簡易檢索 / 詳目顯示

研究生: 陳皞因
Chen, Hau-Inh
論文名稱: 探討不孕男性中SEPTIN12的序列變異
Identification of sequence alterations for SEPTIN12 in infertile male
指導教授: 郭保麟
kuo, Pao-Lin
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 64
中文關鍵詞: 不孕Septin12spermatogenesis異型合子核苷酸突變GTPase功能區
外文關鍵詞: infertility, Septin12, spermatogenesis, heterozygous mutations, GTPase
相關次數: 點閱:117下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SEPTINs家族是屬於有GTPase活性的細胞骨架蛋白,且參與在許多不同的胞內生理功能,例如胞內絲狀骨架維持,細胞質分裂,細胞型態變化,細胞區室化,神經細胞極性建立以及囊泡運輸等。先前的許多研究指出SEPTIN9是高度特異性地表現在神經組織的神經膠細胞中,並且SEPTIN9序列的變異會造成遺傳性的神經痛性肌萎縮症(hereditary neuralgic amyotrophy, HNA)。而在我們之前研究中指出SEPTIN12 (SEPT12)也是高度特異性地表現在睪丸組織中,並且證實SEPT12在造精過程(spermatogenesis)中扮演了重要的角色。藉由研究Septin12基因剔除嵌合公鼠,其睪丸的大小和重量都明顯地下降,而在精液的分析也發現其精子數目以及精子活動力比起正常型態的公鼠減少許多,並且有許多精子都呈現不正常的型態。因此我們假設SEPTIN12 的序列變異可能會造成男性不孕。我們針對160 不孕男性病人的檢體以及200個正常可以生育的男性檢體來做SEPTIN12 基因定序分析,分析的結果發現了來自兩個不同病人其SEPTIN12各攜帶一種異型合子核苷酸突變 (heterozygous nucleotides alterations),分別為266C>T以及589G>A,266C>T 造成SEPT12的第89個胺基酸由Thr變成Met (T89M),而589G>A則會造成SEPT12的第197個胺基酸由 Asp變成Asn (D197N)。T89M以及D197N都位於高度保留的 GTPase 功能區 (GTPase domain),深入分析後,我們發現相較於SEPT12WT,SEPT12T89M以及SEPT12D197N 的蛋白穩定性都明顯地下降,並且利用免疫螢光染色觀察在NT2/D1細胞中SEPT12T89M以及SEPT12D197N都無法形成具功能性的絲狀結構(filament)。而在共同免疫沉澱法也證實了T89M以及D197N會影響 SEPT12以及其他SEPTINs之間的蛋白質結合,且確認了SEPT12T89M以及SEPT12D197N與SEPT7之間的蛋白結合作用喪失。進一步再將SEPT12T89M及SEPT12D197N分別與SEPT7同時在NT2/D1細胞中表現,免疫螢光染色觀察發現 SEPT12T89M及SEPT12D197N仍然無法形成絲狀物質,並且無法與SEPT7共同分佈在同一個位置上,結果與共同免疫沉澱法具一致性。我們的研究結果都指出了SEPT12T89M及SEPT12D197N這兩個高度保留性的胺基酸突變確實影響了SEPT12在細胞內的正常生理功能並對於未來的臨床研究提供相當重要的意義。

    Septins are a family of cytoskeletal proteins with GTPase activity which have been implicated in intracellular filaments scaffolds, cytokinesis, cellular morphogenesis, neural polarity and vesicle trafficking. Previous studies have suggested that Septin9 is highly expressed in glia cells in neuronal tissues and sequence alterations in SEPTIN9 are known to cause hereditary neuralgic amyotrophy (HNA). Our previous studies indicated that Septin12 is a tissue-specific gene expressed in testis, and it is critical for spermatogenesis. In Septin12+/- chimera mice, the testis is smaller and the sperm count and motility are significantly lower than wild type mice. Furthermore the sperm morphology is abnormal. We hypothesized that sequence alterations of the SEPTIN12 gene might result in male infertility. Sequence analysis of the SEPTIN12 gene was performed in 160 infertile men and 200 fertile men. Two out of 160 infertility men were found to carry independent heterozygous mutations (C266T and G589A refer to T89M and D197N, respectively). These two mutations are located at the highly conserved GTPase domain. The protein stabilities of SEPT12T89M and SEPT12D197N were decreased significantly than SEPT12WT. Transfection of SEPT12T89M and SEPT12D197N showed abnormal filamentous structure, and the interactions of SEPT12 with its partners were also disrupted in NT2/D1 cells. These results indicate that SEPT12T89M and SEPT12D197N proteins were lost their functions, disrupting their interactions with other septin partners. Consistent with this hypothesis, co-immunoprecipitation experiments showed that SEPT12T89M and SEPT12D197N could not interact with SEPT7. Moreover, immunofluorescence assay showed that SEPT12T89M or SEPT12D197N were not co-localized with SEPT7, nor could they form filamentous structure in NT2/D1 cells. Our findings provide clinical relevance of the SEPTIN12 gene in human spermatogenesis.

    摘要................................................................................................................i Abstract........................................................................................................ii ACKNOWLEDGEMENT.........................................................................iv TABLE OF CONTENTS............................................................................v LIST OF TABLES.....................................................................................vii LIST OF FIGURES..................................................................................viii LIST OF APPENDIXES............................................................................ix LIST OF ABBREVIATIONS.....................................................................x 1. INTRODUCTION...................................................................................1 1.1 Male infertility............................................................................1 1.2 Spermatogenesis.........................................................................1 1.3 Genes involved in male infertility.............................................2 1.4 The septin family........................................................................3 1.5 Septins-related human diseases.................................................4 1.6 Functions of septin12..................................................................5 1.7 Objectives of the study...............................................................5 2. METERIALS AND METHODS............................................................6 2.1 Patient’s DNA samples and control DNA sample sort.............6 2.2 Cell culture..................................................................................6 2.3 Luciferase reporter assay...........................................................7 2.4 Sequence.......................................................................................9 2.5 Total RNA is olation....................................................................9 2.6 Reverse Transcriptase-Polymerase Chain Reaction.............10 2.7 Polymerase Chain Reaction (PCR).........................................11 2.8 Site-directed mutagenesis........................................................12 2.9 Co-Immumoprecipitation (Co-IP) analysis............................13 2.10 Western Blot analysis...............................................................14 2.11 Immnuofluorescence (IF) assay..............................................16 2.12 His-tagged protein purification...............................................17 2.13 Silver staining............................................................................19 2.14 GTPase activity assay...............................................................20 3. RESULTS...............................................................................................22 3.1 Define the human SEPTIN12 core promoter elements..........22 3.2 Identification of SNP and mutations in the SEPTIN12 promoter region........................................................................22 3.3 Identification of SNPs and mutations in the coding region of SEPTIN12 gene.........................................................................23 3.4 Confirmation of mutations by the TaqMan assay..................23 vi 3.5 The two mutations are located in the GTPase domain, and these two sites are highly conserved in different species......23 3.6 SEPT12-T89M and SEPT12-D197N are less stable than SEPT12-WT, and may alter protein assembling...................24 3.7 SEPT12-T89M and SEPT12-D197N altered the interactions of SEPT12 with SEPT4, 6, and 7.............................................25 3.8 SEPT-T89M and SEPT12-D197N could not co-localize with SEPT7 and form filamentous structure.................................26 4. DISCUSSIONS......................................................................................27 4.1 The roles of SEPT12 in spermiogenesis...................................27 4.2 Mechanistic link between loss of function mutation, protein stability and filament formation.............................................27 4.3 The physiological implication of different subcellular patterns of SEPT12 in NT2/D1 cell........................................................28 4.4 SEPT12 utilize different domains to interact with other SEPTINs family ……………………………………………...29 4.5 Mutant protein degradation pathway.....................................30 4.6 The role of SEPT7 in spermatogenesis....................................31 References..................................................................................................33 Figures........................................................................................................40 Tables..........................................................................................................57 Appendixes.................................................................................................62 CURRICULUM VITAE...........................................................................64

    Casamayor, A. and Snyder, M. (2003). Molecular dissection of a yeast septin: distinct domains are required for septin interaction, localization, and function. Mol Cell Biol 23, 2762-77.

    Caudron, F. and Barral, Y. (2009). Septins and the lateral compartmentalization of eukaryotic membranes. Dev Cell 16, 493-506.

    Chao, H. C., Lin, Y. H., Kuo, Y. C., Shen, C. J., Pan, H. A. and Kuo, P. L. (2010). The expression pattern of SEPT7 correlates with sperm morphology. J Assist Reprod Genet.

    Ciechanover, A., Finley, D. and Varshavsky, A. (1984). Ubiquitin dependence of selective protein degradation demonstrated in the mammalian cell cycle mutant ts85. Cell 37, 57-66.

    Ding, X., Yu, W., Liu, M., Shen, S., Chen, F., Cao, L., Wan, B. and Yu, L. (2008). GTP binding is required for SEPT12 to form filaments and to interact with SEPT11. Mol Cells 25, 385-9.

    Ding, X., Yu, W., Liu, M., Shen, S., Chen, F., Wan, B. and Yu, L. (2007). SEPT12 interacts with SEPT6 and this interaction alters the filament structure of SEPT6 in Hela cells. J Biochem Mol Biol 40, 973-8.

    Douglas, L. M., Alvarez, F. J., McCreary, C. and Konopka, J. B. (2005). Septin function in yeast model systems and pathogenic fungi. Eukaryot Cell 4, 1503-12.

    Elhasid, R., Sahar, D., Merling, A., Zivony, Y., Rotem, A., Ben-Arush, M., Izraeli, S., Bercovich, D. and Larisch, S. (2004). Mitochondrial pro-apoptotic ARTS protein is lost in the majority of acute lymphoblastic leukemia patients. Oncogene 23, 5468-75.

    Fares, H., Peifer, M. and Pringle, J. R. (1995). Localization and possible functions of Drosophila septins. Mol Biol Cell 6, 1843-59.

    Field, C. M. and Kellogg, D. (1999). Septins: cytoskeletal polymers or signalling GTPases? Trends Cell Biol 9, 387-94.

    Glotzer, M., Murray, A. W. and Kirschner, M. W. (1991). Cyclin is degraded by the ubiquitin pathway. Nature 349, 132-8.

    Hall, P. A., Jung, K., Hillan, K. J. and Russell, S. E. (2005). Expression profiling the human septin gene family. J Pathol 206, 269-78.

    Hall, P. A. and Russell, S. E. (2004). The pathobiology of the septin gene family. J Pathol 204, 489-505.

    Hanai, N., Nagata, K., Kawajiri, A., Shiromizu, T., Saitoh, N., Hasegawa, Y., Murakami, S. and Inagaki, M. (2004). Biochemical and cell biological characterization of a mammalian septin, Sept11. FEBS Lett 568, 83-8.

    Hannibal, M. C., Ruzzo, E. K., Miller, L. R., Betz, B., Buchan, J. G., Knutzen, D. M., Barnett, K., Landsverk, M. L., Brice, A., LeGuern, E., Bedford, H. M., Worrall, B. B., Lovitt, S., Appel, S. H., Andermann, E., Bird, T. D. and Chance, P. F. (2009). SEPT9 gene sequencing analysis reveals recurrent mutations in hereditary neuralgic amyotrophy. Neurology 72, 1755-9.

    Hirsh, A. (2003). Male subfertility. BMJ 327, 669-72.

    Hughes, V. (2008). Geneticists crack the code of infertility. Nat Med 14, 1174.

    Ihara, M., Kinoshita, A., Yamada, S., Tanaka, H., Tanigaki, A., Kitano, A., Goto, M., Okubo, K., Nishiyama, H., Ogawa, O., Takahashi, C., Itohara, S., Nishimune, Y., Noda, M. and Kinoshita, M. (2005). Cortical organization by the septin cytoskeleton is essential for structural and mechanical integrity of mammalian spermatozoa. Dev Cell 8, 343-52.

    Jia, Z. F., Huang, Q., Kang, C. S., Yang, W. D., Wang, G. X., Yu, S. Z., Jiang, H. and Pu, P. Y. (2009). Overexpression of septin 7 suppresses glioma cell growth. J Neurooncol 98, 329-40.

    Joberty, G., Petersen, C., Gao, L. and Macara, I. G. (2000). The cell-polarity protein Par6 links Par3 and atypical protein kinase C to Cdc42. Nat Cell Biol 2, 531-9.

    Kartmann, B. and Roth, D. (2001). Novel roles for mammalian septins: from vesicle trafficking to oncogenesis. J Cell Sci 114, 839-44.
    Kinoshita, M. (2003). Assembly of mammalian septins. J Biochem 134, 491-6.

    Kinoshita, M., Field, C. M., Coughlin, M. L., Straight, A. F. and Mitchison, T. J. (2002). Self- and actin-templated assembly of Mammalian septins. Dev Cell 3, 791-802.

    Kissel, H., Georgescu, M. M., Larisch, S., Manova, K., Hunnicutt, G. R. and Steller, H. (2005). The Sept4 septin locus is required for sperm terminal differentiation in mice. Dev Cell 8, 353-64.

    Kuhlenbaumer, G., Hannibal, M. C., Nelis, E., Schirmacher, A., Verpoorten, N., Meuleman, J., Watts, G. D., De Vriendt, E., Young, P., Stogbauer, F., Halfter, H., Irobi, J., Goossens, D., Del-Favero, J., Betz, B. G., Hor, H., Kurlemann, G., Bird, T. D., Airaksinen, E., Mononen, T., Serradell, A. P., Prats, J. M., Van Broeckhoven, C., De Jonghe, P., Timmerman, V., Ringelstein, E. B. and Chance, P. F. (2005). Mutations in SEPT9 cause hereditary neuralgic amyotrophy. Nat Genet 37, 1044-6.

    Lhuillier, P., Rode, B., Escalier, D., Lores, P., Dirami, T., Bienvenu, T., Gacon, G., Dulioust, E. and Toure, A. (2009). Absence of annulus in human asthenozoospermia: case report. Hum Reprod 24, 1296-303.

    Li, S. S. and Li, J. (2010). [MTHFR gene polymorphism and male infertility]. Zhonghua Nan Ke Xue 16, 60-4.

    Lin, Y. H., Lin, Y. M., Wang, Y. Y., Yu, I. S., Lin, Y. W., Wang, Y. H., Wu, C. M., Pan, H. A., Chao, S. C., Yen, P. H., Lin, S. W. and Kuo, P. L. (2009). The expression level of septin12 is critical for spermiogenesis. Am J Pathol 174, 1857-68.

    Lindsey, R. and Momany, M. (2006). Septin localization across kingdoms: three themes with variations. Curr Opin Microbiol 9, 559-65.

    Luedeke, C., Frei, S. B., Sbalzarini, I., Schwarz, H., Spang, A. and Barral, Y. (2005). Septin-dependent compartmentalization of the endoplasmic reticulum during yeast polarized growth. J Cell Biol 169, 897-908.

    Martin, S. W., Douglas, L. M. and Konopka, J. B. (2005). Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. Eukaryot Cell 4, 1191-202.

    Matzuk, M. M. and Lamb, D. J. (2008). The biology of infertility: research advances and clinical challenges. Nat Med 14, 1197-213.

    Mitchison, T. J. and Field, C. M. (2002). Cytoskeleton: what does GTP do for septins? Curr Biol 12, R788-90.

    Nakatsuru, S., Sudo, K. and Nakamura, Y. (1994). Molecular cloning of a novel human cDNA homologous to CDC10 in Saccharomyces cerevisiae. Biochem Biophys Res Commun 202, 82-7.

    O'Flynn O'Brien, K. L., Varghese, A. C. and Agarwal, A. (2010). The genetic causes of male factor infertility: a review. Fertil Steril 93, 1-12.

    Okabe, M., Ikawa, M. and Ashkenas, J. (1998). Male infertility and the genetics of spermatogenesis. Am J Hum Genet 62, 1274-81.

    Ott, D. E., Coren, L. V., Copeland, T. D., Kane, B. P., Johnson, D. G., Sowder, R. C., 2nd, Yoshinaka, Y., Oroszlan, S., Arthur, L. O. and Henderson, L. E. (1998). Ubiquitin is covalently attached to the p6Gag proteins of human immunodeficiency virus type 1 and simian immunodeficiency virus and to the p12Gag protein of Moloney murine leukemia virus. J Virol 72, 2962-8.

    Peterson, E. A. and Petty, E. M. (2010). Conquering the complex world of human septins: implications for health and disease. Clin Genet 77, 511-24.

    Renna, M., Jimenez-Sanchez, M., Sarkar, S. and Rubinsztein, D. C. (2010). Chemical inducers of autophagy that enhance the clearance of mutant proteins in neurodegenerative diseases. J Biol Chem 285, 11061-7.

    Sakai, K., Kurimoto, M., Tsugu, A., Hubbard, S. L., Trimble, W. S. and Rutka, J. T. (2002). Expression of Nedd5, a mammalian septin, in human brain tumors. J Neurooncol 57, 169-77.

    Schultz, N., Hamra, F. K. and Garbers, D. L. (2003). A multitude of genes expressed solely in meiotic or postmeiotic spermatogenic cells offers a myriad of contraceptive targets. Proc Natl Acad Sci U S A 100, 12201-6.

    Scott, M., Hyland, P. L., McGregor, G., Hillan, K. J., Russell, S. E. and Hall, P. A. (2005). Multimodality expression profiling shows SEPT9 to be overexpressed in a wide range of human tumours. Oncogene 24, 4688-700.
    Sirajuddin, M., Farkasovsky, M., Hauer, F., Kuhlmann, D., Macara, I. G., Weyand, M., Stark, H. and Wittinghofer, A. (2007). Structural insight into filament formation by mammalian septins. Nature 449, 311-5.

    Spiliotis, E. T. and Nelson, W. J. (2006). Here come the septins: novel polymers that coordinate intracellular functions and organization. J Cell Sci 119, 4-10.
    Strous, G. J. and Govers, R. (1999). The ubiquitin-proteasome system and endocytosis. J Cell Sci 112 ( Pt 10), 1417-23.

    Sudo, K., Ito, H., Iwamoto, I., Morishita, R., Asano, T. and Nagata, K. (2007). SEPT9 sequence alternations causing hereditary neuralgic amyotrophy are associated with altered interactions with SEPT4/SEPT11 and resistance to Rho/Rhotekin-signaling. Hum Mutat 28, 1005-13.

    Surka, M. C., Tsang, C. W. and Trimble, W. S. (2002). The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 13, 3532-45.

    Tada, T., Simonetta, A., Batterton, M., Kinoshita, M., Edbauer, D. and Sheng, M. (2007). Role of Septin cytoskeleton in spine morphogenesis and dendrite development in neurons. Curr Biol 17, 1752-8.

    Versele, M., Gullbrand, B., Shulewitz, M. J., Cid, V. J., Bahmanyar, S., Chen, R. E., Barth, P., Alber, T. and Thorner, J. (2004). Protein-protein interactions governing septin heteropentamer assembly and septin filament organization in Saccharomyces cerevisiae. Mol Biol Cell 15, 4568-83.

    Wei, L., Shi, Y. C., Cui, Y. X. and Huang, Y. F. (2010). [Mutation of the USP26 gene in spermatogenesis dysfunction]. Zhonghua Nan Ke Xue 16, 65-7.
    Weirich, C. S., Erzberger, J. P. and Barral, Y. (2008). The septin family of GTPases: architecture and dynamics. Nat Rev Mol Cell Biol 9, 478-89.

    World Health Organization. 1992. Laboratory manual for the Examination of Human Semen and Semen-Cervical Mucus Interaction. 3rd ed. Cambridge, Cambridge University 3-21 pp.

    下載圖示 校內:2014-07-28公開
    校外:2014-07-28公開
    QR CODE