| 研究生: |
戴于喬 Dai, Yu-Chou |
|---|---|
| 論文名稱: |
應用蛋白質體學,免疫學及基因學分析塵蟎過敏原和SP-D所引發的過敏氣喘機轉之研究 Proteomic, immunologic, and genetic studies in the mechanisms of surfactant protein (SP)-D and house dust mite-induced allergic asthma |
| 指導教授: |
王志堯
Wang, Jiu-Yao |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 131 |
| 中文關鍵詞: | 過敏 、塵蟎 、單株抗體 、抗原表位 、半胱氨酸蛋白酶 、肺泡表面蛋白D 、基因多形性 、過敏氣喘 、塵蟎過敏原 |
| 外文關鍵詞: | Der p 1, house dust mite, monoclonal antibody, epitopes, cysteine protease, Surfactant protein D, genetic polymorphism, allergic asthma, mite allergen |
| 相關次數: | 點閱:150 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺臟是我們體內氣體交換的器官,所以肺臟經常要接觸空氣中的病原菌、過敏原和污染物質,肺臟內的防禦系統必須要有效且快速的清除這些病原菌。Der p 1塵蟎過敏原是來自Dermatophagoid pteronyssinus,屬於木瓜蛋白酶半胱氨酸蛋白酶家族的一員其主要是引起過敏性鼻炎和哮喘。然而,如何引起的作用機制尚不清楚。肺泡表面蛋白D (pulmonary surfactant protein D, SP-D),是由第二型肺泡細胞所分泌,在肺臟中先天免疫防禦系統機制扮演重要角色。研究氣管肺泡的灌洗液 (BAL) 和血液中SP-D的基因多型性及蛋白質分析,已經發現SP-D的多型性和許多肺發炎反應疾病有關聯。目前已知在人類SP-D的編碼序列上有三個單核甘酸變異點 (SNPs),分別是位在N端的編碼序列第11個的胺基酸,編碼序列第160個的胺基酸,及位於C端的編碼序列第270個的胺基酸。然而SP-D的基因變異體和氣喘的臨床症狀表現及家塵蟎Dermatophagoides ptyronysinnus (Der p)的過敏原感受性的關聯性仍然是未知。本論文的研究主題主要是利用蛋白質體學,免疫學及基因學分析塵蟎過敏原和SP-D引發的過敏氣喘機轉之研究,並分為以下兩大研究主軸來進行。首先,我們先分離及純化anti-Der p 1 的單株抗體, mAb W108,再利用蛋白質體學及免疫學的分析來評估mAb W108在因Der p過敏原所引起的過敏性氣喘中的治療潛能。第二,由我們研究族群中SP-D基因多型性及兒童氣喘的臨床相關研究,我們從哺乳動物的細胞中表現出四個不同基因型的重組SP-D蛋白,進而比較這四個不同基因型的重組SP-D蛋白和家塵蟎的結合親和力來探究SP-D蛋白和因Der p所引起的兒童氣喘的相關性及SP-D蛋白在其中的功能。
在我們研究的第一個部分,我們使用 predictive algorithms 和 site-directed mapping來研究藉由老鼠的單株抗體所找出的Der p 1中和IgE結合的epitopes位置及過敏原多肽的排列。而mAb W108的治療評估則是使用塵蟎刺激所引起氣喘的老鼠來做動物實驗模式。同時,mAb W108是由可強烈抑制 human anti-Der p-specific IgE antibodies 和 the cysteine protease activity of the Der p 1結合的 Der p-specific producing hybridoma clones中所挑選及分離出來。對未處理的Der p蛋白萃取物使用2 D電泳 (2-DE) 及蛋白質體學分析可得到275個明顯的蛋白點,其中四個 (36 kDa, pI values from 4 to 6) 蛋白點屬於 Der p 1 precursor isotypes且可和Der p 1 敏感的病人血清及mAb W108產生反應。在Der p 1 的connected loops (胺基酸殘基151-197和286-320)中有兩個不連續的epitopes 可被辨識出和mAb W108的結合親和力及3D結構模型刺激有相關性。在過敏性氣喘的老鼠模式中,給予 mAb W108可減輕Der p過敏原所引起的呼吸道發炎反應的症狀及反轉Th2的過敏性免疫反應。
在第二部份的研究,我們將參與研究的460名學齡期兒童依據他們的臨床症狀及家塵蟎感受性分為四組(過敏性氣喘[AA]、非過敏性氣喘[NA]、過敏性但不具有氣喘[AN]和不過敏也沒有氣喘[NN])。 SP-D SNPs是用 sequence specific primer-PCR的方法來定出,並利用酵素免疫分析法(ELISA)來分析血清中SP-D蛋白的濃度,而相關性分析是用SPSS來表現。我們的結果顯示 SP-D aa 160的變異體和Der p 感受性有關,但是和氣喘的表型無關。我們同時利用 Flp-In system中的哺乳類細胞來表現四種具有不同基因型的全長度的SP-D重組蛋白,分別為 TG、CG、TA、CA。由 solid-phase結合分析,我們發現SP-D CA的基因變異型和塵蟎過敏原有最高程度的結合親合力,這個結果和我們利用病人的基因研究所發現SP-D CA的基因變異型在兒童的家塵璊所引起的過敏性氣喘中具有保護性是有其相關性的。
總結本篇論文的結論,我們證明在過敏性氣喘的老鼠模式中,給予 mAb W108可減輕Der p過敏原所引起的呼吸道發炎反應的症狀及Th2 cytokines 的免疫反應,可顯示出mAb W108在臨床使用上的治療潛力。而從不同基因變異型的SP-D和塵蟎過敏原的結合親和力試驗中,我們發現SP-D有作用的胺基酸變異型可能在有基因傾向會有過敏原敏感性的人及兒童氣喘患者中扮演著重要的角色。這些發現可提供新的觀點來了解 IgE-mediated疾病和為未來過敏原專一性的免疫治療提供修改過的過敏原疫苗及為過敏性氣喘提供新的治療形式。
As a gas-exchange organ, lung is inevitably exposed to air that is contaminated with pathogens, allergens and pollutants. Hence, the host-defense mechanism within the lung is vital to facilitate clearance of inhaled pathogens as well as to prevent persistent inflammation. The group 1 allergen from Dermatophagoid pteronyssinus (Der p 1), belongs to the papain-like cysteine protease family and is a major allergen of Der p that causes rhinitis and asthma. However, details of pathophysiological mechanism of Der p 1 in allergic diseases are unclear. Pulmonary surfactant protein D (SP-D), as an endogenous secreted C-type lectin from alveolar type II cells, plays important role in the innate immunity of lung. Studies on SP-D polymorphisms and protein levels in bronchoalveolar lavage (BAL) and blood have been indicated associated with a multitude of pulmonary inflammatory diseases. There are three single nucleotide polymorphisms (SNPs) in the coding sequence of human SP-D at SP-D aa11 in the N-terminal region, SP-D aa 160 in the collagen-like domain, and SP-D aa 270 in the carbohydrate recognition domain. Whether the genetic variants of SP-D are in association with clinical phenotypes of asthma and house dust mite, Dermatophagoides ptyronysinnus (Der p) allergen sensitizatioln is still also unknown. Here, in this study, we focused our studies in proteomic, immunologic, and genetic studies in the protective mechanisms of surfactant protein (SP)-D in house dust mite induced-allergic asthma. In this research, we have used two separate approaches to explore this study question. Firstly, we isolated and purified anti-Der p 1 monoclonal antibody, mAb W108, and using proteomic and immunologic analysis to evaluate the therapeutic potential of this mAb W108 in Der p allergen-induced allergic asthma. Secondly, from the clinical association study of SP-D gene polymorphisms and childhood asthma in our population, we have expressed four genetic variant of recombinant SP-D protein from mammalian cells, and compared the mite allergen binding affinity among these four recombinant of SP-D, to explore the association and function of genetic polymorphism of the surfactant protein (SP)-D in mite-sensitization childhood asthma.
In the first part of our studies, we used predictive algorithms and site-directed mapping to investigate the IgE binding epitopes of the Der p 1 using a mouse monoclonal antibody (mAb) and allergen peptides array. The therapeutic use of blocking anti-Der p 1 mAb, W108 was evaluated in a mite-sensitized murine model of asthma. mAb W108 was selected and isolated from Der p-specific producing hybridoma clones, which strongly inhibited the binding of human anti-Der p-specific IgE antibodies and the cysteine protease activity of the Der p 1. Using two-dimensional electrophoresis (2-DE) and proteomic approach on the crude extracts of the Der p revealed about 275 distinct protein spots, four of which (36 kDa, pI values from 4 to 6) belonged to the Der p 1 precursor isotypes that interacted with sera from Der p-sensitive patients and mAb W108. Two discontinuous epitopes on the connected loops (residues 151-197 and 286-320) of the Der p1 were identified according to the relative binding affinity of the peptides to mAb W108 and in a 3D structural model simulation. In the mouse model of allergic asthma, administration of mAb W108 could alleviate the symptoms of Der p allergen-induced airway inflammation and reversed Th2 allergic immune response.
In the second part of study, we have enrolled 460 school-age children in Taiwan, and divided into 4 groups (allergic asthma (AA), non-allergic asthma (NA), allergic non-asthma (AN), and controls (NN)) according to their clinical symptoms and host dust mite sensitization. SP-D SNPs was genotyped by a sequence specific primer-PCR methodology and their serum SP-D levels were analyzed by ELISA. Association analyses were performed by SPSS. Our results showed that SP-D aa 160 variant was associated with Der p sensitization, but not with asthma phenotype. We had also expressed the recombinant protein with TG, CG, TA and CA of full length SP-D from mammalian cells in Flp-In system. From the solid-phase binding assay, we found genetic variants of CA type of SP-D has the highest binding affinity to mite allergen, which was correlated with the genetic finding of our study patients that SP-D CA genetic type had the protective effect in mite-sensitive allergic asthma in children.
In conclusion, we have showed that the administration of mAb W108 in the Der p-sensitized murine model of asthma alleviated allergen-induced airway inflammation and the Th2 cytokines immune response, suggesting its therapeutic potential. From the study of the mite allergen binding affinity among different genetic variants of SP-D, we found the functional amino acid variants in SP-D may play a major role in the genetic pre-disposition to allergen sensitization and childhood asthma. These findings can provide new insights into understand IgE-mediated disease and the design of modified allergen-vaccines for future allergen-specific immunotherapy as well as new therapeutic modality for allergic asthma.
References
1. Asher, M. I., Montefort, S., Bjorksten, B., Lai, C. K., Strachan, D. P., Weiland, S. K., and Williams, H. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet 2006; 368:733-743.
2. Tovey, E. R., Chapman, M. D., and Platts-Mills, T. A. Mite faeces are a major source of house dust allergens. Nature 1981; 289: 592–593.
3. Platts-Mills, T. A., and Chapman, M. D. Dust mites: immunology, allergic disease, and environmental control. J. Allergy Clin. Immunol. 1987; 80: 755–775.
4. Kao, C. C., Huang, J. L., Ou, L. S., and See, L. C. The prevalence, severity and seasonal variations of asthma, rhinitis and eczema in Taiwanese schoolchildren. Pediatr. Allergy Immunol. 2005; 16: 408-415.
5. Chou, T. Y., Wu, K. Y., Shieh, C.C., and Wang, J. Y. The clinical efficacy of in vitro allergen-specific IgE antibody test in the diagnosis of allergic children with asthma. Acta. Paediatr. Tw. 2002; 43: 35-39.
6. Thomas, W. R., Smith, W. A., Hales, B. J., Mills, K.L., and O’Brien, R. M. Characterization and immunobiology of house dust mite allergens. Int. Arch. Allergy Immunol. 2002 ; 129: 1–18.
7. Kalsheker, N. A., Deam, S., Chambers, L., Sreedharan, S., Brocklehurst, K., and Lomas, D. A. The house dust mite allergen Der p1 catalytically inactivates 1-antitrypsin by specific reactive centre loop cleavage: a mechanism that promotes airway inflammation and asthma. Biochem. Biophys. Res. Commun. 1996; 221: 59–61.
8. Hewitt, C. R., Brown, A. P., Hart, B. J., and Pritchard, D. I. A major house dust mite allergen disrupts the immunoglobulin E network by selectively cleaving CD23: innate protection by antiproteases. J. Exp. Med. 1995; 182: 1537–1544.
9. Schulz, O., Laing, P., Sewell, H. F., and Shakib, F. Der p I, a major allergen of the house dust mite, proteolytically cleaves the low-affinity receptor for human IgE (CD23). Eur. J. Immunol. 1995; 25: 3191–3194.
10. Shakib, F., Schulz, O., and Sewell, H. A mite subversive: cleavage of CD23 and CD25 by Der p 1 enhances allergenicity. Immunol. Today. 1998; 19: 313–316.
11. Schulz, O., Sewell, H. F., and Shakib, F. Proteolytic cleavage of CD25, the subunit of the human T cell interleukin 2 receptor, by Der p 1, a major mite allergen with cysteine protease activity. J. Exp. Med. 1998; 187: 271–275.
12. Ghaemmaghami, A. M., and Shakib, F. Human T cells that have been conditioned by the proteolytic activity of the major dust mite allergen Der p 1 trigger enhanced immunoglobulin E synthesis by B cells. Clin. Exp. Allergy 2002; 32: 728–732.
13. Herbert, C. A., King, C. M., Ring, P. C., Holgate, S.T., Stewart, G. A., Thompson, P. J., and Robinson, C. Augmentation of permeability in the bronchial epithelium by the house dust mite allergen Der p1. Am. J. Respir. Cell Mol. Biol. 1995; 12: 369–378.
14. Wan, H., Winton, H. L., Soeller, C., Tovey, E. R., Gruenert, D. C., Thompson, P. J., Stewart, G. A., Taylor, G. W., Garrod, D. R., Cannell, M. B., and Robinson, C. Der p 1 facilitates transepithelial allergen delivery by disruption of tight junctions. J. Clin. Invest. 1999; 104: 123–133.
15. Ghaemmaghami, A. M., Gough, L., Sewell, H. F., and Shakib, F. The proteolytic activity of the major dust mite allergen Der p 1 conditions dendritic cells to produce less interleukin-12: allergen-induced Th2 bias determined at the dendritic cell level. Clin. Exp. Allergy 2002; 32: 1468–1475.
16. King, C., Brennan, S., Thompson, P. J., and Stewart, G. A. Dust mite proteolytic allergens induce cytokine release from cultured airway epithelium. J. Immunol. 1998; 161: 3645–3651.
17. Asokananthan, N., Graham, P. T., Stewart, D. J., Bakker, A. J., Eidne, K. A., Thompson, P. J., and Stewart, G. A. House dust mite allergens induce proinflammatory cytokines from respiratory epithelial cells: the cysteine protease allergen, Der p 1, activates protease-activated receptor (PAR)-2 and inactivates PAR-1. J. Immunol. 2002; 169: 4572–4578.
18. Grunstein, M. M., Veler, H., Shan, X., Larson, J., Grunstein, J. S., and Chuang, S. Proasthmatic effects and mechanisms of action of the dust mite allergen, Der p 1, in airway smooth muscle. J. Allergy Clin. Immunol. 2005; 116: 94–101.
19. Miike, S., and Kita, H. Human eosinophils are activated by cysteine proteases and release inflammatory mediators. J. Allergy Clin. Immunol. 2003; 111: 704–713.
20. Chua, K. Y., Stewart, G. A., Thomas, W. R., Simpson, R. J., Dilworth, R. J., Plozza, T. M., and Turner, K. J. Sequence analysis of cDNA coding for a major house dust mite allergen, Der p 1: homology with cysteine proteases. J. Exp. Med. 1988; 167: 175–182.
21. Chua, K. Y., Kehal, P. K., and Thomas, W. R. Sequence polymorphisms of cDNA clones encoding the mite allergen Der p I. Int. Arch. Allergy Immunol. 1993; 101: 364–368.
22. Vernet, T., Khouri, H. E., Laflamme, P., Tessier, D. C., Musil, R., Gour-Salin, B. J., Storer, A. C., and Thomas, D. Y. Processing of the papain precursor: purification of the zymogen and characterization of its mechanism of processing. J. Biol. Chem. 1991; 266: 21451–21457.
23. Ikemura, H., Takagi, H., and Inouye, M. Requirement of pro-sequence for the production of active subtilisin E in Escherichia coli. J. Biol. Chem. 1987; 262: 7859–7864.
24. Greene, W. K., Cyster, J. G., Chua, K. Y., O’Brien, R. M., and Thomas, W. R. IgE and IgG binding of peptides expressed from fragments of cDNA encoding the major house dust mite allergen Der p I. J. Immunol. 1991; 147: 3768–3773.
25. Jacquet, A., Magi, M., Petry, H., and Bollen, A. High-level expression of recombinant house dust mite allergen Der p 1 in Pichia pastoris. Clin. Exp. Allergy 2002; 32: 1048–1053.
26. Takai, T. R., Mineki, T., Nakazawa, M., Takaoka, H., Yasueda, K., Murayama, K., Okumura, K., and Ogawa, H. Maturation of the activities of recombinant mite allergens Der p 1 and Der f 1, and its implication in the blockade of proteolytic activity. FEBS Lett. 2002; 531: 265–272.
27. Meno, K., Thorsted, P. B., Ipsen, H. H., Kristensen, O., Larsen, J. N., Spangfort, M. D., Gajhede, M., and Lund, K. The crystal structure of recombinant proDer p 1, a major house dust mite proteolytic allergen. J. Immunol. 2005; 175:3835-3845.
28. Halleux, S. D., Stura, E., VanderElst, L., Carlier, V., Jacquemin, M., and Saint-Remy, J. M. Three-dimensional structure and IgE-binding properties of mature fully active Der p 1, a clinically relevant major allergen. J. Allergy Clin. Immunol. 2006; 117:571-576.
29. Chapman, M. D., Heymann, P. W., and Platts-Mills, T. A. Epitope mapping of two major inhalant allergens, Der p 1 and Der f 1 from mites of the genus Dermatophagoides. J. Immunol. 1987; 139:1479–1484.
30. Lind, P., Hansen, O. C., and Horn, N. The binding of mouse hybridoma and human IgE antibodies to the faecal allergen Der p 1 of Dermatophagoides pteronyssinus. J. Immunol. 1988; 140:4256–4262.
31. McElveen, J. E., Clark, M. R., Smith, S. J., Sewell, H. F., and Shakib, F. Primary sequence and molecular model of the variable region of a mouse monoclonal anti-Der p 1 antibody showing a similar epitope specificity as human IgE. Clin. Exp. Allergy 1998; 28:1427–1434.
32. Furmonaviciene, R., Tighe, P. J., Clark, M. R., Sewell, H. F., and Shakib, F. The use of phage-peptide libraries to define the epitope specificity of a mouse monoclonal anti-Der p 1 antibody representative of a major component of the human immunoglobulin E anti-Der p 1 response. Clin. Exp. Allergy 1999; 29:1563–1571.
33. Galfred, G., and Milstein, C. Preparation of monoclonal antibodies: Strategies and procedures. Methods Enzymol. 1981; 73: 3–46.
34. Kirtley, M. E., and Koshland, D. E. Environmentally sensitive groups attached to proteins. Methods Enzymol. 1972; 26: 578-601.
35. Corti, V., Cattaneo, A., Bachi, A., Rossi, R. E., Monasterolo, G., Paolucci, C., Burastero, S. E., and Alessio, M. Identification of grass pollen allergens by two-dimensional gel electrophoresis and serological screening. Proteomics 2005; 5: 729–736.
36. Tsai, L., Sun, Y., Chao, P., Ng, H., Hung, M., Hsieh, K., Liaw, S., and Chua, K. Sequence analysis and expression of a cDNA clone encoding a 98-kDa allergen in Dermatophagoides farinae. Clin. Exp. Allergy 1999; 29:1606-1613.
37. Lee, B., and Richards, F. M. The interpretation of protein structures: estimation of static accessibility. J. Mol. Biol. 1971; 55:379-400.
38. Chen, C. L., Wang, S. D., Zeng, Z. Y., Lin, K. J., Kao, S. T., Tani, T., Yu, C. K., and Wang, J. Y. Serine protease inhibitors nafamostat mesilate and gabexate mesilate attenuate allergen induced airway inflammation and eosinophilia in a murine model of asthma. J. Allergy Clin. Immunol. 2006; 118:105-112.
39. Yasuhara, T., Takai, T., Yuuki, T., Okudaira, H., Okumura, Y. Cloning and expression of cDNA encoding the complete prepro-form of an isoform of Der f 1, the major group 1 allergen from house dust mite Dermatophagoides farinae. Biosci Biotechnol Biochem 2001; 65:563-569.
40. Takai, T., Kato, T., Yasueda, H., Okumura, K., and Ogawa, H. Analysis of the structure and allergenicity of recombinant pro- and mature Der p 1 and Der f 1: Major conformational IgE epitopes blocked by prodomains. J Allergy Clin Immunol 2005; 115:555-563.
41. Greene, W. K., Cyster, J.G., Chua, K. Y., O’Brien, R. M., and Thomas, W. R. IgE and IgG binding of peptides expressed from fragments of cDNA encoding the major house dust mite allergen Der p 1. J. Immunol. 1991; 147: 3768-3773.
42. Collins, S. P., Ball, G., Vonarx, E., Hosking, C., Shelton, M., and Hill, D. Absence of continuous epitopes in the house dust mite major allergens Der p I from Dermatophagoides pteronyssinus and Der f I from Dermatophagoides farinae. Clin. Exp. Allergy 1996; 26:36-42.
43. Greene, W. K., and Thomas, W. R. IgE binding structures of the major house dust mite allergen Der p I. Mol. Immunol. 1992; 29:257-262.
44. Cooke, G. P., and Tomlinson, I. M. The human immunoglobulin VH repertoire. Immunol. Today 1995; 16:237–242.
45. Cox, J. P. L., Tomlinson, I. M., and Winter, G. Directory of human germ line Vk segments reveals a strong bias in the usage. Eur. J. Immunol.1994; 24:827–836.
46. Brown, A., Farmer, K., MacDonald, L., Kalsheke,r N., Pritchard, D., Haslett, C., Lamb, J., and Sallenave, J. M. House dust mite Der p 1 downregulates defenses of the lung by inactivating elastase inhibitors. Am. J. Respir. Cell Mol. Biol. 2003; 29:381-389.
47.Arlian, L. G. House-dust mite allergens. Exp Appl Acarol 1991;10: 167-186.
48. Platts-Mills, T. A., Thomas, W. R., Aalberse, R. C., Vervloet, D. Dust mite
and asthma: report of a second intermational workshop. J Allergy Clin
Immunol 1992; 89:1046-1060.
49.Huss, K., Adkinson, N. F., Eggleston, Jr., Dawson, C., Van Natta, M. L.,
and Hamilton, R. G. House dust mite and cockroach exposure are strong risk factors for positive allergy skin test responses in the Childhoon Asthma
Management Program. J Allergy Clin Immunol 2001; 107:48-54.
50.Salo, P. M., Arbes, Jr., Crockett, P. W., Thorme, P. S., Cohn, R. D., and
Zeldin, D. C. Exposure to multiple indoor allergens in US homes and its
relationship to asthma. J Allergy Clin Immunol 2008; 121:678-684.
51. Wu, F., and Takaro, T. K. Childhood asthma and environmental
interventions. Environ Health Perspect 2007; 115:971-975.
52. Hung, H. W., Lue, K. H., Wong, R. H., Sun, H. L., Sheu, J. N., and Lu, K.
H. Distribution of allergens in children with different atopic disorders in
central Taiwan. Acta Paediatr Taiwan 2006; 47:127-134.
53. Wang, J. Y., Wang, L. M., Lin, C. G. J., Chang, A., Wu, L. S. H.
Association study using single nucleotide polymorphism on local
hromosome homogeneous group dissected by allele of microsatellite
marker: CD14 promoter polymorphism and high level IgE in Taiwanese
asthma children. J Human Genet 2005; 50:36-41.
54. Chen, Y. L., Chen, J. C., Lin, T. M., Huang, T. J., Lee, M. F., and
Wang, J. Y. ABO/Secretor genetic complex is associated with the
susceptibility of childhood asthma in Taiwan. Clin Exp Allergy 2005; 35:
926-932.
55. Reid, K. B. M., Clark, H., Palaniyar, N. Surfactant and lung inflammation.
Thorax 2005; 60:620-622.
56. Wright, J. R. Immunoregulatory functions of surfactant proteins. Nat
Rev Immunol 2005; 5:58-68.
57. Nogee, L. M. Alterations in SP-B and SP-C expression in neonatal lung disease. Annu Rev Physiol 2004; 66:601-623.
58. Holmskov, U., Thiel, S., Jensenius, J. C. Collections and ficolins: humoral
lectins of the innate immune defense. Annu Rev Immunol 2003;
21:547-578.
59. Lim, B. L., Wang, J. Y., Holmskov, U., Hoppe, H. J., Reid, K. B.
Expression of the carbohydrate recognition domain of lung surfactant protein D and demonstration of its binding to lipopolysaccharides of gram-negative bacteria. Biochem Biophys Res Commun 1994; 202:1674-1680.
60. Bridges, J. P., Davis, H. W., Damodarasamy, M., Kuroki, Y., Howles, G.,
Hui, D. Y., et al. Pulmonary surfactant proteins A and D are potent
endogenous inhibitors of lipid peroxidation and oxidative cellular injury. J
Biol Chem 2000; 275:38848-38855.
61. Kishore, U., Wang, J. Y., Hoppe, H. J., Reid, K. B. The alpha-helical neck
region of human lung surfactant protein D is essential for the binding
of the carbohydrate recognition domains to lipopolysaccharides and
phospholipids. Biochem J 1996; 318 ( Pt 2):505-511.
62. van de Wetering, J. K., van Eijk, M., van Golde, L. M., Hartung, T., van
Strijp, J. A., Batenburg, J. J. Characteristics of surfactant protein A and D
Binding to lipoteichoic acid and peptidoglycan, 2 major cell wall
Components of gram-positive bacteria. J Infect Dis 2001; 184:1143-1151.
63. Palaniyar, N., Nadesalingam, J., Clark, H., Shih, M. J., Dodds, A. W.,
Reid, K. B. Nucleic acid is a novel ligand for innate, immune pattern
Recognition collectins surfactant proteins A and D and mannose-binding
lectin. J Biol Chem 2004; 279:32728-32736.
64. Coppolino, M. G., Dedhar, S. Calreticulin. Int J Biochem Cell Biol 1998;
30:553-558.
65. Sim, R. B., Moestrup, S. K., Stuart, G. R., Lynch, N. J., Lu, J., Schwaeble, W. J., et al. Interaction of C1q and the collectins with the potential receptors
calreticulin (cC1qR/collectin receptor) and megalin. Immunobiology
1998; 199:208-224.
66. Eggleton, P., Lieu, T. S., Zappi, E. G., Sastry, K., Coburn, J., Zaner, K. S., et al. Calreticulin is released from activated neutrophils and binds to C1q and mannan-binding protein. Clin Immunol Immunopathol 1994; 72:405-409.
67. Vandivier, R. W., Ogden, C. A., Fadok, V. A., Hoffmann, P. R., Brown,
K. K., Botto, M., et al. Role of surfactant proteins A, D, and C1q in the
clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as
a common collectin receptor complex. J Immunol 2002; 169:3978-3986.
68. Borron, P. J., Crouch, E. C., Lewis, J. F., Wright, J. R., Possmayer, F., and Fraher, L. J. Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production. J Immunol 1998; 161:4599-4603.
69. Fisher, J. H., Larson, J., Cool, C., and Dow, S. W. Lymphocyte activation in the lungs of SP-D null mice. Am J Respir Cell Mol Biol 2002; 27:24-33.
70. Haczku, A., Vass, G., and Kierstein, S. Surfactant protein D and asthma. Clin Exp Allergy 2004; 34:1815-1818.
71. Cheng, G., Ueda, T., Numao, T., Kuroki, Y., Nakajima, H., Fukushima, Y., Motojima, S., and Fukuda, T. Increased levels of surfactant protein A and D in bronchoalveolar lavage fluids in patients with bronchial asthma. Eur Respir J 2000; 16:831-835.
72. Wang, J. Y., Kishore, U., Lim, B. L., Strong, P., Reid, K. B. Interaction of
human lung surfactant proteins A and D with mite (Dermatophagoides pteronyssinus) allergens. Clin Exp Immunol 1996; 106:367-373.
73. Wang, J. Y., Shieh, C. C., You, P. F., Lei, H. Y., Reid, K. B. Inhibitory
effect of pulmonary surfactant proteins A and D on allergen-induced
lymphocyte proliferation and histamine release in children with asthma.
Am J Respir Crit Care Med 1998; 158:510-518.
74.Malherbe, D. C., Erpenbeck, V. J., Abraham, S. N., Crouch, E. C., Hohlfeld, J. M., Wright, J. R. Surfactant protein D decreases pollen-induced IgE-dependent mast cell degranulation. Am J Physiol Lung Cell Mol Physiol 2005; 289:L856-866.
75. Erpenbeck, V. J., Malherbe, D. C., Sommer, S., Schmiedl, A.,
Steinhilber, W., Ghio, A. J., et al. Surfactant protein D increases
phagocytosis and aggregation of pollen-allergen starch granules. Am J
Physiol Lung Cell Mol Physiol 2005; 288:L692-698.
76. Stamme, C., Walsh, E., Wright, J. R. Surfactant protein A differentially
regulates IFN-gamma- and LPS-induced nitrite production by rat
alveolar macrophages. Am J Respir Cell Mol Biol 2000; 23:772-779.
77. Brinker, K. G., Martin, E., Borron, P., Mostaghel, E., Doyle, C., Harding,
C. V., et al. Surfactant protein D enhances bacterial antigen presentation
By bone marrow-derived dendritic cells. Am J Physiol Lung Cell Mol
Physiol 2001; 281:L1453-1463.
78. Brinker, K. G., Garner, H., Wright, J. R. Surfactant protein A modulates
The differentiation of murine bone marrow-derived dendritic cells. Am J
Physiol Lung Cell Mol Physiol 2003; 284:L232-241.
79. Borron, P., McCormack, F. X., Elhalwagi, B. M., Chroneos, Z. C., Lewis, J. F., Zhu, S., et al. Surfactant protein A inhibits T cell proliferation via its
collagen-like tail and a 210-kDa receptor. Am J Physiol 1998; 275:L679-686.
80. Borron, P. J., Crouch, E. C., Lewis, J. F., Wright, J. R., Possmayer, F.,
Fraher, L. J. Recombinant rat surfactant-associated protein D inhibits human T lymphocyte proliferation and IL-2 production. J Immunol 1998; 161:4599-4603.
81. Borron, P. J., Mostaghel, E. A., Doyle, C., Walsh, E. S., McHeyzer-Williams, M. G., Wright J. R. Pulmonary surfactant proteins A
and D directly suppress CD3+/CD4+ cell function: evidence for two shared mechanisms. J Immunol 2002; 169:5844-5850.
82. Clark, H., Palaniyar, N., Strong, P., Edmondson, J., Hawgood, S., Reid, K. B. Surfactant protein D reduces alveolar macrophage apoptosis in vivo. J
Immunol 2002; 169:2892-2899.
83. Palaniyar, N., Clark, H., Nadesalingam, J., Shih, M. J., Hawgood, S., Reid, K. B. Innate immune collectin surfactant protein D enhances the clearance of DNA by macrophages and minimizes anti-DNA antibody generation. J Immunol 2005; 174:7352-7358.
84. Wang, J. Y., Reid, K. B. M. The immunoregulatory roles of pulmonary
surfactant protein A and D in allergic inflammation of asthma.
Immunobiology 2007; 212: 417-425.
85. Crouch, E., Rust, K., Veile, R., Donis-Keller, H., Grosso, L. Genomic
organization of human surfactant protein D (SP-D). SP-D is encoded
on chromosome 10q22.2-23.1. J Biol Chem 1993; 268:2976-2983.
86. Kolble, K., Lu, J., Mole, S. E., Kaluz, S., Reid, K. B. Assignment of the
human pulmonary surfactant protein D gene (SFTP4) to 10q22-q23
close to the surfactant protein A gene cluster. Genomics 1993;
17:294-298.
87. Wang, J. Y., Kishore, U., Reid, K. B. M. A recombinant polypeptide, composed of the α-helical neck region and the carbohydrate recognition domain of conglutinin, self-associates to give a functionally intact homotrimer. FEBS Lett 1995; 376:6-10.
88. DiAngelo, S., Lin, Z., Wang, G., Phillips, S., Ramet, M., Luo, J., et al.
Novel, non-radioactive, simple and multiplex PCR-cRFLP methods for genotyping human SP-A and SP-D marker alleles. Dis Markers 1999; 15:269-281.
89. Lahti, M., Lofgren, J., Marttila, R., Renko, M., Klaavuniemi, T., Haataja,
R., et al. Surfactant protein D gene polymorphism associated with severe
respiratory syncytial virus infection. Pediatr Res 2002; 51:696-699.
90. Floros, J., Lin, H. M., Garcia, A., Salazar, M. A., Guo, X., DiAngelo, S.,
et al. Surfactant protein genetic marker alleles identify a subgroup of
tuberculosis in a Mexican population. J Infect Dis 2000; 182:1473-1478.
91. Brown-Augsburger, P., Hartshorn, K., Chang, D., Rust, K., Fliszar, C.,
Welgus, H. G., et al. Site-directed mutagenesis of Cys-15 and Cys-20 of
pulmonary surfactant protein D. Expression of a trimeric protein with
altered anti-viral properties. J Biol Chem 1996; 271:13724-13730.
92. Heidinger, K., Konig, I. R., Bohnert, A., Kleinsteiber, A., Hilgendorff, A.,
Gortner, L., et al. Polymorphisms in the human surfactant protein-D
(SFTPD) gene: strong evidence that serum levels of surfactant
protein-D (SP-D) are genetically influenced. Immunogenetics 2005;
57:1-7.
93. Leth-Larsen, R., Garred, P., Jensenius, H., Meschi, J., Hartshorn, K., Madsen, J., et al. A common polymorphism in the SFTPD gene influences assembly, function, and concentration of surfactant protein D. J Immunol 2005; 174:1532-1538.
94. Sorensen, G. L., Hjelmborg, J. B., Kyvik, K. O., Fenger, M., Hoj, A.,
Bendixen, C., et al. Genetic and environmental influences of surfactant
protein D serum levels. Am J Physiol Lung Cell Mol Physiol 2006;
290:L1010-1017.
校內:2016-09-06公開