| 研究生: |
石淳方 Shih, Chun-Feng |
|---|---|
| 論文名稱: |
時間延遲下之動態供應鏈流程規劃 The Dynamic Supply Chain Process Planning with Time Delay |
| 指導教授: |
林正章
Lin, Cheng-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 交通管理科學系 Department of Transportation and Communication Management Science |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 動態供應鏈 、動態均衡 、流程規劃 、依時性 、延遲 |
| 外文關鍵詞: | Dynamic Supply Chain, Dynamic equilibrium, Operation Planning, Time-Dependent, Delay |
| 相關次數: | 點閱:131 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
以往的供應鏈研究模式,在探討供應鏈問題時主要著重在供應鏈中每個環節的貨量與成本,而並沒有將時間的因素列入考慮。因此本研究提出時間延遲下的動態供應鏈流程規劃模式,即在供應鏈流程中各環節的貨物量皆是與時間相依,將供應鏈流程中所發生的延遲現象透過車流理論建構為數學模型。
本篇將車流理論中的動態均衡概念應用於供應鏈流程規劃中,在供應鏈流程中的運輸程序與轉運程序考慮時間延遲,探討供應商之最佳供貨策略。建構以總供應鏈成本最小的數學模式,模式由非線性限制式組成為具有凸集合特性之凸非線性規劃問題(convex programming)。研究中設計三種供應鏈測試架構情境進行數值測試,包括:(1)三階層單一供應商單一物流中心供應鏈架構,即供應鏈中包含一家供應商與一間物流中心以及一家零售商;(2) 三階層兩供應商單一物流中心供應鏈架構,即供應鏈中包含兩家供應商與一間物流中心以及一家零售商;(3) 三階層兩供應商兩物流中心供應鏈架構,即供應鏈中包含兩家供應商與兩間物流中心以及一家零售商。透過最佳化軟體Lingo對於所建構的數學模式進行最佳化測試。
本研究透過數值分析的結果中發現,在發生時間延遲的情況下先適當的提高供貨量再逐步減少供貨將為最適當的供貨策略,而增加供應商數量並分散存貨時能降低延遲的發生並可以降低供應鏈的總成本。若訂貨時間太短時,因為會產生貨物擁擠而導致在供應鏈流程中發生延遲使得到貨量減少,而當訂貨的時間範圍增加時,可減少供應鏈流程中延遲的發生並降低總成本。本研究希冀透過研究成果為供應鏈流程規劃策略提供建議,並供業界與學術界於未來研究發展使用。
In this research, we add the time-delay concept in supply chain and develop our mathematic model by the dynamic equilibrium theory. The model’s objective function is to minimize the total cost, and it is composed of non-linear constrains that become a convex programming. By assuming three scenarios: (1) three-echelon supply chain architecture with one supplier, one logistic center and one retailer. (2) three-echelon supply chain architecture with two suppliers, one logistic center and one retailer. (3) three-echelon supply chain architecture with two suppliers, two logistic center and one retailer. We can use those three situations to analyze and verify the correctness of our model. And by changing the time required to meet the demand of the time range ,from to change the time to explore the best order time point. Finally, we get the result from the numerical analysis found that in the case of time delay, the appropriate increase in supply and then gradually reduce the supply will be the most appropriate supply strategy, and decentralized inventory can reduce the occurrence of delay and can reduce the total cost of the supply chain. If the order time is too short, it will cause the goods congestion and lead to delay to reduce the arrival volume. And when the time range of the order increases, the occurrence of the delay and the total cost of supply chain can be reduced.
1. 卓奕志. (2009). 動態供應鏈之流程規劃. 成功大學交通管理科學系學位論文, 1-72.
2. 舒波, & 李勝芬. (2005). 動態供應鏈中節點企業強壯性評價指標體系的構建. 技術經濟, (3), 61-64.
3. 孫軍峰, & 左秀峰. (2008). 供應鏈分散庫存控制與集中库存控制的比较分析. In 第 12 屆全國信息管理與工業工程學術會議論文.
4. Beamon, B. M. (1998). Supply chain design and analysis:: Models and methods. International journal of production economics, 55(3), 281-294.
5. Croxton, K. L., & Zinn, W. (2005). Inventory considerations in network design. Journal of Business Logistics, 26(1), 149-168.
6. Chang, C. T., & Lo, T. Y. (2009). On the inventory model with continuous and discrete lead time, backorders and lost sales. Applied Mathematical Modelling,33(5), 2196-2206.
7. Chiu, Y. C., Bottom, J., Mahut, M., Paz, A., Balakrishna, R., Waller, T., & Hicks, J. (2011). Dynamic traffic assignment: A primer. Transportation Research E-Circular, (E-C153).
8. Daganzo, C. F. (1994). The cell transmission model: A dynamic representation of highway traffic consistent with the hydrodynamic theory. Transportation Research Part B: Methodological, 28(4), 269-287.
9. Das, C., & Tyagi, R. (1997). Role of inventory and transportation costs in determining the optimal degree of centralization. Transportation Research Part E: Logistics and Transportation Review, 33(3), 171-179.
10. Friesz, T. L., Luque, J., Tobin, R. L., & Wie, B. W. (1989). Dynamic network traffic assignment considered as a continuous time optimal control problem.Operations Research, 37(6), 893-901.
11. Friesz, T. L., Bernstein, D., Smith, T. E., Tobin, R. L., & Wie, B. W. (1993). A variational inequality formulation of the dynamic network user equilibrium problem. Operations Research, 41(1), 179-191.
12. Feng, C. M., Yuan, C. Y., & Lin, Y. C. (2005). The system framework for evaluating the effect of collaborative transportation management on supply chain. Journal of the Eastern Asia Society for Transportation Studies, 6, 2837-2851.
13. Friesz, T. L., Lee, I., & Lin, C. C. (2011). Competition and disruption in a dynamic urban supply chain. Transportation Research Part B: Methodological,45(8), 1212-1231.
14. Glock, C. H. (2012). Lead time reduction strategies in a single-vendor–single-buyer integrated inventory model with lot size-dependent lead times and stochastic demand. International Journal of Production Economics, 136(1), 37-44.
15. Helo, P. T. (2000). Dynamic modelling of surge effect and capacity limitation in supply chains. International Journal of Production Research, 38(17), 4521-4533.
16. Heydari, J. (2014). Lead time variation control using reliable shipment equipment: An incentive scheme for supply chain coordination. Transportation Research Part E: Logistics and Transportation Review, 63, 44-58.
17. Hou, Y., Xiong, Y., Wang, X., & Liang, X. (2014). The effects of a trust mechanism on a dynamic supply chain network. Expert Systems with Applications, 41(6), 3060-3068.
18. Han, K., Piccoli, B., & Friesz, T. L. (2016). Continuity of the path delay operator for dynamic network loading with spillback. Transportation Research Part B: Methodological, 92, 211-233.
19. Lin, C. T., Chen, C. B., & Hsieh, H. J. (2001). Effects of centralization on expected profits in a multi-location newsboy problem. Journal of the Operational Research Society, 52(7), 839-841.
20. Moon, C., Kim, J., & Hur, S. (2002). Integrated process planning and scheduling with minimizing total tardiness in multi-plants supply chain. Computers & Industrial Engineering, 43(1), 331-349.
21. Nie, X., & Zhang, H. M. (2005). Delay-function-based link models: their properties and computational issues. Transportation Research Part B: Methodological, 39(8), 729-751.
22. Pan, J. C. H., & Yang, J. S. (2002). A study of an integrated inventory with controllable lead time. International Journal of Production Research, 40(5), 1263-1273.
23. Pan, J. C. H., Lo, M. C., & Hsiao, Y. C. (2004). Optimal reorder point inventory models with variable lead time and backorder discount considerations.European Journal of Operational Research, 158(2), 488-505.
24. Qiu, R. Z., & Huang, X. Y. (2007). A Supply Chain Dynamic Model with Time-delay and Uncertain Parameters and Its Robust H· Control. INFORMATION AND CONTROL-SHENYANG-, 36(2), 240.
25. Riddalls, C. E., & Bennett, S. (2002). Production-inventory system controller design and supply chain dynamics. International Journal of Systems Science, 33(3), 181-195.
26. Simchi-Levi, D., Simchi-Levi, E., & Kaminsky, P. (1999). Designing and managing the supply chain: Concepts, strategies, and cases. New York: McGraw-Hill.
27. Tallon, W. J. (1993). The impact of inventory centralization on aggregate safety stock: the variable supply lead time case. Journal of Business Logistics, 14(1), 185.
28. Teo, C. P., Ou, J., & Goh, M. (2001). Impact on inventory costs with consolidation of distribution centers. IIE transactions, 33(2), 99-110.
29. Tuncel, G., & Alpan, G. (2010). Risk assessment and management for supply chain networks: A case study. Computers in Industry, 61(3), 250-259.
30. Wikner, J., Towill, D. R., & Naim, M. (1991). Smoothing supply chain dynamics. International Journal of Production Economics, 22(3), 231-248.
31. Yang, G., Ronald, R. J., & Chu, P. (2005). Inventory models with variable lead time and present value. European Journal of Operational Research, 164(2), 358-366.
校內:立即公開