簡易檢索 / 詳目顯示

研究生: 林郁孟
Lin, Yu-Meng
論文名稱: 全光式可切換藍相液晶雷射之研究
All-optically switchable dye-doped blue phase liquid crystal laser
指導教授: 李佳榮
Lee, Chia-Rong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程研究所
Institute of Electro-Optical Science and Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 59
中文關鍵詞: 藍相液晶雷射
外文關鍵詞: blue phase, liquid crystal, laser
相關次數: 點閱:60下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文首次藉由在藍相液晶中摻雜螢光染料以及可光致同素異構化之偶氮液晶,發展一可全光切換之藍相液晶雷射,並研究此染料摻雜藍相液晶雷射在不同光波長照射下之雷射輸出可全光切換特性。此雷射輸出可切換之機制乃當照射紫外光後,偶氮液晶產生trans→cis同素異構化反應,分子形狀由棒狀轉變為彎曲狀,進而擾亂藍相液晶晶格結構,而降低雷射輸出強度與增加雷射能量閥值;當進一步關掉紫外光而照射綠光後,偶氮液晶吸收綠光產生反向的cis→trans back同素異構化反應,分子形狀也由彎曲狀轉變回棒狀,不再擾亂藍相液晶的結構,使藍相液晶晶格結構回復原始有序的狀態,而使雷射輸出強度得以回升與雷射能量閥值得以回復降低。因此,藉由以上所述偶氮液晶之可逆性光引致同素異構化效應可引致全光開關切換之藍相液晶雷射元件。

    This thesis develops and investigates for the first time an all-optically switchable laser based on a dye-doped blue phase liquid crystal (DDBPLC) with an azoLC dopant. The mechanisms of the all-optical switchability of the DDBPLC laser are attributed to the disturbance and rearrangement of the BPLC structure due to the trans-cis and cis-trans back isomerizations of the azoLC under the successive irradiations of one UV and one green beams, respectively. The curve cis azoLC may disturb the lattice structure of the BPLC to decrease the lasing emission and thus increase the energy threshold, whereas the rod trans azoLC may rearrange the BPLC lattice structure to increase the lasing emission and thus decrease the energy threshold. Therefore, the all-optically switchable BPLC laser can be obtained via the reversible photoisomerization effect.

    ABSTRACT II ACKNOWLEDGEMENTS IV CONTENTS V LIST OF FIGURES VII LIST OF TABLES X CHAPTER 1 INTRODUCTION 1 CHAPTER 2 INTRODUCTION TO LIQUID CRYSTALS 2.1 LIQUID CRYSTAL 3 2.2 CLASSIFICATIONS OF LIQUID CRYSTAL MOLECULES 3 2.2.1 Rod-like molecules. 4 2.2.2 Disc-like molecules. 7 2.2.3 Lath-like molecules 8 2.3 BIREFRINGENCE 9 2.4 TEMPERATURE-DEPENDENCE OF BIREFRINGENCE FOR TYPICAL LCS 11 2.5 ELASTIC CONTINUUM THEORY OF LCS 12 2.6 DIELECTRIC ANISOTROPY OF LCS 13 CHAPTER 3 REVIEW OF BLUE PHASE, DISTRIBUTED FEEDBACK LASER AND PHOTOISOMERIZATION 3.1 BLUE PHASE 15 3.1.1 History of blue phase 15 3.1.2 Simple- and double-twist structure in blue phase 16 3.1.3 Relationship of blue phase and temperature 19 3.1.4 Free energy in blue phase 20 CHAPTER4 SAMPLE PREPARATION AND EXPERIMENTAL SETUP 4.1 MATERIALS USED 23 4.2 SAMPLE PREPARATION 26 4.3 OBSERVATION OF DDBPLC CELL UNDER POLARIZING OPTICAL MICROSCOPE 29 4.4 SETUP FOR MEASURING ABSORPTION AND FLUORESCENCE EMISSION SPECTRA OF LASER DYE 31 4.5 SETUP FOR MEASURING ABSORPTION SPECTRA OF AZOLC 32 4.6 SETUP FOR MEASURING LASING SPECTRA OF THE DDBPLC CELL 33 CHAPTER 5 RESULTS AND DISCUSSION 5.1 SAMPLE PATTERNS OF DDBPLC AT DIFFERENT TEMPERATURES 35 5.2 ABSORPTION AND FLUORESCENCE EMISSION SPECTRA OF LASER DYE 37 5.3 ABSORPTION SPECTRA OF AZO-LC 38 5.4 DYE-DOPED BLUE PHASE LIQUID CRYSTAL LASER 39 5.5 DYE-DOPED BLUE PHASE LIQUID CRYSTAL LASER AFTER ILLUMINATION OF ONE UV BEAM 42 5.6 DYE-DOPED BLUE PHASE LIQUID CRYSTAL LASER AFTER SUCCESSIVE ILLUMINATIONS OF UV AND GREEN BEAMS 46 5.7 DYE-DOPED BLUE PHASE LIQUID CRYSTAL LASER AT WEAK, MODERATE AND STRONG LEVELS OF PUMPED ENERGY 52 CHAPTER 6 CONCLUSION AND FUTURE WORK 6.1 CONCLUSION 55 6.2 FUTURE WORK 56 REFERENCES 57

    [1] Wenyicao, Antonio Munoz, Peter Palffy-Muhoray, and Bahman Taheri, “Lasing in a three-dimensional photonic crystal of the liquid crystal blue phase II,” Nature Mater. 1, 111–113 (2002).
    [2] Takuya Isomura, Hiroyuki Yoshida, Akihiko Fujii, and Masanori Ozaki, “Laser Emission from a Photopolymerized Cholesteric Blue Phase II,” Mol. Cryst. Liq. Cryst. 516, 197–201 (2010).
    [3] Shiyoshi Yokoyama, Shinro Mashiko, Hirotsugu Kikuchi, Kiminori Uchida, and Toshihiko Nagamura, “Laser Emission from a Polymer-Stabilize Liquid-Crystalline Blue Phase,” Adv. Mater. 18, 48–51 (2006).
    [4] Hirotsugu Kikuchi, “Liquid Crystalline Blue Phases,” Struct. Bond. 128, 99–117 (2007).
    [5] H.-S. Kitzerow, “Blue Phases: Prior Art, Potential Polar Effects, Challenges,” Ferroelectrics 395, 66–85 (2010).
    [6] T Seideman, “The liquid crystalline blue phases,” Rep. Prog. Phys. 53, 659–705 (1990).
    [7] K.-C. Lo, J.-D. Wang, C.-R. Lee, and T.-S. Mo, “Electrically controllable and polarization-independent Fresnel zone plate in a circularly symmetric hybrid-aligned liquid crystal film with a photoconductive polymer layer,” Appl. Phys. Lett. 91, 181104 (2007)
    [8] C.-R. Lee, S.-H. Lin, H.-S. Ku, J.-H. Liu, P.-C. Yang, C.-Y. Huang, H.-C. Yeh, T.-D. Ji, and C.-H. Lin, “Spatially band-tunable color-cone lasing emission in a dye-doped cholesteric liquid crystal with a photoisomerizable chiral dopant,” Opt. Lett. 35(9), 1398–1400 (2010).
    [9] Chia-Rong Lee, Jia-De Lin, Yan-Jhen Huang, Shih-Chan Huang, Shih-Hung Lin, and Chin-Ping Yu, “All-optically controllable dye-doped liquid crystal infiltrated photonic crystal fiber,” Opt. Express, 19(10), 9676–9689 (2011).
    [10] J.-D. Lin, H.-C. Yeh, T.-D. Ji, Andy Y.-G. Fuh, and C.-R. Lee, “Time-dependent performance of the color cone lasing emission based on dyedoped cholesteric liquid crystals,” 23rd International Liquid Crystal Conference.
    [11] Hiroyuki Yoshida, Yuma Tanaka, Kosuke Kawamoto, Hitoshi Kubo, Tetsuya Tsuda, Akihiko Fujii, Susumu Kuwabata, Hirotsugu Kikuchi, and Masanori Ozaki, “Nanoparticle-Stabilized Cholesteric Blue Phases,” Appl. Phys. Express 2 ,121501 (2009).
    [12] William D. Callister, Jr., Fundamentals of Materials Science and Engineering (An Interactive (e.Text), John Wiley & Sons Inc, NJ, 2001).
    [13] S. Chandrasekhar, Liquid Crystals (Cambridge University Press, USA, 1992).
    [14] Chi-Huang Lin, Yu-Yin Wang, and Cheng-Wei Hsieh, “Polarization-independent and high-diffraction-efficiency Fresnel lenses based on blue phase liquid crystals,” Opt. Lett. 36, 502–503 (2011).
    [15] Yi-Hsin Lin, Hung-Shan Chen, Hung-Chun Lin, Yu-Shih Tsou, Hsu-Kuan Hsu, and Wang-Yang Li, “Polarizer-free and fast response microlens arrays using polymer- stabilized blue phase liquid crystals,” App. Phys. Lett. 96, 113505 (2010).
    [16] Jin Yan, Yan Li, and Shin-Tson Wu, “High-efficiency and fast-response tunable phase grating using a blue phase liquid crystal,” Opt. Lett. 36, 1404–1406 (2011).
    [17] E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58, 2059–2602 (1987).
    [18] J.D. Joannopoulos, R.D. Meade, J.N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, Princeton University Press NJ, 1995).
    [19] J. P. Dowling and C. M. Bowden, “Atomic emission rates in inhomogeneous media with applications to photonic band structures,” Phys. Rev. A 46, 612 (1992).
    [20] Jonathan P. Dowling, Michael Scalora, Mark J. Bloemer, and Charles M.Bowden, “The photonic band edge laser: A new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [21] Victor I. Kopp, Zhao-Qing Zhang, Azriel Z. Genack, “Lasing in chiral photonic structures,” Progress in Quantum Electronics 27, 369–416 (2003).
    [22] Victor I. Kopp and Azriel Z. Genack, “Density of states and lasing at the edge of a photonic stop band in dye-doped cholesteric liquid crystals,” SPIE 3623, 71–79 (1999).
    [23] Andrew J. Lovinger, Karl R. Amundson, and Don D. Davis,Chem. Mater. 6, 1726 (1994).
    [24] Grant R. Fowles, Introduction to Modern Optics, 2nd ed (University of Utah, New York, 1975).
    [25] P. G. de Gennes and J. Prost, The Physics of Liquid Crystals (Oxford University Press, New York,1993).
    [26] O. D. Laventovich and M. Kleman, Chirality in Liquid Crystals (Springer-Verlag, New York, 2001).
    [27] M. Imada, A. Chutinan, S. Noda and M. Mochizuki, “Multidirectionally distributed feedback photonic crystal lasers,” Phys. Rev. B 65(19), 195306–195313 (2002).
    [28] S. Meiboom, J. P. Sethna, P. W. Anderson, and W. F. Brinkman, “Theory of the blue phase of cholesteric liquid crystals,” Phys. Rev. Lett. 46(18), 1216–1219 (1981).
    [29] D. W. Allender, G. P. Crawford, and J. W. Doane, “Determination of the liquid-crystal surface elastic constant K24,” Phys. Rev. Lett. 67(11), 1442-1445 (1991).
    [30] W. Cao, “Fluorescence and lasing in liquid crystalline photonic bandgap materials,” PhD dissertation of Kent State University (2005).
    [31] J. P. Sethna, “Frustration, curvature, and defect lines in metallic glasses and the cholesteric blue phase,” Phys. Rev. B 31(10), 6278-6297 (1985).

    下載圖示 校內:2014-09-08公開
    校外:2014-09-08公開
    QR CODE