| 研究生: |
蘇暐翔 Su, Wei-Xiang |
|---|---|
| 論文名稱: |
奈米金屬轉印技術應用於製作平面與曲面之抗反射結構 Metal Contact Transfer Lithography for Anti-reflection Structure Fabrication on Planar and Curved Surface |
| 指導教授: |
李永春
Lee, Yung-Chun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 接觸轉印與遮罩植入式微影技術 、次微米結構 、曲面 、抗反射 |
| 外文關鍵詞: | CMEL, anti-reflection, sub-micron structures, optical lens, optical devices |
| 相關次數: | 點閱:147 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究根據之前所發展的接觸轉印與遮罩植入式顯影劑技術(Contact transferred and Mask Embedded Lithography),分別於平面與曲面的玻璃基板上進行週期性陣列式次微米抗反射結構,增加其光學效益。實驗步驟首先是於基板表面上轉印奈米金屬點陣列,並利用這些金屬點作為蝕刻遮罩,對基板進行乾式蝕刻製程完成次微米抗反射結構製作,利用這些結構外型造成漸變折射率效果,減少光學反射、增加基板穿透率、消除眩光現象等。本研究同時搭配有限元素軟體COMSOL Multiphysics®進行結構尺寸與光學參數的分析,輔助設計所需抗反射結構的尺寸。
實驗製程上,先以高分子材料(PDMS)對矽模仁翻模獲得實驗所需的軟性模仁,接著利用金屬轉印方式於平面光學玻璃上佈值週期300nm、線寬200nm之六角最密堆積排列奈米金屬點陣列,後續利用感應耦合電漿離子蝕刻系統(ICP)進行乾式蝕刻,調整蝕刻氣體流量、射頻功率與蝕刻時間,成功於平面玻璃上蝕刻出上寬200 nm、下寬290 nm、高度由 120 nm、150 nm、180 nm、200 nm的半椎狀外貌,完成次微米抗反射結構製作。並利用分光光譜儀量測此單面抗反射結構的光學玻璃穿透率,其最大穿透率增益效果約3.4%。接著利用軟性模仁易撓曲貼附凹凸表面的特性,於曲率25.8 mm,直徑12.7 mm曲面平凸透鏡上進行抗反射結構製作,目的在不影響透鏡原本的成像品質下,增加光學穿透率、並減少眩光的產生。本實驗技術再於搭配金屬轉印與乾式蝕刻製程,能輕易的製作奈米等級的結構達到抗反射效果,此成果應用層面甚廣,例如手機、相機的鏡頭、顯示器、提升太陽能電池效率等。
This paper fabricates anti-reflection nanostructures on planar and curved glass substrates based on contact transferred and masked embedded Lithography (CMEL). It utilizes UV-PDMS molds replicated from silicon molds to transfer metallic and patterned nano-disks to a thin photoresist film coated on a glass substrate. These arrayed metallic nano-disked are used as the etching barrier in dry etching process. After O_2 plasma and CF_4 plasma etching, nanostructures can be successfully fabricated on glass substrates. These truncated conical nanostructures are hexagonally arrayed with a center-to-center pitch of 300 nm, 150 nm in height, 200 nm in upper pillar diameter, and 290 nm in bottom pillar diameter. By spectrophotometer, the transmittance of glass with single sided anti-reflection increase 3.4 %. Furthermore, using the flexible UV-PDMS mold to contact a curved glass substrate, anti-reflection nanostructures are formed by CMEL process to increase the optical transmission and obtain anti-glare effect on the curved glass surface. Applications of this work can be found in a broad range of optical system such as camera or cellphone lenses, optical lenses, absorption enhancement of solar cell, and improving transmittance of optical systems.
[1] R. F. Pease and S. Y. Chou, “Lithography and other patterning techniques for future electronics,” Proceedings of the IEEE, vol. 96, pp. 248-270, 2008.
[2] S. Chattopadhyay, Y.F. Huang, Y.J. Jen, ”Anti-reflecting and photonic nanostructure,” Material Science and Engineer R 69, pp. 1-35, 2010.
[3] C. Bernhard and W. H. Miller, “A corneal nipple patter in insect compound eyes,” Acta Physiologica Scandinavica, vol. 56, pp. 385-386, 1962.
[4] W. H. Southwell, “Pyramid-array surface-relief structures producing antireflection index matching on optical surfaces,” Journal of the Optical Society of America A, vol. 8, pp. 549-553, 1991.
[5] G. S. Watson and J. A. Watson, “Natural nano-structures on insects-possible functions of ordered arrays characterized by atomic force microscopy,” Applied Surface Science, Vol. 235, pp. 139-144, 2004.
[6] A. Yoshida, M. Motoyama, A. Kosaku, and K. Miyamoto, “Antireflective nanoprotuberance array in the transparent wing of hawkmoth, Cephonodes hylas,” Zoological Science, vol. 14, pp. 737-741, 1997.
[7] R. Dewan, S. Fischer, V. B. Meyer-Rochow, Y. Ozdemir, S. Hamraz, and D. Knipp, “Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells,” Bioinspiration & Biomimetics, vol. 7, 2012.
[8] G. Thompson, G. Wood, and J. Scully, “Corrosion : aqueous processes and passive films,” Treatise on Material Science and technology, vol. 23, p. 206, 1983.
[9] J. Kwon, H. Shin, Y. Seo, B. Kim, H. Lee, and J. Lee, “Simple fabrication method of hierarchical nano-pillars using aluminum anodizing processes,” Current Applied Physics, vol. 9, pp. e81-e85, 2009.
[10] T. G. Chen, P. Yu, Y. L. Tsai, C. H. Shen, J. M. Shieh, M. A. Tsai, et al., “Nano-patterned glass superstrates with different aspect ratios for enhanced light harvesting in a Si:H thin film solar cells,” Optics Express, vol. 20, pp. A412-A417, 2012.
[11] Y. C. Lee and C. Y. Chiu, “Micro-nano-lithography based on the contact transfer of thin film and mask embedded etching,” Journal of Micromechanics and Microengineering, vol. 18, p. 075013, 2008.
[12] 張丁仁,李永春, “金屬轉印技術與乾式蝕刻製程應用於次微米結構與抗反射光學元件之製作”, 國立成功大學機械工程學系碩士論文, 2014.
[13] P. Ruchhoeft, M. Colburn, B. Choi, H. Nounum S. Johnson, T. Bailet, et al., “Patterning curved surfaces: Template generation by ion beam proximity lithography and relief transfer by step and flash imprint lithography,” Journal of Vacuum Science & Technology B, vol. 17, pp. 2965-2969, 1999.
[14] F. S. Cheng, S. Y. Yang, S. C. Nian, and L. A. Wang, “Soft mold and gasbag pressure mechanism for patterning submicron patterns onto a large concave substrate,” Journal of Vacuum Science & Technology B, vol. 24, pp. 1724-1727, 2006.
[15] Takashi Yanagishita, Takeshi Hidaka, Mari Suzuki, and Hideki Masuda, “Polymer lenses with antireflection structures prepared using anodic porous alumina molds,” Journal of Vacuum Science & Technology B, 2016.
[16] Xin Ye, Jin Huang, Feng Geng, Laixi Sun, et. al, “Broadband Antireflection subwavelength structures on Fused Silica Using lower Temperatures Normal Atmosphere Thermal Dewetted Au Nanopatterns,” IEEE photonics Journal, vol. 8, Number. 1, 2016.
[17] M. Beck, M. Graczyk, I. Maximov, E. L. Sarwe, T. Ling, M. Keil, et al., “Improving stamps for 10 nm level wafer scale nanoimprint lithography,” Microelectronic Engineering, vol. 61m pp. 441-448, 2002.
[18] M. G. Kang and L. J. Guo, “Metal transfer assisted nanolithography on rigid and flexible substrates,” Journal of Vacuum Science & Technology B, vol. 26, pp. 2421-2425, 2008.
校內:2021-07-25公開