| 研究生: |
孫鈺欽 Sun, Yu-Chin |
|---|---|
| 論文名稱: |
開發具有高度順向之導電性奈米複合纖維作為功能型細胞支架之研究 Development of conductive composite nanofibers with highly oriented structures as functional tissue engineering scaffolds |
| 指導教授: |
陳美瑾
Chen, Mei-Chin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 62 |
| 中文關鍵詞: | 組織工程 、靜電紡織 、組織修復 、聚苯胺 |
| 外文關鍵詞: | tissue engineering, electrospinning, tissue regeneration, polyaniline |
| 相關次數: | 點閱:74 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生醫材料與細胞間的交互作用對於調控細胞的貼附、遷徙、增生與分化等
生理行為,扮演著相當重要的角色。本研究透過將生醫材料與刺激訊號
(stimulatory cues)結合,開發出可調控細胞幾何形態並同時提供電刺激之功能型
奈米複合纖維,作為新一代的組織培養支架。實驗中,以生物相容性高分子
poly--caprolactone (PCL)與導電性高分子polyaniline (PANi)溶液進行摻混,並
利用含有方向性磁場之收集器進行靜電紡織,成功製備出具有高度順向之導電
性(PCL/PANi)奈米複合纖維。實驗結果證實,含有1 wt%、2 wt%及3 wt% PANi
之奈米複合纖維其導電度與纖維直徑分別為16.24 1.05 mS/cm、27.47 4.96
mS/cm、63.57 6.67 mS/cm 與300.2 54.7 nm、296.9 55.6 nm、257.9 54.5 nm。
由DSC、FTIR 與TGA 的分析結果證實,PCL 與PANi 可均勻混合,彼此之間
並無化學鍵結形成,且PANi 在奈米複合纖維中的含量與摻混時相符。利用XPS
更進一步證明了PANi 的確存在於纖維表面,使得纖維具有導電性。機械性質
方面,隨著PANi 含量的上升,奈米纖維的抗張強度與楊氏模數隨之上升,但
延伸率則是隨之下降。此外,將奈米複合纖維以PBS 浸泡1 週、2 週、4 週後,
纖維之表面型態並無明顯之變化,證實纖維之穩定性。體外細胞實驗部分,本
The interaction of biomaterial and cell plays an important role in controlling
cell adhesion, migration, proliferation, differentiation. In this study we developed
composite nanofiber mats which can provide the topographic cue and electrical
stimulation to the cultured cells simultaneously, as a new generation of tissue
regeneration scaffold. The composite nanofibers were fabricated by electrospinning
of poly--caprolactone (PCL)/polyaniline (PANi) blend solution with the
magnetic-field-assisted electrospinning (MFAES) apparatus. The conductivity and
diameter of the obtained nanofibers with 1 wt%, 2 wt%, 3 wt% PANi content were
16.24 1.05 mS/cm, 27.47 4.96 mS/cm, 63.57 6.67 mS/cm and 300.2 54.7
nm, 296.9 55.6 nm, 257.9 54.5 nm respectively. The DSC and FTIR analysis
showed that the blended nanofiber was mixed uniformly and no chemical bonding
was formed after blending. The XPS result showed the PANi existed on the surface
of nanofibers. The PANi content measured by TGA in the fibers was corresponded
with the prepared PCL/PANi solution. In vitro stability study showed the
morphology of PCL/PANi nanofiber did not change in the PBS for 4 weeks. After
seeding C2C12 myoblasts on the fibers, the results of cell viability assay showed
that the composite fibers were cytocompatible. Additionally, the fibers with higher
conductivity supported the adhesion and proliferation of C2C12 cells and enhanced
myotube extension. These results indicate that electrically conductive nanofibers
can modulate the induction of myoblasts into myotube formation without additional
electrical stimulation, suggesting that these fibers may have potential as a temporary
scaffold for skeletal tissue engineering. In the future, the effect of electrical
stimulation for nanofibers on the function of myoblast C2C12 will be further
explored.
1. Langer R, Vacanti JP (1993), “Tissue engineering.” Science 260, 9206.
2. http://biomed.brown.edu/Courses/BI108/BI108_2007_Groups/group12/Homep
age.html
3. Grayson WL, Martens TP, Eng GM, Radisic M, Gordana VN (2009),
“Biomimetic approach to tissue engineering.” Semin Cell Dev Biol 20, 665–73.
4. Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf
MP, Jaconi ME, et al. (2008), “Three-dimensional extracellular matrix-directed
cardioprogenitor differentiation: systematic modulation of a synthetic
cell-responsive PEG-hydrogel.” Biomaterials 29, 2757–66.
5. Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng WL, Wang YD, et al.
(2008), “Pretreatment of synthetic elastomeric scaffolds by cardiac fibroblasts
improves engineered heart tissue.” J Biomed Mater Res 86A, 713–24.
6. Uebersax L, Hagenmueller H, Hofmann S, Gruenblatt E, Mueller R,
Vunjak-Novakovic G, et al. (2006), “Effect of scaffold design on bone
morphology in vitro.” Tissue Eng 12, 3417–29.
7. Fischbach C, Chen R, Schmelzle T, Brugge JS, Polverini PJ, et al. (2007),
“Engineering tumors with 3D scaffolds.” Nat Methods 4, 855–60.
8. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997), “Stimulation of neurite
outgrowth using an electrically conducting polymer.” Proc Natl Acad Sci 94,
894853.
9. Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, et al.
(2009), “Electrical stimulation of human embryonic stem cells: cardiac
differentiation and the generation of reactive oxygen species.” Exp Cell Res
59
315, 36119.
10. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. (2004),
“Functional assembly of engineered myocardium by electrical stimulation of
cardiac myocytes cultured on scaffolds.” Proc Natl Acad Sci 101, 1812934.
11. McCaig CD, Rajnicek AM, Song B, Zhao M (2005), “Controlling cell behavior
electrically: current views and future potential.” Physiol Rev 85, 94378.
12. Ojingwa JC, Isseroff RR (2003),” Electrical stimulation of wound healing.” J
Invest Dermatol 121, 112.
13. Kumar A, Murphy R, Robinson P, Wei L, Boriek AM (2004), “Cyclic
mechanical strain inhibits skeletal myogenesis through activation of focal
adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor.” FASEB
J 18, 152435.
14. Ruoslahti E (1997), “Stretching is good for a cell.” Science 276, 13456.
15. Kim BS, Nikolovski J, Bonadio J, Mooney DJ (1999), “Cyclic mechanical
strain regulates the development of engineered smooth muscle tissue.” Nat
Biotechnol 17, 97983.
16. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F,
Heubach JF, et al. (2002), “Tissue engineering of a differentiated cardiac
muscle construct.” Circ Res 90, 223–30.
17. Li D, Xia YN (2004), “Electrospinning of nanofibers: reinventing the wheel?”
Adv Mater 16, 115168.
18. Kameoka J, Orth R, Yang Y, Czaplewski D, Mathers R, Coates GW, et al.
(2003), “A scanning tip electrospinning source for deposition of oriented
nanofibres.” Nanotechnology 14, 112429.
19. Theron A, Zussman E, Yarin AL (2001), “Electrostatic field-assisted alignment
60
of electrospun nanofibres.” Nanotechnology 12, 38490.
20. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003), “A review on
polymer nanofibers by electrospinning and their applications in
nanocomposites.” Compos Sci Technol 63, 222353.
21. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008), “The influence of
electrospun aligned poly (epsilon-caprolactone)/collagen nanofiber meshes on
the formation of self-aligned skeletal muscle myotubes.” Biomaterials 29,
2899906.
22. Liu Y, Zhang XP, Xia YN, Yang H (2010), “Magnetic-field-assisted
electrospinning of aligned straight and wavy polymeric nanofibers.” Adv Mater
22, 2454–7
23. Kim JS, Reneker DH (1999), “Mechanical properties of composites using
ultrafine electrospun fibers.” Polym Compos 20, 12431.
24. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002),
“Enzymecarrying polymeric nanofibers prepared via electrospinning for use
as unique biocatalysts.” Biotechnol. Prog 18, 102732.
25. Li M, Guo Y, Wei Y, Alan G. MacDiarmid, Peter I. Lelkes (2006),
“Electrospinning polyaniline-contained gelatin nanofibers for tissue
engineering applications.” Biomaterials 27, 270515.
26. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009), “Polypyrrole-coated
electrospun PLGA nanofibers for neural tissue applications.” Biomaterials 30,
432535.
27. Jun ID, Jeong SG, Shin HS (2009), “The stimulation of myoblast
differentiation by electrically conductive sub-micron fibers.” Biomaterials 30,
203847.
61
28. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004),
“Poly--caprolactone microspheres and nanospheres: an overview.” Int J Pharm
278, 123.
29. Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW, Feast WJ et al. (1996),
“Synthesis, processing and material properties of conjugated polymers.”
Polymer 37, 501747.
30. Yaffe D, Saxel O (1977), “Serial passaging and differentiation of myogenic
cells isolated from dystrophic mouse muscle.” Nature 270, 725–7.
31. Widmaier EP, Raff H, Strang KT (2004), “Vander, Sherman, Luciano’s human
physiology: The mechanisms of body function. 9/e”, 26875.
32. Jeong SI, Jun ID, Choi MJ, Nho YC, Lee Y M, Shin HS (2008),
“Development of electroactive and elastic nanofibers that contain polyaniline
and poly(L-lactide-co--caprolactone) for the control of cell adhesion.”
Macromol Biosci 8, 62737.
33. Shao SJ, Luo C, Wang JX, Li XH, Weng J et al. (2011) “Osteoblast function
on electrically conductive electrospun PLA/MWCNTs nanofibers.”
Biomaterials 32, 282133.
34. http://zt.invitrogen.com/site/tw/zt/home/References/gibco-cell-culture-basics/ce
ll-culture-protocols/cell-culture-useful-numbers.html
35. Berridge MV, Herst PM, Tan AS, (2005) “Tetrazolium dyes as tools in cell
biology: New insights into their cellular reduction.” Biotechnol Annu Rev 11,
127-52.
36. Vaughan PJ, Pike CJ, Cotman CW, Cunningham DD, (1995) “Thrombin
receptor activation protects neurons and astrocytes from cell death produced by
environmental insults” J Neurosci 15, 5389401.
62
37. Gilles de Gennes P, Brochard-Wyart F, Quéré D, (2002) “Capillary and wetting
phenomenadrops, bubbles, pearls, waves.” ISBN 0-387-00592-7.
38. Caoa Y, Smith P, Heeger AJ, (1992) “Counter-ion induced processibility of
conducting polyaniline and of conducting polyblends of polyaniline in bulk
polymers.” Synth Met 48, 917.
39. Xia YN, Wiesinger JM, MacDiarmid AG, Epstein AJ, (1995)
“Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations
in different solvents studied by an ultraviolet/visible/near-infrared
spectroscopic method.” Chem Mater 7, 4435.
40. Durand D, Bronzino JD, “The biomedical engineering handbook eds.”, ISBN:
978-0-8493-8594-0, pp. 22951.
41. Hu J, Huang L, Zhuang X, Zhang P, Lang L, Chen X, et al., (2008)
“Electroactive aniline pentamer cross-linking chitosan for stimulation growth
of electrically sensitive cells.” Biomacromolecules 9, 2637–44.
42. Li YL, Neoh KG, Cen L, Kang ET, (2005) “Porous and electrically conductive
polypyrrole–poly(vinyl alcohol) composite and its applications as a
biomaterial.” Langmuir 21, 10702–9.
43. Zhang Z, Rouabhia M, Wang ZX, Roberge C, Shi GX, Roche P, et al., (2007)
“Electrically conductive biodegradable polymer composite for nerve
regeneration: electricity stimulated neurite outgrowth and axon regeneration.”
Artif Organs 31, 13–22.
校內:2016-08-30公開