyl” and “carbenium” pathways of methane activation on Ga-modified zeolite BEA: 13C solid-state NMR and GC-MS study of methane aromatization in the presence of higher alkane, J. Phys. Chem. C, 114 (2010) 21555-21561.
    [133] K. Sardar, M. Dan, B. Schwenzer, C. Rao, A simple single-source precursor route to the nanostructures of AlN, GaN and InN, J. Mater. Chem., 15 (2005) 2175-2177.
    [134] H.P.T. Nguyen, S. Zhang, K. Cui, X. Han, S. Fathololoumi, M. Couillard, G. Botton, Z. Mi, p-Type modulation doped InGaN/GaN dot-in-a-wire white-light-emitting diodes monolithically grown on Si (111), Nano Lett., 11 (2011) 1919-1924.
    [135] C. Sun, M. Yang, T. Wang, Y. Shao, Y. Wu, X. Hao, Graphene-oxide-assisted synthesis of GaN nanosheets as a new anode material for lithium-ion battery, ACS Appl. Mater. Interfaces, 9 (2017) 26631-26636.
    [136] H. Zheng, Z. Zhao, J.B. Phan, H. Ning, Q. Huang, R. Wang, J. Zhang, W. Chen, Highly efficient metal-free two-dimensional luminescent melem nanosheets for bioimaging, ACS Appl. Mater. Interfaces, 12 (2019) 2145-2151.
    [137] P. Chandrasekar, H. Jung, C.G. Kim, D. Kim, GaN nanorods synthesis on single-wall carbon nanotube bundles via substrate confinement, CrystEngComm, 14 (2012) 2166-2171.
    [138] W. Lambrecht, S. Rashkeev, B. Segall, K. Lawniczak-Jablonska, T. Suski, E.M. Gullikson, J.H. Underwood, R.C. Perera, J.C. Rife, I. Grzegory, X-ray absorption, glancing-angle reflectivity, and theoretical study of the N K-and Ga M 2, 3-edge spectra in GaN, Phys. Rev. B, 55 (1997) 2612.
    [139] D. Zhang, X. Han, T. Dong, X. Guo, C. Song, Z. Zhao, Promoting effect of cyano groups attached on g-C3N4 nanosheets towards molecular oxygen activation for visible light-driven aerobic coupling of amines to imines, J. Catal., 366 (2018) 237-244.
    [140] X. Yuan, K. Luo, K. Zhang, J. He, Y. Zhao, D. Yu, Combinatorial vibration-mode assignment for the FTIR spectrum of crystalline melamine: A strategic approach toward theoretical IR vibrational calculations of triazine-based compounds, J. Phys. Chem. A, 120 (2016) 7427-7433.
    [141] Z. Huang, Y. Zhang, H. Dai, Y. Wang, C. Qin, W. Chen, Y. Zhou, S. Yuan, Highly dispersed Pd nanoparticles hybridizing with 3D hollow-sphere g-C3N4 to construct 0D/3D composites for efficient photocatalytic hydrogen evolution, J. Catal., 378 (2019) 331-340.
    [142] J. Hu, P. Yang, C.M. Lieber, Nitrogen-driven sp3 to sp2 transformation in carbon nitride materials, Phys. Rev. B, 57 (1998) R3185.
    [143] K. Feng, H. Zhang, J. Gao, J. Xu, Y. Dong, Z. Kang, J. Zhong, Single atoms or not? The limitation of EXAFS, Appl. Phys. Lett., 116 (2020) 191903.
    [144] Z. Chen, J. Zhao, C.R. Cabrera, Z. Chen, Computational screening of efficient single-atom catalysts based on graphitic carbon nitride (g-C3N4) for nitrogen electroreduction, Small Methods, 3 (2019) 1800368.
    [145] M. Chen, W. Chang, Y. Shi, W. Liu, C. Li, Design of highly efficient g-C3N4-based metal monoatom catalysts by two extra-NM1 atoms: Density functional theory simulations, PCCP, 23 (2021) 11472-11478.
    [146] S. An, G. Zhang, T. Wang, W. Zhang, K. Li, C. Song, J.T. Miller, S. Miao, J. Wang, X. Guo, High-density ultra-small clusters and single-atom Fe sites embedded in graphitic carbon nitride (g-C3N4) for highly efficient catalytic advanced oxidation processes, ACS Nano, 12 (2018) 9441-9450.
    [147] F. Hu, L. Leng, M. Zhang, W. Chen, Y. Yu, J. Wang, J.H. Horton, Z. Li, Direct synthesis of atomically dispersed palladium atoms supported on graphitic carbon nitride for efficient selective hydrogenation reactions, ACS Appl. Mater. Interfaces, 12 (2020) 54146-54154.
    [148] G. Gao, Y. Jiao, E.R. Waclawik, A. Du, Single atom (Pd/Pt) supported on graphitic carbon nitride as an efficient photocatalyst for visible-light reduction of carbon dioxide, J. Am. Chem. Soc., 138 (2016) 6292-6297.
    [149] W. Yan, L. Yan, C. Jing, Impact of doped metals on urea-derived g-C3N4 for photocatalytic degradation of antibiotics: Structure, photoactivity and degradation mechanisms, Appl. Catal., B, 244 (2019) 475-485.
    [150] Y. Li, B. Li, D. Zhang, L. Cheng, Q. Xiang, Crystalline carbon nitride supported copper single atoms for photocatalytic CO2 reduction with nearly 100% CO selectivity, ACS Nano, 14 (2020) 10552-10561.
    [151] B. Stöhr, H.P. Boehm, R. Schlögl, Enhancement of the catalytic activity of activated carbons in oxidation reactions by thermal treatment with ammonia or hydrogen cyanide and observation of a superoxide species as a possible intermediate, Carbon, 29 (1991) 707-720.
    [152] H.F. Gaiser, R. Popescu, D. Gerthsen, C. Feldmann, Ionic-liquid-based synthesis of GaN nanoparticles, Chem. Commun., 56 (2020) 2312-2315.
    [153] C. Liu, J. Kang, Z.-Q. Huang, Y.-H. Song, Y.-S. Xiao, J. Song, J.-X. He, C.-R. Chang, H.-Q. Ge, Y. Wang, Z.-T. Liu, Z.-W. Liu, Gallium nitride catalyzed the direct hydrogenation of carbon dioxide to dimethyl ether as primary product, Nat. Commun., 12 (2021) 2305.
    [154] D. Roehrens, J. Brendt, D. Samuelis, M. Martin, On the ammonolysis of Ga2O3: An XRD, neutron diffraction and XAS investigation of the oxygen-rich part of the system Ga2O3–GaN, J. Solid State Chem., 183 (2010) 532-541.
    [155] Y. Chen, K. Liu, J. Liu, T. Lv, B. Wei, T. Zhang, M. Zeng, Z. Wang, L. Fu, Growth of 2D GaN single crystals on liquid metals, J. Am. Chem. Soc., 140 (2018) 16392-16395.
    [156] L. Li, S. Fan, X. Mu, Z. Mi, C.-J. Li, Photoinduced conversion of methane into benzene over GaN nanowires, J. Am. Chem. Soc., 136 (2014) 7793-7796.
    [157] L. Tan, H. Su, J. Han, M. Liu, C.-J. Li, Selective conversion of methane to cyclohexane and hydrogen via efficient hydrogen transfer catalyzed by GaN supported platinum clusters, Sci. Rep., 12 (2022) 18414.
    [158] Z. de Souza Schiaber, G. Calabrese, X. Kong, A. Trampert, B. Jenichen, J.H. Dias da Silva, L. Geelhaar, O. Brandt, S. Fernández-Garrido, Polarity-induced selective area epitaxy of GaN nanowires, Nano Lett., 17 (2017) 63-70.
    [159] Y.-H. Ji, R.-Z. Wang, X.-Y. Feng, Y.-F. Zhang, H. Yan, Modulation effects of hydrogen on structure and photoluminescence of GaN nanowires prepared by plasma-enhanced chemical vapor deposition, J. Phys. Chem. C, 121 (2017) 24804-24808.
    [160] G.A. Sapunov, A.D. Bolshakov, V.V. Fedorov, A.M. Mozharov, D.A. Kirilenko, A.A. Sitnikova, I.S. Mukhin, Epitaxial GaN nanotripods: morphology and crystal structure, J. Phys.: Conf. Ser., 1038 (2018) 012053.
    [161] M. Kumar, V.P. Singh, S. Dubey, Y. Suh, S.-H. Park, GaN nanophosphors for white-light applications, Opt. Mater., 75 (2018) 61-67.
    [162] B. Giroire, S. Marre, A. Garcia, T. Cardinal, C. Aymonier, Continuous supercritical route for quantum-confined GaN nanoparticles, React. Chem. Eng., 1 (2016) 151-155.
    [163] J.F. Janik, R.L. Wells, Gallium imide,{Ga(NH)3/2}n, a new polymeric precursor for gallium nitride powders, Chem. Mater., 8 (1996) 2708-2711.
    [164] T.-N. Ye, S.-W. Park, Y. Lu, J. Li, M. Sasase, M. Kitano, H. Hosono, Contribution of nitrogen vacancies to ammonia synthesis over metal nitride catalysts, J. Am. Chem. Soc., 142 (2020) 14374-14383.
    [165] A. Matsuda, H. Tateno, K. Kamata, M. Hara, Iron phosphate nanoparticle catalyst for direct oxidation of methane into formaldehyde: Effect of surface redox and acid–base properties, Catal. Sci. Technol., 11 (2021) 6987-6998.
    [166] C.-H. Wang, S.-T. Chang, S.-Y. Chen, Y.-W. Yang, New ambient pressure X-ray photoelectron spectroscopy endstation at Taiwan light source, AIP Conf. Proc., 2054 (2019) 040012.
    [167] C.E. Hernandez-Tamargo, A. Roldan, N.H. de Leeuw, Density functional theory study of the zeolite-mediated tautomerization of phenol and catechol, Mol. Catal., 433 (2017) 334-345.
    [168] C.M. Nguyen, M.-F. Reyniers, G.B. Marin, Theoretical study of the adsorption of the butanol isomers in H-ZSM-5, J. Phys. Chem. C, 115 (2011) 8658-8669.
    [169] Y. Umeno, A. Kubo, S. Nagao, Density functional theory calculation of ideal strength of SiC and GaN: Effect of multi-axial stress, Comput. Mater. Sci., 109 (2015) 105-110.
    [170] R. Sun, G. Yang, F. Wang, G. Chu, N. Lu, X. Shen, A theoretical study on the metal contacts of monolayer gallium nitride (GaN), Mater. Sci. Semicond. Process., 84 (2018) 64-70.
    [171] G. Kresse, J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54 (1996) 11169-11186.
    [172] J.P. Perdew, K. Burke, M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77 (1996) 3865-3868.
    [173] P.E. Blöchl, Projector augmented-wave method, Phys. Rev. B, 50 (1994) 17953-17979.
    [174] S. Grimme, Semiempirical GGA-type density functional constructed with a long-range dispersion correction, J. Comput. Chem., 27 (2006) 1787-1799.
    [175] Y. Jia, Z. Shi, W. Hou, H. Zang, K. Jiang, Y. Chen, S. Zhang, Z. Qi, T. Wu, X. Sun, D. Li, Elimination of the internal electrostatic field in two-dimensional GaN-based semiconductors, NPJ 2D Mater. Appl., 4 (2020) 31.
    [176] J.D. Pack, H.J. Monkhorst, "Special points for Brillouin-zone integrations"---a reply, Phys. Rev. B, 16 (1977) 1748-1749.
    [177] L. Wang, T. Maxisch, G. Ceder, Oxidation energies of transition metal oxides within the GGA + U framework, Phys. Rev. B, 73 (2006) 195107.
    [178] S.P. Ong, W.D. Richards, A. Jain, G. Hautier, M. Kocher, S. Cholia, D. Gunter, V.L. Chevrier, K.A. Persson, G. Ceder, Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis, Comput. Mater. Sci., 68 (2013) 314-319.
    [179] K.S.W. Sing, R.T. Williams, Physisorption hysteresis loops and the characterization of nanoporous materials, Adsorpt. Sci. Technol., 22 (2004) 773-782.
    [180] M.J. Ramos, A. Casas, L. Rodríguez, R. Romero, Á. Pérez, Transesterification of sunflower oil over zeolites using different metal loading: A case of leaching and agglomeration studies, Appl. Catal., A, 346 (2008) 79-85.
    [181] A. Ausavasukhi, T. Sooknoi, Tunable activity of [Ga]HZSM-5 with H2 treatment: Ethane dehydrogenation, Catal. Commun., 45 (2014) 63-68.
    [182] N.M. Phadke, J. Van der Mynsbrugge, E. Mansoor, A.B. Getsoian, M. Head-Gordon, A.T. Bell, Characterization of isolated Ga3+ cations in Ga/H-MFI prepared by vapor-phase exchange of H-MFI zeolite with GaCl3, ACS Catal., 8 (2018) 6106-6126.
    [183] C.-T. Shao, W.-Z. Lang, X. Yan, Y.-J. Guo, Catalytic performance of gallium oxide based-catalysts for the propane dehydrogenation reaction: effects of support and loading amount, RSC Adv., 7 (2017) 4710-4723.
    [184] M. Rahman, A. Infantes-Molina, A.S. Hoffman, S.R. Bare, K.L. Emerson, S.J. Khatib, Effect of Si/Al ratio of ZSM-5 support on structure and activity of Mo species in methane dehydroaromatization, Fuel, 278 (2020) 118290.
    [185] R. Gounder, E. Iglesia, Catalytic consequences of spatial constraints and acid site location for monomolecular alkane activation on zeolites, J. Am. Chem. Soc., 131 (2009) 1958-1971.
    [186] Z. Liu, E. Huang, I. Orozco, W. Liao, R.M. Palomino, N. Rui, T. Duchoň, S. Nemšák, D.C. Grinter, M. Mahapatra, P. Liu, J.A. Rodriguez, S.D. Senanayake, Water-promoted interfacial pathways in methane oxidation to methanol on a CeO2-Cu2O catalyst, Science, 368 (2020) 513-517.
    [187] P.G. Lustemberg, R.M. Palomino, R.A. Gutierrez, D.C. Grinter, M. Vorokhta, Z. Liu, P.J. Ramirez, V. Matolin, M.V. Ganduglia-Pirovano, S.D. Senanayake, J.A. Rodriguez, Direct conversion of methane to methanol on Ni-Ceria surfaces: Metal-support interactions and water-enabled catalytic conversion by site blocking, J. Am. Chem. Soc., 140 (2018) 7681-7687.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE