| 研究生: |
楊孟杰 Yang, Meng-Chieh |
|---|---|
| 論文名稱: |
預變形304L不銹鋼在高速高溫變形下之機械性質與微觀結構分析 Mechanical Properties and Microstructure of Predeformed 304L Stainless Steel Subjected to High Strain Rate and High Temperature Loading Conditions |
| 指導教授: |
李偉賢
Lee, Woei-Shyan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 預變形 、溫度及應變速率敏感性 、韌窩破壞 、α'麻田散鐵 、雙晶 、差排 、霍普金森桿 、304L不銹鋼 |
| 外文關鍵詞: | dimple fracture, αmartensite, twins, dislocation, split Hopkinson bar, 304L stainless steel, prestrain, temperature and strain rate sensitivities |
| 相關次數: | 點閱:129 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用霍普金森撞擊試驗機針對經不同預變形量0.15及0.5之304L不銹鋼進行動態撞擊試驗,測試時圓柱形預變形試片分別在300℃、500℃及800℃及應變速率2000s-1、4000s-1及6000s-1下,施以高速高溫之變形,以探討預變形量、溫度及應變速率對304L不銹鋼塑變行為及微觀組織的影響。
實驗結果顯示304L不銹鋼之機械性質隨溫度、應變速率及預變形量的不同而有顯著的差異。預變形量較大時,塑流應力、應變速率敏感性係數及溫度敏感性係數均較大;而加工硬化率、熱活化體積與活化能則較小。在相同溫度下,塑流應力及加工硬化率隨應變速率上升而增加,熱活化體積與活化能減少。在相同應變速率下,熱活化體積與活化能隨溫度上升而增加,而塑流應力、加工硬化率及應變速率敏感性係數隨之下降。然而在800℃時,材料發生再結晶現象使得加工硬化率較500℃時為高。
光學顯微鏡之觀測結果顯示,304L不銹鋼絕熱剪切帶的形成與預變形量、應變速率及溫度有密切的關係。絕熱剪切帶僅出現在預變形0.5之高速高溫變形試件中,其寬度隨溫度及應變速率的上升而增加。而掃描式電子顯微之破壞形貌分析,可發現破壞表面是由大量之韌窩組織所主宰,此顯示304L不銹鋼在高速高溫變形荷載下之破損屬於延性破壞的模式。而穿透式電子顯微鏡觀察則顯示材料中之α'麻田散鐵量會隨應變速率及溫度的上升而減少。然而,在較低溫度及較高應變速率下,材料中的雙晶數量及差排密度則會顯著增加。
This study investigates the mechanical properties and microstructure of predeformed 304L stainless steel under strain rate range from 2000s-1 to 6000s-1 and temperature range from 300℃to 800℃ by using split Hopkinson pressure bar tester. The relationship between mechanical properties and microstructure of the deformed specimen are discussed in terms of the amount of prestrain and loading conditions.
The experimental results reveal that the mechanical properties of 304L stainless steel vary with temperature, strain rate and the amount of prestrain. Flow stress, strain rate sensitivity, and temperature sensitivity increase with the increase of amount of prestrain. However the work hardening rate, activation volume, and activation energy are found to decrease with increasing prestrain. For the constant temperature, the flow stress and work hardening rate increase, but the activation volume and activation energy decrease with increasing strain rate. For a given strain rate, the activation volume and activation energy increase with increasing temperature. However, a decrease of the flow stress, work hardening rate and strain rate sensitivity is observed with the increase of temperature. At 800℃, recrystalization occurs, resulting a higher work hardening rate than that of 500℃.
Optical microscopy observations show that the formation of adiabatic shear band depends strongly on the prestrain, strain rate and temperature. In the current loading condition, the shear bands appear only for the 0.5 prestrain. The width of shear bands increases with increasing temperature and strain rate. Scanning electron microscopy observation shows that the fracture surfaces are characterized by the dimple-like structures, which are indicative of ductile fracture. Transmission electron microscopy structural observation shows that the amount of martensite decreases with the increase of strain rate and temperature. Furthermore, an increase of strain rate or a decrease of temperature leads to an increase of dislocation and twin densities.
1. H. Kolsky, “An Investigation of the Mechanical Properties of Materials at Very High Strain Rates of Loading,” Proc. Phys. Soc., No. 62, pp. 676-700, 1949.
2. D. Peckner and I. M. Bernstein, Handbook of Stainless Steels, McGraw-Hill Publishing Company, 1977.
3. R. A. Lula, J. G. Parr and A. Hanson, Stainless Steel, American Society for Metals, Metals Park, Ohio, 1986.
4. S. L. Semiatin and J. H. Holbrook, “Plastic Flow Phenomenology of 304L Stainless Steel,” Metallurgical Transactions A, Vol. 14A, pp. 1681-1695, 1983.
5. S. Venugopal, S. L. Mannan and Y. V. R. K. Prasad, “Optimization of Hot Workability in Stainless Steel-Type AISI 304L Using Processing Maps,” Metallurgical Transactions A, Vol. 23A, pp. 3093-3103, 1992.
6. D. Sundararaman, R. Divakar and V. S. Raghunathan, “Microstructural Features of a Type 304L Stainless Steel Deformed at 1473K in the Strain Rate Interval 10-3 s-1 to 102 s-1,” Scripta Metallurgica et Materialia, Vol. 28, pp. 1077-1082, 1993.
7. M. C. Mataya, E. L. Brown and M. P. Riendeau, “Effect of Hot Working on Structure and Strength of Type 304L Austenitic Stainless Steel,” Metallurgical Transactions A, Vol. 21A, pp. 1969-1987, 1990.
8. D. P. Harvey II, J. B. Terrell, T. S. Sudarshan and M. R. Louthan, JR., “Participation of Hydrogen in the Impact Behaviour of 304L Stainless Steel,” Engineering Fracture Mechanics, Vol. 46, pp. 455-464, 1993.
9. Woei-Shyan Lee and Chi-Feng Lin, “Impact properties and microstructure evolution of 304L stainless steel,” Materials Science and Engineering A, Vol. 308, pp. 124-135, 2001.
10. B. K. Shah, A. K. Sinha, P. K. Rastogi and P. G. Kulkarni, “Effect of Prior Cold Work on Low Temperature Sensitisation Susceptibility of Austenitic Stainless Steel AISI 304,” Materials Science and Technology, Vol. 6, pp. 157-160, 1990.
11. L. E. Murr, A. Advani, S. Shankar and D. G. Atteridge, “Effects of Deformation (Strain) and Heat Treatment on Grain Boundary Sensitization and Precipitation in Austenitic Stainless Steels” Materials Characterization, Vol. 39, pp. 575-598, 1997.
12. K. B. S. Rao, M. Valsan, R. Sandhya, S. L. Mannan and P Rodriguez, “ An Assessment of Cold Work Effects on Strain-Controlled Low-Cycle Fatigue Behavior of Type 304 Stainless Steel,” Metallurgical Transactions A, Vol. 24A, pp. 913-924, 1993.
13. M. Gold, W. E. Leyda and R. H. Zeisloft, “Effect of Varying Degrees of Cold Work on the Stress-Rupture Properties of Type 304 Stainless Steel,” Journal of Engineering Materials and Technology, Vol. 97, pp. 305-312, 1975.
14. Yutaka Iino, “Effect of Small and Large Amounts of Prestrain at 295K on Tensile Properties at 77K of 304 Stainless Steel,” JSME International Journal Series I, Vol. 35, pp. 303-309. 1992.
15. K. P. Staudhammer and L. E. Murr, “Effect of Prior Deformation on the Residual Microstructure of Explosively Deformed Stainless Steels,” Materials Science and Engineering, Vol. 44, pp. 97-113, 1980.
16. W. Y. Lu, M. F. Horstemeyer, J. S. Korellis, R. B. Grishabar and D. Mosher, “High Temperature Sensitivity of Notched AISI 304L Stainless Steel Tests,” Theoretical and Applied Fracture Mechanics, Vol. 30, pp. 139-152, 1998.
17. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, “Processing Map for Cold and Hot Working of Stainless Steel Type AISI 304L,” Materials Letters. Vol. 15, pp. 79-83, 1992.
18. S. Venugopal, S.L. Mannan, and Y.V.R.K. Prasad, “Influence of State of Stress on the Processing Map for Hot Working of Stainless Steel Type AISI 304L:Compression vs. Torsion,” Materials Science and Engineering A, Vol. 160, pp. 63-69, 1993.
19. Pat L. Mangonon, Jr. and G. Thomas, “The Martensite Phases in 304 Stainless Steel,” Metallurgical Transactions, Vol. 1, pp. 1577-1587, 1970.
20. S. S. Hecker, M. G. Stout, K. P. Staudhammer and J. L. Smith, “Effect of Strain Rate and Strain Rate on Deformation-Induced Transformation in 304 Stainless Steel: Part I. Magnetic Measurements and Mechanical Behavior,” Metallurgical Transactions. A, Vol. 13A, pp. 619-626, 1982.
21. S.S.M. Tavares, D. Fruchart and S. Miraglia, “A Magnetic Study of the Reversion of Martensite in a 304 Stainless Steel,” Journal of Alloys and Compounds, Vol. 307 pp. 311-317, 2000.
22. G. B. Olson and M. Cohen, “Kinetics of Strain-Induced Martensitic Nucleation,” Metallurgical Transactions A, Vol. 6A, pp. 791-795, 1975.
23. K. P. Staudhammer, L. E. Murr and S. S. Hecker, “Nucleation and Evolution of Strain-Induced Martensitic (b.c.c) Embryos and Substructure in Stainless: A Transmission Electron Microscope Study,” Acta Metallurgica, Vol. 31, No. 2, pp. 267-274, 1983.
24. R. J. DeAngelis and J. B. Choen, “Effects of Shock Loading on Copper, Part III,” Journal of Metals, Vol. 15, p. 681, 1963.
25. F. Greulich and L. E. Murr, “Effect of Grain Size, Dislocation Cell Size and Deformation Twin Spacing on the Residual Strengthening of Shock-Loaded Nickel,” Materials Science and Engineering, Vol. 39, pp. 81-93, 1979.
26. K. Wongwiwat and L. E. Murr, “Effect of Shock Pressure, Pulse Duration, and Grain Size on Shock-Deformation Twinning in Molybdenum,” Materials Science and Engineering, Vol. 35, pp. 273-285, 1978.
27. J. A. Venables, “The Nucleation and Propagation of Deformation Twins,” The Journal of Physics and Chemistry of Solids, Vol. 25, pp. 693-700, 1964.
28. D. R. Curran, L. Seaman and D. A. Shockey, “Linking Dynamic Fracture to Microstructural Process, Shock Wave and High-Strain-Rate Phenomena in Metal: Concepts and Applications,” pp. 22-26, 1980.
29. U. S. Lindholm, in Techniques in Metals Research, Vol. 5, Part1, R. F. Bunshah (ed.), Wiley-Interscience, New York, pp. 199, 1971.
30. U. S. Lindholm and L. W. Yeakly, “High Strain Rate Tension and Compression,” Exp. Mech., Vol. 3, pp. 81-88, 1983.
31. W. S. Lee and C. F. Lin, “Plastic Deformation and Fracture Behaviour of Ti-6Al-4V Alloy Loaded with High Strain Rate under Various Temperatures,” Materials Science and Engineering A, Vol. 241, pp. 48-59, 1998.
32. J. D. Campbell, “Dynamic Plasticity: Macroscopic and Microscopic Aspects,” Materials Science and Engineering, Vol. 12, pp. 3-21, 1973.
33. D. Klahn, A. K. Mukherjee and J. E. Dorn, Proceedings of the 2nd International Conference on the Strength of Metals and Alloys, Vol. III, ASM, pp. 951, 1970.
34. J. D. Campbell and W. G. Ferguson, “The Temperature and Strain-Rate Dependence of the Shear Strength of Mild Steel,” Phil. Mag., Vol. 21, pp. 63-82, 1970.
35. A. Seeger, “Dislocation and Mechanical Properties of Crystals,” Phil. Mag., Vol. 46, pp. 1194-1217, 1955.
36. U. S. Lindholm and L. M. Yeakly, “Dynamic Deformation of Single and Polycrystalline Aluminum,” J. Mech. Phys. Solids, Vol. 13, pp. 41-49, 1965.
37. W. G. Ferguson, A. Kumar and J. E. Dorn, “Dislocation Damping in Aluminum at High Strain Rates,” Journal of Applied Physics, Vol. 38, pp. 1863-1869, 1967.
38. J. D. Campbell and A. R. Dowling, “The Behaviour of Materials Subjected to Dynamic Incremental Shear Loading,” Journal of Mechanics and Physics of Solids, Vol. 18, pp. 43-63, 1970.
39. Y. Bai and B. Dodd, Adiabatic Shear Localization, Pergamon Press, pp. 104-124, 1992.
40. Z. Gronostajski, “The Constitutive Equations for FEM Analysis,” Journal of Materials Processing Technology, Vol. 106, pp. 40-44, 2000.
41. L. W. Meyer, N. Herzig, T. Halle, F. Hahn, L. Krueger and K. P. Staudhammer, “A Basic Approach for Strain Rate Dependent Energy Conversion Including Heat Transfer Effects: An Experimental and Numerical Study,” Journal of Materials Processing Technology, Vol. 182, pp. 319-326, 2007.
42. F. J. Zerilli and R. W. Armstrong, “Dislocation-Mechanics-Based Constitutive Relations for Material Dynamics Calculations,” Journal of Applied Physics, Vol. 61, pp. 1816-1825, 1987.
43. F. J. Zerilli and R. W. Armstrong, “Constitutive Equation for HCP Metals and High Strength Alloy Steels,” in High Strain Rate Effects on Polymer, Metal and Ceramic Matrix Composites and Other Advanced Materials, AD-Vol. 48, pp. 121-126, 1995.
44. D. Umbrello, R. M‘Saoubi and J. C. Outeiro, “The Influence of Johnson-Cook Material Constants on Finite Element Simulation of Machining of AISI 316L Steel,” International Journal of Machine Tools & Manufacture, Vol. 47, pp. 462-470, 2007.
45. U. R. Andrade, M. A. Meyers and A. H. Chokshi, “Constitutive Description of Work- and Shock-Hardened Copper,” Scripta Metallurgica et Materialia, Vol. 30, No. 7, pp. 933-938, 1994.
46. C. Herrera, R. L. Plaut and A. F. Padilha, “Microstructural Refinement During Annealing of Plastically Deformed Austenitic Stainless Steels,” Materials Science Forum, Vol. 550, pp. 423-428, 2007.
47. Hasegawa M. Stainless Steel Handbook. Tokyo: Nikkan Kogyo Shinbun, 1995.
48. L. Shi and D. O. Northwood, “The Mechanical Behavior of an AISI Type 310 Stainless Steel,” Acta Metallurgica et Materialia, Vol. 43, pp. 453-460, 1995.
49. H. Conrad, “Thermally Activated Deformation of Metals,” Journal of Metals, Vol. 16, pp. 582-588, 1964.
50. W. S. Lee and C. Y. Liu, “Comparison of Dynamic Compressive Flow Behavior of Mild and Medium Steels over Wide Temperature Range,” Metallurgical and Materials Transactions A, Vol. 36, pp. 3175-3186, 2005.
51. Pat L. Mangonon, Jr. and G. Thomas, “Structure and properties of Thermal-Mechanically Treated 304 Stainless Steel,” Metallurgical Transactions, Vol. 1, pp. 1587-1594, 1970.
52. R. K. Ham, “The Determination of Dislocation Densities in Thin Films,” Phil. Mag., Vol. 6, pp. 1183-1184, 1961.
53. 陳銘祥, “鋁鈧合金之撞擊變形與差排結構特徵分析” 國立成功大學機械工程研究所碩士論文, 2007.
54. 林奇鋒, “304L不銹鋼在未預變形及預變形條件下之高速撞擊特性與微觀組織的比較研究” 國立成功大學機械工程研究所博士論文, 2002.