簡易檢索 / 詳目顯示

研究生: 孫鈺欽
Sun, Yu-Chin
論文名稱: 開發具有高度順向之導電性奈米複合纖維作為功能型細胞支架之研究
Development of conductive composite nanofibers with highly oriented structures as functional tissue engineering scaffolds
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 62
中文關鍵詞: 組織工程靜電紡織組織修復聚苯胺
外文關鍵詞: tissue engineering, electrospinning, tissue regeneration, polyaniline
相關次數: 點閱:74下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫材料與細胞間的交互作用對於調控細胞的貼附、遷徙、增生與分化等
    生理行為,扮演著相當重要的角色。本研究透過將生醫材料與刺激訊號
    (stimulatory cues)結合,開發出可調控細胞幾何形態並同時提供電刺激之功能型
    奈米複合纖維,作為新一代的組織培養支架。實驗中,以生物相容性高分子
    poly--caprolactone (PCL)與導電性高分子polyaniline (PANi)溶液進行摻混,並
    利用含有方向性磁場之收集器進行靜電紡織,成功製備出具有高度順向之導電
    性(PCL/PANi)奈米複合纖維。實驗結果證實,含有1 wt%、2 wt%及3 wt% PANi
    之奈米複合纖維其導電度與纖維直徑分別為16.24  1.05 mS/cm、27.47  4.96
    mS/cm、63.57  6.67 mS/cm 與300.2  54.7 nm、296.9  55.6 nm、257.9  54.5 nm。
    由DSC、FTIR 與TGA 的分析結果證實,PCL 與PANi 可均勻混合,彼此之間
    並無化學鍵結形成,且PANi 在奈米複合纖維中的含量與摻混時相符。利用XPS
    更進一步證明了PANi 的確存在於纖維表面,使得纖維具有導電性。機械性質
    方面,隨著PANi 含量的上升,奈米纖維的抗張強度與楊氏模數隨之上升,但
    延伸率則是隨之下降。此外,將奈米複合纖維以PBS 浸泡1 週、2 週、4 週後,
    纖維之表面型態並無明顯之變化,證實纖維之穩定性。體外細胞實驗部分,本

    The interaction of biomaterial and cell plays an important role in controlling
    cell adhesion, migration, proliferation, differentiation. In this study we developed
    composite nanofiber mats which can provide the topographic cue and electrical
    stimulation to the cultured cells simultaneously, as a new generation of tissue
    regeneration scaffold. The composite nanofibers were fabricated by electrospinning
    of poly--caprolactone (PCL)/polyaniline (PANi) blend solution with the
    magnetic-field-assisted electrospinning (MFAES) apparatus. The conductivity and
    diameter of the obtained nanofibers with 1 wt%, 2 wt%, 3 wt% PANi content were
    16.24  1.05 mS/cm, 27.47  4.96 mS/cm, 63.57  6.67 mS/cm and 300.2  54.7
    nm, 296.9  55.6 nm, 257.9  54.5 nm respectively. The DSC and FTIR analysis
    showed that the blended nanofiber was mixed uniformly and no chemical bonding
    was formed after blending. The XPS result showed the PANi existed on the surface
    of nanofibers. The PANi content measured by TGA in the fibers was corresponded
    with the prepared PCL/PANi solution. In vitro stability study showed the
    morphology of PCL/PANi nanofiber did not change in the PBS for 4 weeks. After
    seeding C2C12 myoblasts on the fibers, the results of cell viability assay showed
    that the composite fibers were cytocompatible. Additionally, the fibers with higher
    conductivity supported the adhesion and proliferation of C2C12 cells and enhanced
    myotube extension. These results indicate that electrically conductive nanofibers
    can modulate the induction of myoblasts into myotube formation without additional
    electrical stimulation, suggesting that these fibers may have potential as a temporary
    scaffold for skeletal tissue engineering. In the future, the effect of electrical
    stimulation for nanofibers on the function of myoblast C2C12 will be further
    explored.

    目錄 摘要 ........................................... I Abstract ...................................... II 致謝 ......................................... III 目錄 .......................................... IV 圖目錄 ........................................ VI 表目錄 ...................................... VIII 第一章 組織工程 ................................ 1 1.1 組織工程 ....................................................................................................... 1 1.1.1 組織工程的基本概念 ....................................................................... 1 1.1.2 仿生技術與組織工程 ...................................................................... 2 1.1.3 物理訊號刺激 (Physical signaling stimulate) .................................. 4 1.2 靜電紡織 ....................................................................................................... 7 1.2.1 靜電紡織的原理 ............................................................................... 7 1.2.2 奈米纖維表面型態的控制 ............................................................... 8 1.2.3 奈米纖維的順向性 ........................................................................... 9 1.2.4 靜電紡織的應用 ............................................................................. 11 1.3 材料介紹 ..................................................................................................... 13 1.3.1 生醫材料─聚己內酯 (Polycaprolactone,PCL).......................... 13 1.3.2 導電高分子聚苯胺 (Polyaniline,PANi) ...................................... 13 1.4 C2C12 肌母細胞與骨骼肌組織 ................................................................ 14 1.4.1 C2C12 細胞 ..................................................................................... 14 1.4.2 肌肉的收縮機制 ............................................................................. 15 1.5 研究動機 .................................................................................................... 17 第二章 材料與方法 ............................. 19 2.1 材料 ............................................................................................................ 19 2.2 儀器設備 ..................................................................................................... 20 2.3 高度順向之導電性奈米纖維製備 ............................................................ 22 2.3.1 PCL/PANi 導電性奈米纖維製備與分析 ....................................... 22 2.3.2 物化性分析 ..................................................................................... 26 2.3 細胞培養實驗............................................................................................. 30 2.3.1 細胞相容性測試 ............................................................................. 32 2.3.2 細胞貼附測試 ................................................................................. 33 2.3.3 肌小管分化 .................................................................................... 34 第三章 結果與討論 ............................. 35 3.1 導電型奈米纖維之製備 ............................................................................ 35 3.1.1 纖維膜表面型態 ............................................................................. 36 3.1.2 導電性質分析 ................................................................................. 38 3.1.3 纖維排列性質 ................................................................................. 39 3.1.4 討論................................................................................................. 41 3.2 物理分析 ..................................................................................................... 42 3.2.1 DSC 分析 ......................................................................................... 42 3.2.2 TGA 分析 ........................................................................................ 43 3.2.3 ATRFTIR 分析 .............................................................................. 44 3.2.4 XPS 分析 ......................................................................................... 44 3.2.5 機械性質分析 ................................................................................. 46 3.2.6 接觸角測試 .................................................................................... 47 3.2.7 材料穩定性測試 ............................................................................. 48 3.2.8 討論................................................................................................. 51 3.3 體外細胞培養............................................................................................. 52 3.3.1 CCK8 細胞相容性測試 ................................................................ 52 3.3.2 細胞貼附測試 ................................................................................. 53 3.3.3 纖維膜對C2C12 分化為肌小管之影響 ........................................ 55 3.3.4 討論.................................................................................................. 56 第四章 結論 ................................... 57 參考文獻 ...................................... 58 圖目錄 圖11、組織工程於體外製造器官再移植進入體內之示意圖 ............................. 2 圖12、生物模仿與組織工程 ................................................................................. 3 圖13、天然組織之細胞外間質與人工設計之細胞支架:(A)、(B)、(C)被設計 為應用在心肌組織修復的細胞支架;(D)、(E)、(F)為應用在骨骼組織的人工細 胞支架 ......................................................................................................................... 4 圖14、細胞生長的微環境與刺激訊號對細胞行為與功能表現之影響 ............. 5 圖15、心肌組織之電刺激培養(A)裝置、(B)結果 .............................................. 6 圖18、收集順向性電紡纖維收集器:(a)平行電極、(b)刀鋒、(c)高速滾筒 ... 9 圖19、滾筒收集器轉速對纖維順向性之影響 ..................................................... 9 圖110、使用平行磁場收集器之電紡裝置 ......................................................... 10 圖111、使用平行磁場收集器所收集之順向纖維:收集時間為(A)15、(B)60、 (C)、(D)120 分鐘,纖維順向性沒有明顯的變化 ................................................ 10 圖115、肌肉組織切片與微結構 ......................................................................... 16 圖116、實驗概念 ................................................................................................. 17 圖117、實驗架構 ................................................................................................. 18 圖21、電紡溶液配製步驟 ................................................................................... 23 圖22、隨機排列纖維絲之靜電紡織裝置 ........................................................... 25 圖23、順向排列纖維絲之電紡裝置與收集端規格 ........................................... 25 圖24、導電度計算方式 ....................................................................................... 26 圖25、機械測試試片製備步驟 ........................................................................... 29 圖26、纖維膜前處理步驟 ................................................................................... 32 圖27、WST8 與WST8 formazan 之結構 ....................................................... 33 圖28、Live/Dead 試劑檢測步驟 ........................................................................ 34 VII 圖31、各成分之PCL/PANi 纖維膜 .................................................................... 36 圖32、奈米纖維表面型態:(a) PCL/PANi0、(b) PCL/PANi1、(c) PCL/PANi2、 (d) PCL/PANi3;右上角插圖為同樣品以10K 倍率下觀察之SEM 圖 ............ 37 圖33、纖維直徑分布圖 ....................................................................................... 37 圖34、各成分之奈米纖維導電度 ....................................................................... 39 圖35、PCL/PANi3 纖維絲在不同收集器下的收集情形:(a)金屬平板收集器、 (b)金屬平行板收集器、(c)平行磁場收集器、(d)三種收集器製備之纖維順向程 度比較 ....................................................................................................................... 40 圖36、使用平行磁場收集器收集之PCL/PANi3 纖維絲,於不同流速控制下 之收集情形:(a) 4.0 ml/hr、(b) 1.0 ml/hr、(c) 0.1 ml/hr、(d)不同流速下之順向 程度比較 ................................................................................................................... 41 圖37、各成分之奈米纖維DSC 分析圖 ............................................................. 42 圖38、各成分之奈米纖維TGA 分析圖;右上插圖:550~600C 之局部放大圖; 右下插圖:純PANi 與純PCL 之裂解圖 .............................................................. 43 圖39、各成分之奈米纖維FTIR 光譜圖 ............................................................. 45 圖310、各成分之奈米纖維XPS 光譜圖;插圖為PANi 特徵峰(401 eV)之局部 放大圖 ....................................................................................................................... 46 圖311、各成分之奈米纖維拉伸測試結果:(a)抗張強度,(b)延長率、(c)楊氏 模數、(d)抗張強度對延長率之曲線圖 .................................................................. 47 圖312、各成分之PCL/PANi 纖維膜之靜態接觸角測試結果 .......................... 48 圖313、奈米纖維浸泡於PBS 中不同時間下之 (a)表面型態 (b)導電度 ....... 51 圖314、順向纖維之細胞相容性分析結果 ......................................................... 52 圖315、細胞於纖維膜之生長情形:(a1)隨機排列之纖維膜SEM 圖、(a2)細胞 生長於隨機排列纖維膜之情形、(b1)順向排列之纖維膜SEM 圖、(b2)細胞生長 於順向纖維之情形................................................................................................... 53 VIII 圖316、細胞種於纖維膜上隨時間增生情形 ..................................................... 54 圖317、C2C12 肌母細胞種在:(a)PCL/PANi0、(b) PCL/PANi1、(c) PCL/PANi2、(d) PCL/PANi3 纖維膜上分化7 天後之情形、(e)肌小管之長度 .................................................................................................................................. 55 表目錄 表21、PCL/PANi 溶液摻混比例 ......................................................................... 22 表22、細胞培養常用數據 ................................................................................... 31

    1. Langer R, Vacanti JP (1993), “Tissue engineering.” Science 260, 9206.
    2. http://biomed.brown.edu/Courses/BI108/BI108_2007_Groups/group12/Homep
    age.html
    3. Grayson WL, Martens TP, Eng GM, Radisic M, Gordana VN (2009),
    “Biomimetic approach to tissue engineering.” Semin Cell Dev Biol 20, 665–73.
    4. Kraehenbuehl TP, Zammaretti P, Van der Vlies AJ, Schoenmakers RG, Lutolf
    MP, Jaconi ME, et al. (2008), “Three-dimensional extracellular matrix-directed
    cardioprogenitor differentiation: systematic modulation of a synthetic
    cell-responsive PEG-hydrogel.” Biomaterials 29, 2757–66.
    5. Radisic M, Park H, Martens TP, Salazar-Lazaro JE, Geng WL, Wang YD, et al.
    (2008), “Pretreatment of synthetic elastomeric scaffolds by cardiac fibroblasts
    improves engineered heart tissue.” J Biomed Mater Res 86A, 713–24.
    6. Uebersax L, Hagenmueller H, Hofmann S, Gruenblatt E, Mueller R,
    Vunjak-Novakovic G, et al. (2006), “Effect of scaffold design on bone
    morphology in vitro.” Tissue Eng 12, 3417–29.
    7. Fischbach C, Chen R, Schmelzle T, Brugge JS, Polverini PJ, et al. (2007),
    “Engineering tumors with 3D scaffolds.” Nat Methods 4, 855–60.
    8. Schmidt CE, Shastri VR, Vacanti JP, Langer R (1997), “Stimulation of neurite
    outgrowth using an electrically conducting polymer.” Proc Natl Acad Sci 94,
    894853.
    9. Serena E, Figallo E, Tandon N, Cannizzaro C, Gerecht S, Elvassore N, et al.
    (2009), “Electrical stimulation of human embryonic stem cells: cardiac
    differentiation and the generation of reactive oxygen species.” Exp Cell Res
    59
    315, 36119.
    10. Radisic M, Park H, Shing H, Consi T, Schoen FJ, Langer R, et al. (2004),
    “Functional assembly of engineered myocardium by electrical stimulation of
    cardiac myocytes cultured on scaffolds.” Proc Natl Acad Sci 101, 1812934.
    11. McCaig CD, Rajnicek AM, Song B, Zhao M (2005), “Controlling cell behavior
    electrically: current views and future potential.” Physiol Rev 85, 94378.
    12. Ojingwa JC, Isseroff RR (2003),” Electrical stimulation of wound healing.” J
    Invest Dermatol 121, 112.
    13. Kumar A, Murphy R, Robinson P, Wei L, Boriek AM (2004), “Cyclic
    mechanical strain inhibits skeletal myogenesis through activation of focal
    adhesion kinase, Rac-1 GTPase, and NF-kappaB transcription factor.” FASEB
    J 18, 152435.
    14. Ruoslahti E (1997), “Stretching is good for a cell.” Science 276, 13456.
    15. Kim BS, Nikolovski J, Bonadio J, Mooney DJ (1999), “Cyclic mechanical
    strain regulates the development of engineered smooth muscle tissue.” Nat
    Biotechnol 17, 97983.
    16. Zimmermann WH, Schneiderbanger K, Schubert P, Didie M, Munzel F,
    Heubach JF, et al. (2002), “Tissue engineering of a differentiated cardiac
    muscle construct.” Circ Res 90, 223–30.
    17. Li D, Xia YN (2004), “Electrospinning of nanofibers: reinventing the wheel?”
    Adv Mater 16, 115168.
    18. Kameoka J, Orth R, Yang Y, Czaplewski D, Mathers R, Coates GW, et al.
    (2003), “A scanning tip electrospinning source for deposition of oriented
    nanofibres.” Nanotechnology 14, 112429.
    19. Theron A, Zussman E, Yarin AL (2001), “Electrostatic field-assisted alignment
    60
    of electrospun nanofibres.” Nanotechnology 12, 38490.
    20. Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003), “A review on
    polymer nanofibers by electrospinning and their applications in
    nanocomposites.” Compos Sci Technol 63, 222353.
    21. Choi JS, Lee SJ, Christ GJ, Atala A, Yoo JJ (2008), “The influence of
    electrospun aligned poly (epsilon-caprolactone)/collagen nanofiber meshes on
    the formation of self-aligned skeletal muscle myotubes.” Biomaterials 29,
    2899906.
    22. Liu Y, Zhang XP, Xia YN, Yang H (2010), “Magnetic-field-assisted
    electrospinning of aligned straight and wavy polymeric nanofibers.” Adv Mater
    22, 2454–7
    23. Kim JS, Reneker DH (1999), “Mechanical properties of composites using
    ultrafine electrospun fibers.” Polym Compos 20, 12431.
    24. Jia H, Zhu G, Vugrinovich B, Kataphinan W, Reneker DH, Wang P (2002),
    “Enzymecarrying polymeric nanofibers prepared via electrospinning for use
    as unique biocatalysts.” Biotechnol. Prog 18, 102732.
    25. Li M, Guo Y, Wei Y, Alan G. MacDiarmid, Peter I. Lelkes (2006),
    “Electrospinning polyaniline-contained gelatin nanofibers for tissue
    engineering applications.” Biomaterials 27, 270515.
    26. Lee JY, Bashur CA, Goldstein AS, Schmidt CE (2009), “Polypyrrole-coated
    electrospun PLGA nanofibers for neural tissue applications.” Biomaterials 30,
    432535.
    27. Jun ID, Jeong SG, Shin HS (2009), “The stimulation of myoblast
    differentiation by electrically conductive sub-micron fibers.” Biomaterials 30,
    203847.
    61
    28. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A (2004),
    “Poly--caprolactone microspheres and nanospheres: an overview.” Int J Pharm
    278, 123.
    29. Tsibouklis J, Pouwer KL, Groenendaal L, Meijer EW, Feast WJ et al. (1996),
    “Synthesis, processing and material properties of conjugated polymers.”
    Polymer 37, 501747.
    30. Yaffe D, Saxel O (1977), “Serial passaging and differentiation of myogenic
    cells isolated from dystrophic mouse muscle.” Nature 270, 725–7.
    31. Widmaier EP, Raff H, Strang KT (2004), “Vander, Sherman, Luciano’s human
    physiology: The mechanisms of body function. 9/e”, 26875.
    32. Jeong SI, Jun ID, Choi MJ, Nho YC, Lee Y M, Shin HS (2008),
    “Development of electroactive and elastic nanofibers that contain polyaniline
    and poly(L-lactide-co--caprolactone) for the control of cell adhesion.”
    Macromol Biosci 8, 62737.
    33. Shao SJ, Luo C, Wang JX, Li XH, Weng J et al. (2011) “Osteoblast function
    on electrically conductive electrospun PLA/MWCNTs nanofibers.”
    Biomaterials 32, 282133.
    34. http://zt.invitrogen.com/site/tw/zt/home/References/gibco-cell-culture-basics/ce
    ll-culture-protocols/cell-culture-useful-numbers.html
    35. Berridge MV, Herst PM, Tan AS, (2005) “Tetrazolium dyes as tools in cell
    biology: New insights into their cellular reduction.” Biotechnol Annu Rev 11,
    127-52.
    36. Vaughan PJ, Pike CJ, Cotman CW, Cunningham DD, (1995) “Thrombin
    receptor activation protects neurons and astrocytes from cell death produced by
    environmental insults” J Neurosci 15, 5389401.
    62
    37. Gilles de Gennes P, Brochard-Wyart F, Quéré D, (2002) “Capillary and wetting
    phenomenadrops, bubbles, pearls, waves.” ISBN 0-387-00592-7.
    38. Caoa Y, Smith P, Heeger AJ, (1992) “Counter-ion induced processibility of
    conducting polyaniline and of conducting polyblends of polyaniline in bulk
    polymers.” Synth Met 48, 917.
    39. Xia YN, Wiesinger JM, MacDiarmid AG, Epstein AJ, (1995)
    “Camphorsulfonic acid fully doped polyaniline emeraldine salt: conformations
    in different solvents studied by an ultraviolet/visible/near-infrared
    spectroscopic method.” Chem Mater 7, 4435.
    40. Durand D, Bronzino JD, “The biomedical engineering handbook eds.”, ISBN:
    978-0-8493-8594-0, pp. 22951.
    41. Hu J, Huang L, Zhuang X, Zhang P, Lang L, Chen X, et al., (2008)
    “Electroactive aniline pentamer cross-linking chitosan for stimulation growth
    of electrically sensitive cells.” Biomacromolecules 9, 2637–44.
    42. Li YL, Neoh KG, Cen L, Kang ET, (2005) “Porous and electrically conductive
    polypyrrole–poly(vinyl alcohol) composite and its applications as a
    biomaterial.” Langmuir 21, 10702–9.
    43. Zhang Z, Rouabhia M, Wang ZX, Roberge C, Shi GX, Roche P, et al., (2007)
    “Electrically conductive biodegradable polymer composite for nerve
    regeneration: electricity stimulated neurite outgrowth and axon regeneration.”
    Artif Organs 31, 13–22.

    無法下載圖示 校內:2016-08-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE