簡易檢索 / 詳目顯示

研究生: 溫朋軒
Wen, Peng-Xuan
論文名稱: 太空載具降落規劃與系統控制
Landing System Control and Landing Planning for Space Vehicles
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 61
中文關鍵詞: 線性規劃非線性規劃增量式非線性動態返算逆向步進控制
外文關鍵詞: Linear Programming, Nonlinear Programming, Incremental Nonlinear Dynamic Inversion, Backstepping Control
相關次數: 點閱:133下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討兩種不同的太空載具自主降落控制系統,以完成著陸星球表面與火箭回收返地之任務目標。根據各自的航行尺度與環境建立不同的六自由度動態方程式,設定座標描述載具的各項物理狀態,建立載具的模型動態和致動器的限制條件並且以線性規劃與非線性規劃的方式完成載具的控制率實現,應用增量式非線性動態返算與逆向步進控制對載具的位置以及姿態進行追蹤控制。降落規劃方面參考Apollo 11的登月任務以及Space X 的一級火箭回收任務,設計降落軌跡和降落過程中的限制條件,用分段討論的方式設定每一階段須完成之任務目標,其中採用Hamiltonian函數解決有複雜限制條件的最佳劃軌跡問題,並且以curve fitting與shooting method的方式建立出預期軌跡的時間函數。基於以上所設計的載具控制架構進行模擬飛行並且分析載具噴嘴的各項輸出和其造成的物理狀態影響,驗證設定之終端條件是否滿足和獲取其餘未設定的終端狀態進入下一階段,而最終階段的終端條件應滿足降落時所具備的所有狀態條件,本研究以增量式非線性動態返算作為位置控制器,其作用為對載具運行環境影響的影響可以不必考慮入控制率內僅考慮與致動器相關的狀態函數即可完成軌跡之追蹤,而姿態追蹤則採用逆向步進控制的方式使載具姿態快速收斂,再利用有限制條件的最佳化方法設計噴嘴出力策略,使其能在噴嘴的物力限制條件內完成載具控制所需的力與力矩,最後根據載具體座標z軸的出力大小和姿態變化的控制使得載具完成降落之任務,由於六自由度由拉方程式為三維空間下運行載具都需要遵守的而其降落策略則是以載具為體座標z軸作為主推力的特性所設計的,只需將載具致動器的出力影響考慮進最佳化分配策略的限制條件做改寫,此套控制系統即可套用相似之載具如旋翼機或其他火箭的降落規劃。

    This research investigates two different autonomous landing control systems for space vehicles, aiming to achieve the mission objectives of landing on the surface of celestial bodies and rocket recovery to Earth. Different six-degree-of-freedom dynamic equations are established based on their respective flight scales and environments. Coordinate systems are set to describe the various physical states of the vehicles. The models' dynamics and actuator constraints are formulated, and both linear and nonlinear programming methods are used to achieve control allocation for the vehicles.
    Incremental nonlinear dynamic inversion and inverse stepwise control are applied for tracking control of the vehicle's position and attitude. Landing planning refers to the Apollo 11 lunar mission and SpaceX's first-stage rocket recovery mission. Trajectories for landing and constraints during the landing process are designed. The mission objectives for each stage are set through a segmented discussion. A Hamiltonian function is used to solve the optimal trajectory problem with complex constraints. The expected trajectory's time functions are established using curve fitting and shooting methods.
    Based on the designed vehicle control architecture, flight simulations are conducted to analyze the outputs of the vehicle's thrusters and their effects on the physical states. The fulfillment of the set terminal conditions is verified, and the remaining unset terminal states are acquired to proceed to the next stage. The terminal conditions in the final stage must satisfy all state requirements during landing.

    論文摘要 i ABSTRACT iii 本文誌謝 xxi 本文目錄 xxii 圖目錄 xxiv 表目錄 xxvii 參數表 xxviii 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 文獻資料回顧 2 第2章 載具動態模型建立 4 2.1 座標定義 4 2.2 數學模型建立 6 2.3 動態方程式 10 第3章 著陸載具登月任務 14 3.1 煞車階段 16 3.2 迫近階段 27 3.3觸地階段 31 第4章 發射載具回收任務 36 4.1 反轉階段 38 4.2 姿態校正階段 42 4.3 動力減速階段 46 4.4 垂直降落階段 51 第5章 結論與未來展望 56 參考文獻 58 附錄. Optimal Theory 59

    [1] H. Chu, L. Ma, K. Wang, Z. Shao, and Z. Song, "Trajectory optimization for lunar soft landing with complex constraints," Advances in Space Research, vol. 60, no. 9, pp. 2060-2076, 2017/11/01/ 2017, doi: https://doi.org/10.1016/j.asr.2017.07.024.
    [2] D. H. Cho, D. Kim, and H. Leeghim, "Optimal Lunar Landing Trajectory Design for Hybrid Engine," Mathematical Problems in Engineering, vol. 2015, pp. 1-8, 2015.
    [3] G. Cheng, W. Jing, and C. Gao, "Recovery trajectory planning for the reusable launch vehicle," Aerospace Science and Technology, vol. 117, p. 106965, 2021/10/01/ 2021, doi: https://doi.org/10.1016/j.ast.2021.106965.
    [4] B. P. Acquatella and Q. P. Chu, "Agile Spacecraft Attitude Control: an Incremental Nonlinear Dynamic Inversion Approach," IFAC-PapersOnLine, vol. 53, no. 2, pp. 5709-5716, 2020/01/01/ 2020, doi: https://doi.org/10.1016/j.ifacol.2020.12.1598.
    [5] P. B. Acquatella, W. Falkena, E.-J. Van Kampen, and Q. P. Chu, Robust Nonlinear Spacecraft Attitude Control using Incremental Nonlinear Dynamic Inversion. 2012.
    [6] J. Yang, Z. Cai, J. Zhao, Z. Wang, Y. Ding, and Y. Wang, "INDI-based aggressive quadrotor flight control with position and attitude constraints," Robotics and Autonomous Systems, vol. 159, p. 104292, 2023/01/01/ 2023, doi: https://doi.org/10.1016/j.robot.2022.104292.
    [7] Y. Guo, J.-h. Guo, and S.-m. Song, "Backstepping control for attitude tracking of the spacecraft under input saturation," Acta Astronautica, vol. 138, pp. 318-325, 2017/09/01/ 2017, doi: https://doi.org/10.1016/j.actaastro.2017.06.002.
    [8] A. D. Sabiha, M. A. Kamel, E. Said, and W. M. Hussein, "ROS-based trajectory tracking control for autonomous tracked vehicle using optimized backstepping and sliding mode control," Robotics and Autonomous Systems, vol. 152, p. 104058, 2022/06/01/ 2022, doi: https://doi.org/10.1016/j.robot.2022.104058.
    [9] P. Simplício, A. Marcos, and S. Bennani, "Launcher flight control design using robust wind disturbance observation," Acta Astronautica, vol. 186, pp. 303-318, 2021/09/01/ 2021, doi: https://doi.org/10.1016/j.actaastro.2021.05.044.
    [10] D. Chen, Y. Zhong, Y. Liao, and L. Li, "Review of Multiple Criteria and Multiple Constraint-level Linear Programming," Procedia Computer Science, vol. 17, pp. 158-165, 2013/01/01/ 2013, doi: https://doi.org/10.1016/j.procs.2013.05.022.
    [11] T. Mai and D. Mortari, "Theory of functional connections applied to quadratic and nonlinear programming under equality constraints," Journal of Computational and Applied Mathematics, vol. 406, p. 113912, 2022/05/01/ 2022, doi: https://doi.org/10.1016/j.cam.2021.113912.

    無法下載圖示 校內:2028-08-05公開
    校外:2028-08-05公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE