簡易檢索 / 詳目顯示

研究生: 謝秉倫
Hsieh, Ping-Lun
論文名稱: 高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之剪力行為研究
Shear Behavior of Squat UHPFRC Shear Walls Reinforced with High Strength Steel
指導教授: 洪崇展
Hung, Chung-Chan
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 265
中文關鍵詞: 結構牆超高性能纖維混凝土軟化現象修正壓力場理論有限元素模型
外文關鍵詞: Structural walls, Ultra High Performance Fiber Reinforce Concrete (UHPFRC), Softening, MCFT, Finite element model
相關次數: 點閱:123下載:26
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 高強度鋼筋與超高性能纖維混凝土為極具韌性的創新材料,但現行規範與學界建議之強度計算公式與方法常造成設計上過於保守。本研究根據ACI-318規範設計並測試四座結構牆試體,觀察其耐震行為及試驗強度,並使用沈笠筠[2016]依照修正壓力場理論(MCFT)建議之OpenSees模型驗證四座試體。
    根據實驗及分析結果,纖維混凝土比起傳統混凝土具備更強的抗剪強度,以及較平緩的抗拉軟化段,反覆載重作用下表現出較高的極限強度與極限位移,勁度衰退也較為平緩。針對纖維混凝土進行材料參數研究,延緩抗拉曲線之尖峰應變,使混凝土與鋼筋同時達到尖峰強度與降伏強度,剪力強度提升約23%,說明使鋼筋於混凝土軟化前充足發展,可提高結構牆之極限強度與極限位移。
    統整觀察結果,保守的軟化段嚴重低估了纖維混凝土的抗剪強度,造成計算上的不精確。基於實驗結果與參數研究,修正拉壓桿模型與修正壓力場理論適用之混凝土軟化參數,使兩者更準確地預測剪力強度。

    Due to the lack of appropriate estimating method, both high-strength steel and Ultra-High Performance Fiber Reinforced Concrete (UHPFRC) tend to be over designed. Four structural wall specimens are designed and tested, then verified with the ACI code, Softened Strut-and-Tie (SST) models and OpenSees models based on Modified Compression Field Theory (MCFT).
    According to experimental and analytical results, UHPFRC showed higher shear strength with smooth softening, which led to better seismic performance. In the parameter study, ultimate tensile strength of UHPFRC was delayed to meet the yielding of reinforcing steel. By doing so, shear strength was lifted 23% higher, indicating that ultimate strength and drift of shear wall increase with sufficient development of reinforcing steel before softening of concrete.
    Concluding from observation, conservative softening underestimates the shear strength of UHPFRC, resulting unfit prediction of shear strength. Based on experiment and parameter study, modified softening of UHPFRC were recommended to predict shear strength accurately.

    摘要 I 誌謝 VII 目錄 VIII 表目錄 XII 圖目錄 XVI 第1章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法 2 第2章 參考文獻 3 2.1 纖維混凝土 3 2.1.1 高性能纖維混凝土 3 2.1.2 超高性能纖維混凝土 8 2.1.3 纖維混凝土於雙軸作用下之應力行為 12 2.2 剪力牆耐震性質 18 2.2.1 低矮型剪力牆 18 2.2.2 高性能纖維混凝土之剪力牆 20 2.2.3 超高性能纖維混凝土之剪力牆 22 2.3 設計與分析方法 31 2.3.1 ACI 318-14-11.5規範介紹 31 2.3.2 ACI 318-14-18.10規範介紹 34 2.3.3 軟化拉壓桿理論介紹 36 2.3.4 修正壓力場理論介紹 44 2.3.5 修正壓力場應用於結構牆分析 56 第3章 試體製作與試驗方法 67 3.1 施作流程 67 3.2 低矮型剪力牆設計 67 3.2.1 試體尺寸 67 3.2.2 設計實驗參數 68 3.2.3 試體命名 68 3.2.4 試體配筋簡介 69 3.2.5 試體腹版設計細節 72 3.3 低矮型剪力牆製作 78 3.3.1 腹版鋼筋之應變計黏貼 78 3.3.2 底梁、腹版之鋼筋籠製作與模板組立 81 3.3.3 底梁灌漿 83 3.3.4 頂梁之鋼筋籠製作與模板組立 85 3.3.5 腹版、頂梁灌漿 86 3.3.6 試體吊運 87 3.4 剪力牆之試驗架設 88 3.4.1 固定系統 89 3.4.2 施力系統 92 3.4.3 量測系統 94 3.5 材料試驗 96 3.5.1 拉力試驗 96 3.5.2 壓力試驗 97 3.6 實驗數據處理 98 3.6.1 牆體真實位移 98 3.6.2 牆體勁度 98 3.6.3 能量消散 99 3.6.4 鋼筋應變計 100 3.6.5 腹版混凝土之剪力變形 100 3.6.6 位移之剪力、撓曲與滑移分量計算 101 第4章 試驗結果與討論 103 4.1 材料試驗 103 4.1.1 圓柱壓力試驗 103 4.1.2 狗骨頭拉力試驗 105 4.1.3 鋼筋拉力試驗 107 4.2 剪力牆之反覆載重試驗 108 4.2.1 HSFRC-HS-0.83√(fc')試體反覆載重試驗 108 4.2.2 UHPC-HS-0.7√(fc')試體反覆載重試驗 114 4.2.3 UHPFRC-NS-0.5√(fc')試體反覆載重試驗 120 4.2.4 UHPFRC-HS-0.7√(fc')試體反覆載重試驗 127 4.3 實驗結果 133 4.3.1 遲滯迴圈圖 133 4.3.2 裂縫發展情形 147 4.3.3 破壞包絡線 151 4.3.4 勁度衰減圖 153 4.3.5 腹版底部之剪力滑移 154 4.3.6 施力梁之轉角 155 4.3.7 邊界構材撓曲主筋之應變 158 4.3.8 腹版垂直撓曲筋之應變 168 4.3.9 腹版水平剪力筋之應變 176 4.3.10 腹版混凝土之剪力變形 187 4.3.11 能量消散圖 192 4.3.12 剪力、撓曲與滑移位移於各位移比之分量 194 第5章 結構牆分析模型 196 5.1 超高性能混凝土結構牆模型驗證 196 5.1.1 UHPC模型參數設定 196 5.1.2 UHPC結構牆分析結果 203 5.2 超高性能纖維混凝土結構牆模型驗證 214 5.2.1 UHPFRC模型參數設定 214 5.2.2 UHPFRC結構牆分析結果 222 5.2.3 混凝土拉應力應變曲線之參數研究 233 第6章 結論與建議 243 參考文獻 245 附錄A 各試體之MCFT計算結果 256

    沈笠筠. (2016). 低矮型超高性能纖維混凝土結構牆受反覆載重之分析模型. 成功大學土木工程學系學位論文。
    洪崇展, 曾柏庭, 游文吉, & 黃忠良. (2011). 使用高性能纖維混凝土於耦合結構牆以提升地震行為表現之有效性. 結構工程, 26(4), pp.3-16.
    洪崇展, & 盧威廷. (2014). 複合耦合結構牆抗震系統之設計與非線性側推分析. 結構工程, 29(3), pp.40-58.
    洪崇展, 戴艾珍, 顏誠皜, 溫國威, & 張庭維. (2017). 新世代多功能性混凝土材料-高性能纖維混凝土. 土木水利, 44(1), pp.33-51.
    洪崇展, 盧威廷, & 鄭宇翔. (2017). 耦合結構牆性能化抗震設計法. 結構工程, 32(1), pp.49-70.
    洪詩晴. (2015). 高強度鋼筋於低矮剪力牆往復載重行為研究. 台灣科技大學營建工程學系學位論文。
    涂耀賢. (2005). 低矮型RC牆暨構架之側向載重位移曲線預測研究. 台灣科技大學營建工程學系學位論文。
    陳弘錡. (2015). 高強度鋼筋加勁超高性能纖維混凝土低矮型剪力牆之反覆載重行為. 中央大學土木工程學系學位論文。
    蕭輔沛,鍾立來,葉勇凱,簡文郁,沈文成,邱聰智,周德光,趙宜峰,翁樸文,楊耀昇,涂耀賢,柴駿甫,黃世建. (2013) .「校舍結構耐震評估與補強技術手冊(第三版)」.國家地震工程研究中心研究報告,NCREE-13-023.台北. 299頁。
    ACI Committee 318. (2015). Building Code Requirements for Structural Concrete (ACI 318-14): An ACI Standard: Commentary on Building Code Requirements for Structural Concrete (ACI 318R-14), an ACI Report. American Concrete Institute.
    American Society of Civil Engineers. (2007). Seismic rehabilitation of existing buildings (Vol. 41, No. 6). ASCE Publications.
    Athanasopoulou, A. (2010). Shear strength and drift capacity of reinforced concrete and high-performance fiber reinforced concrete low-rise walls subjected to displacement reversals. Doctoral dissertation, University of Michigan.
    Babanajad, S. K., Farnam, Y., & Shekarchi, M. (2012). Failure criteria and triaxial behaviour of HPFRC containing high reactivity metakaolin and silica fume. Construction and Building Materials, 29, pp.215-229.
    Chadwell, C. (2004). XTRACT-Cross Section Analysis Program for Structural Engineers. Imbsen Sofrware Systems.
    Cheng, M. Y., Fikri, R., & Chen, C. C. (2015). Experimental study of reinforced concrete and hybrid coupled shear wall systems. Engineering Structures, 82, pp.214-225.
    Cheng, M. Y., Hung, S. C., Lequesne, R. D., & Lepage, A. (2016). Earthquake-Resistant Squat Walls Reinforced with High-Strength Steel. ACI Structural Journal, 113(5), 1065.
    Cho, C. G., Ha, G. J., & Kim, Y. Y. (2008). Nonlinear model of reinforced concrete frames retrofitted by in-filled HPFRCC walls. Structural Engineering and Mechanics, 30(2), pp.211-223.
    Code, C. F. M. (1993). Comite Euro-International du Beton. Bulletin d’information, pp.213-214.
    Deeb, R., Ghanbari, A., & Karihaloo, B. L. (2012). Development of self-compacting high and ultra high performance concretes with and without steel fibres. Cement and concrete composites, 34(2), pp.185-190.
    Eurocode, C. E. N. (2005). 6: Design of masonry structures, Part 1–1: General rules for reinforced and unreinforced masonry structures. European Committee for Standardization, Belgium.
    Filippou, F. C., Bertero, V. V., & Popov, E. P. (1983). Effects of bond deterioration on hysteretic behavior of reinforced concrete joints.
    Foltz, R. R., Lee, D. H., & LaFave, J. M. (2017). Biaxial behavior of high-performance fiber-reinforced cementitious composite plates. Construction and Building Materials, 143, pp.501-514.
    Fukuyama, H., & Suwada, H. (2003). Basic test on compressive properties of high performance fiber reinforced cementitious composites (Part 2 Biaxial Loading Test). In Summaries of Technical Papers of Annual Meeting, Architectural Institute of Japan, pp.421-422.
    Gupta, R., DeLapp, J., Batrouni, G. G., Fox, G. C., Baillie, C. F., & Apostolakis, J. (1988). Phase transition in the 2 D XY model. Physical review letters, 61(17), 1996.
    Habel, K., Viviani, M., Denarié, E., & Brühwiler, E. (2006). Development of the mechanical properties of an ultra-high performance fiber reinforced concrete (UHPFRC). Cement and Concrete Research, 36(7), pp.1362-1370.
    Han, T. S., Feenstra, P. H., & Billington, S. L. (2003). Simulation of highly ductile fiber-reinforced cement-based composite components under cyclic loading. Structural Journal, 100(6), pp.749-757.
    Hassan, A. M. T., Jones, S. W., & Mahmud, G. H. (2012). Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). Construction and building materials, 37, pp. 874-882.
    Hitter, H. J. (1899). U.S. Patent No. 618,619. Washington, DC: U.S. Patent and Trademark Office.
    Hoffman, N. S. (2010). Constitutive relationships of prestressed steel fiber concrete membrane elements. University of Houston.
    Hsu, T. T., & Mo, Y. L. (1985, May). Softening of Concrete in Torsional Members-Theory and Tests. In Journal Proceedings. Vol. 82, No. 3, pp. 290-303.
    Hsu, T. T. (1988). Softened truss model theory for shear and torsion. Structural Journal, 85(6), pp.624-635.
    Hung, C. C. (2012). Modified full operator hybrid simulation algorithm and its application to the seismic response simulation of a composite coupled wall system. Journal of Earthquake Engineering, 16(6), pp.759-776.
    Hung, C. C., & Chen, Y. S. (2016). Innovative ECC jacketing for retrofitting shear-deficient RC members. Construction and Building Materials, 111, pp.408-418.
    Hung, C. C., & Chueh, C. Y. (2016). Cyclic behavior of UHPFRC flexural members reinforced with high-strength steel rebar. Engineering Structures, 122, pp.108-120.
    Hung, C. C., & El-Tawil, S. (2010). Hybrid Rotating/Fixed-Crack Model for High-Performance Fiber-Reinforced Cementitious Composites. ACI Materials Journal, 107(6).
    Hung, C. C., & El-Tawil, S. (2011). Seismic behavior of a coupled wall system with HPFRC materials in critical regions. Journal of Structural Engineering, 137(12), pp.1499-1507.
    Hung, C. C., Li, H., & Chen, H. C. (2017). High-strength steel reinforced squat UHPFRC shear walls: Cyclic behavior and design implications. Engineering Structures, 141, pp.59-74.
    Hung, C. C., & Lu, W. T. (2015). Towards achieving the desired seismic performance for hybrid coupled structural walls. Earthquakes and Structures, 9(6), pp.1251-1272.
    Hung, C. C., & Lu, W. T. (2017). Tall Hybrid Coupled Structural Walls: Seismic Behavior and Design Suggestions. International Journal of Civil Engineering, pp.1-16.
    Hung, C. C., & Lu, W. T. (2017). A performance-based design method for coupled wall structures. Journal of Earthquake Engineering, 21(4), pp.579-603.
    Hung, C. C., Su, Y. F., & Yu, K. H. (2013). Modeling the shear hysteretic response for high performance fiber reinforced cementitious composites. Construction and Building Materials, 41, pp.37-48.
    Hung, C. C., & Su, Y. F. (2013). On modeling coupling beams incorporating strain-hardening cement-based composites. Computers and Concrete, 12(4), pp.565-583.
    Hung, C. C., & Su, Y. F. (2016). Medium-term self-healing evaluation of Engineered Cementitious Composites with varying amounts of fly ash and exposure durations. Construction and Building Materials, 118, pp.194-203.
    Hung, C. C., Su, Y. F., & Hung, H. H. (2017). Impact of natural weathering on medium-term self-healing performance of fiber reinforced cementitious composites with intrinsic crack-width control capability. Cement and Concrete Composites, 80, pp.200-209.
    Hung, C.-C., Su, Y.-F., Su, Y.-M. (2017). Mechanical properties and self-healing evaluation of strain-hardening cementitious composites with high volumes of hybrid pozzolan materials. Composites Part B: Engineering.
    Hung, C. C., & Yen, W. M. (2014). Experimental evaluation of ductile fiber reinforced cement-based composite beams incorporating shape memory alloy bars. Procedia Engineering, 79, pp.506-512.
    Hung, C. C., Yen, W. M., & Yu, K. H. (2016). Vulnerability and improvement of reinforced ECC flexural members under displacement reversals: experimental investigation and computational analysis. Construction and Building Materials, 107, pp.287-298.
    Hwang, S. J., & Lee, H. J. (1999). Analytical model for predicting shear strengths of exterior reinforced concrete beam-column joints for seismic resistance. Structural Journal, 96(5), pp.846-858.
    Hwang, S. J., & Lee, H. J. (2000). Analytical model for predicting shear strengths of interior reinforced concrete beam-column joints for seismic resistance. Structural Journal, 97(1), pp.35-44.
    Hwang, S. J., Fang, W. H., Lee, H. J., & Yu, H. W. (2001). “Analytical Model for Predicting Shear Strength of Squat Walls,” Journal of Structural Engineering, 127(1), pp.43-50.
    Hwang, S. J., & Lee, H. J. (2002). Strength prediction for discontinuity regions by softened strut-and-tie model. Journal of Structural Engineering, 128(12), pp.1519-1526.
    ITG, ACI. (2007). 4.3 R-07. Specification for High-Strength Concrete in Moderate to High Seismic Applications, "American Concrete Institute, 10.
    Joo Kim, D. (2009). Strain rate effect on high performance fiber reinforced cementitious composites using slip hardening high strength deformed steel fibers. Doctoral dissertation, University of Michigan.
    Kang, S. T., Lee, Y., Park, Y. D., & Kim, J. K. (2010). Tensile fracture properties of an ultra high performance fiber reinforced concrete (UHPFRC) with steel fiber. Composite Structures, 92(1), pp.61-71.
    Li, X., Li, M., & Song, G. (2015). Energy-dissipating and self-repairing SMA-ECC composite material system. Smart Materials and Structures, 24(2), 025024.
    Li, Y. A., & Hwang, S. J. (2016). Prediction of Lateral Load Displacement Curves for Reinforced Concrete Short Columns Failed in Shear. Journal of Structural Engineering, 143(2), 04016164.
    Lim, E., Hwang, S. J., Wang, T. W., & Chang, Y. H. (2016). An Investigation on the Seismic Behavior of Deep Reinforced Concrete Coupling Beams. ACI Structural Journal, 113(2), 217.
    Lim, E., Hwang, S. J., Cheng, C. H., & Lin, P. Y. (2016). Cyclic Tests of Reinforced Concrete Coupling Beam with Intermediate Span-Depth Ratio. ACI Structural Journal, 113(3), 515.
    Lu, L., Tadepalli, P. R., Mo, Y. L., & Hsu, T. T. C. (2016). Simulation of prestressed steel fiber concrete beams subjected to shear. International Journal of Concrete Structures and Materials, 10(3), pp.297-306.
    Mazzoni, S., McKenna, F., & Fenves, G. L. (2005). OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center, pp.264.
    Pang, X. B., & Hsu, T. T. (1996). Fixed angle softened truss model for reinforced concrete. ACI Structural Journal, 93(2), pp.197-207.
    Parra-Montesinos, G. J., Canbolat, B. A., & Jeyaraman, G. (2006, April). Relaxation of confinement reinforcement requirements in structural walls through the use of fiber reinforced cement composites. In 8th National Conference on Earthquake Engineering.
    Paulay, T., Priestley, M. J. N., & Synge, A. J. (1982, July). Ductility in earthquake resisting squat shear walls. In Journal Proceedings. Vol. 79, No. 4, pp.257-269.
    Paulay, T., & Priestley, M. N. (1992). Seismic design of reinforced concrete and masonry buildings.
    Richard, P., & Cheyrezy, M. (1995). Composition of reactive powder concretes. Cement and concrete research, 25(7), pp.1501-1511.
    Rossi, P. (1997). High performance multimodal fiber reinforced cement composites (HPMFRCC): the LCPC experience. ACI materials journal, 94(6), pp.478-483.
    Salonikios, T. N., Kappos, A. J., Tegos, I. A., & Penelis, G. G. (2000). Cyclic load behavior of low-slenderness reinforced concrete walls: failure modes, strength and deformation analysis, and design implications. ACI Structural Journal, 97(1), pp.132-141.
    Schachinger, I., Hilbig, H., Stengel, T., & Fehling, E. (2008, March). Effect of curing temperature at an early age on the long-term strength development of UHPC. In 2nd International Symposium on Ultra High Performance Concrete. No. 10, pp.205-213.
    Schafer, K. (1996). Strut-and-tie models for the design of structural concrete. National Cheng Kung University, Department of Civil Engineering.
    Sittipunt, C., & Wood, S. L. (1995). Influence of web reinforcement on the cyclic response of structural walls. ACI Structural Journal, 92(6), pp.745-756.
    Tadepalli, P. R., Dhonde, H. B., Mo, Y. L., & Hsu, T. T. (2015). Shear strength of prestressed steel fiber concrete I-beams. International Journal of Concrete Structures and Materials, 9(3), pp.267-281.
    Tummers, B. (2016). DataThief III. 2006. URL http://datathief. org.
    Vecchio, F. J., & Collins, M. P. (1986, March). The modified compression-field theory for reinforced concrete elements subjected to shear. In Journal Proceedings. Vol. 83, No. 2, pp.219-231.
    Vecchio, F. J., & Collins, M. P. (1988). Predicting the response of reinforced concrete beams subjected to shear using modified compression field theory. ACI Structural Journal, 85(3), pp.258-268.
    Vecchio, F. J. (1989). Nonlinear finite element analysis of reinforced concrete membranes. ACI Structural Journal, 86(1), pp.26-35.
    Vecchio, F. J., & Collins, M. P. (1993). Compression response of cracked reinforced concrete. Journal of structural engineering, 119(12), pp.3590-3610.
    Walraven, J. C. (1981). Fundamental analysis of aggregate interlock. Journal of the Structural Division, 107(11), pp.2245-2270.
    Walraven, J. C., & Reinhardt, H. W. (1981). Theory and experiments on the mechanical behaviour of cracks in plain and reinforced concrete subjected to shear loading. HERON, 26 (1A), 1981.
    Weng, P. W., Li, Y. A., Tu, Y. S., & Hwang, S. J. (2017). Prediction of the Lateral Load-Displacement Curves for Reinforced Concrete Squat Walls Failing in Shear. Journal of Structural Engineering, 143(10), 04017141.
    Wibowo, L. S., Cheng, M. Y., Huang, F. C., & Tai, T. Y. (2017). Effectiveness of High-Strength Hoops in High-Strength Flexural Members. ACI Structural Journal, 114(4), 887.
    Wille, K., Kim, D. J., & Naaman, A. E. (2011). Strain-hardening UHP-FRC with low fiber contents. Materials and Structures, 44(3), pp.583-598.
    Whitney, H. (1932). Congruent graphs and the connectivity of graphs. American Journal of Mathematics, 54(1), pp.150-168.
    Yu, H. W., & Hwang, S. J. (2005). Evaluation of softened truss model for strength prediction of reinforced concrete squat walls. Journal of engineering mechanics, 131(8), pp.839-846.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE