簡易檢索 / 詳目顯示

研究生: 謝東穎
Hsieh, Tung-Ying
論文名稱: Cu原子濃度對Sn-Ag-Cu-Sb無鉛銲料微結構與機械性質影響之研究
The Effect of Different Cu Concentration on the Microstructure and Mechanical Property of Lead –Free Sn-Ag-Cu-Sb Solder
指導教授: 李世欽
Lee, Shih-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 101
中文關鍵詞: 錫銀銅潤濕行為無鉛銲料
外文關鍵詞: Sn-Ag-Cu, lead-free solder, wetting behavior
相關次數: 點閱:92下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本研究利用錫湯與Cu板在270oC擴散達100小時,來探討Cu原子濃度逐漸增加下,無鉛銲料Sn-3.0Ag-0.5Cu-0.2Sb的微結構、濕潤性、機械性質的改變,並作160°C、240小時的熱處理,再利用拉伸試驗來了解不同Cu原子濃度熱穩定性的差異。
    實驗結果顯示,錫湯中Cu原子濃度隨著擴散時間而增加,到了擴散時間100小時,Cu原子濃度已達0.933wt%,而Cu的增加會稍微降低熔點並改變固液區間溫差,擴散50小時之錫湯固液區間溫差最大,Cu的增加並不會改變其析出相,仍為Ag3Sn與β-Sn所組成的環狀共晶,但晶粒更細,且Cu6Sn5析出物更多更粗大。
    在潤濕行為方面,由於Cu的加入,會使得銲料與Cu的表面張力減小,而能夠降低銲料與Cu板的接觸角,亦能縮短Cu棒與銲料的潤濕時間,而對潤濕力影響雖然不大,但整體而言,使銲料的潤濕行為更佳 。
    機械性質方面,隨著Cu原子的加入,析出物變多,析出強化的效果增強,故在硬度與降伏強度有上升的趨勢,到了擴散時間100小時後,降伏強度已由29.16升至35.5MPa,但其破壞模式不受改變,所以伸長率不受影響 ; 但經過160oC、240小時的持溫下,Cu原子濃度越高的銲料,析出物粗大化越明顯,未經擴散之銲料降伏強度由原本的29.16MPa下降至熱處理後的23.62MPa,下降了18.8%,而擴散100小時的試片其降伏強度由35.52MPa下降至20.80MPa,下降率高達41.4%,故Cu原子濃度越高,其熱穩定性越差。
    綜合上述所論,雖然Cu原子濃度增加會提升潤濕性、機械性質,但熱穩定性反而變差,故在選用錫銀銅系列無鉛銲料時,必須先考量製程上的條件,若需要長期處於高溫環境,仍以銅含量偏低為適當。

    關鍵字:錫銀銅、無鉛銲料、潤濕行為

    Abstract
    In this study, the liquid of tin and copper plate were diffused at 270oC for 100 hours to investigate micro-structures, wettability and mechanical properties of lead-free solder Sn-3.0Ag-0.5Cu-0.2Sb when the concentration of copper was increased. Besides, the tensile test after 160°C for 240 hours thermal treatment was used to understand the different thermal stability between different copper concentrations.
    The results of structure show that the concentration of copper in tin liquid was increased by rising the diffusion time. When the diffusion time up to 100 hours, the concentration of copper was 0.933 wt%. The increasing of copper will reduce the melt point little and change the temperature difference between solid phase and liquid phase. After 50 hours diffusing, temperature difference between solid and liquid was the largest. No matter in what concentration of copper, it still be the circular eutectic microstructure of Ag3Sn and β-Sn but the grain size was finer and the precipitation of Cu6Sn5 were more and coarse.
    In wetting behavior, the surface tensile stress of solder-copper interface decreasing by rising copper concentration. The contact angle and wetting time of solder on copper plate decrease too. Summarily, in the study adding copper to the solder can enhance the wettability.
    On the mechanical properties, when the Cu atoms increasing, hardness and yield strength were improved due to precipitates increasing. After 100 hours diffusing, the yield stress was improved from 29.16 to 35.5 MPa.
    The rupture forms were the same as non-diffusion specimens and the elongation is not varied. After diffusing for 240 hours at 160oC, the concentration of Cu was increasing, the precipitates became coarse and the yield strength was reduced from 29.16 MPa to 23.62 MPa by 18.8 percent. The yield strength of 100 hours diffused sample was reduced from 35.52MPa to 20.80MPa by 41.4 percent. From the results, when the concentration of Cu increase, the thermal-stable properties were worse.
    In summary, although the increasing of copper concentration enhance wettability and mechanical properties, thermal stability decreases.The parameters of manufacturer process are very important for lead-free solder. According to the study, if the working environment is on the high temperature, it is the optimum that the copper concentration is lowest in solder.

    Key words: Sn-Ag-Cu、lead-free solder、wetting behavior

    目 錄 第一章 前 言-----------------------------------------------1 第二章 文獻回顧--------------------------------------------6 2-1 軟銲(Soldering)技術與銲錫材料--------------------------6 2-2銲錫材料性質--------------------------------------------7 2-2-1 銲錫材料的熔點---------------------------------------8 2-2-2 傳統錫鉛銲錫之特性-----------------------------------11 2-2-3 無鉛銲錫的開發及性質---------------------------------11 2-3 潤濕行為-----------------------------------------------20 2-3-1 可銲錫性---------------------------------------------23 2-3-2 助熔劑之簡介 -----------------------------------------27 2-4 潤濕天平原理-------------------------------------------28 2-5 波銲---------------------------------------------------31 第三章 實驗步驟與方法-------------------------------------33 3-1 實驗目的-----------------------------------------------33 3-2 實驗規劃-----------------------------------------------33 3-3 試片製備-----------------------------------------------36 3-4 基本性質測試-------------------------------------------39 3-4-1 ICP 成份定量分析-------------------------------------39 3-4-2 DSC 熔點測試-----------------------------------------39 3-5 機械性質量測-------------------------------------------40 3-5-1 微硬度測試-------------------------------------------40 3-5-2 拉伸試驗---------------------------------------------40 3-5-3 熱穩定性測試 -----------------------------------------44 3-6 潤濕行為-----------------------------------------------44 3-6-1 接觸角量測-------------------------------------------44 3-6-2 潤濕力量測-------------------------------------------45 第四章 結果與討論----------------------------------------49 4-1 Sn-3.0Ag-xCu-0.2Sb之成份、熔點與顯微結構組織----------49 4-1-1 ICP Cu成份定量--------------------------------------49 4-1-2 DSC熔點分析------------------------------------------52 4-1-3 Sn-3Ag-XCu-0.2Sb無鉛銲料之微結構---------------------58 4-2 潤溼行為-----------------------------------------------68 4-2-1 接觸角-----------------------------------------------68 4-2-2 潤濕天平實驗 -----------------------------------------73 4-3 機械性質量測-------------------------------------------77 4-3-1 硬度量測---------------------------------------------77 4-3-2 拉伸強度測試 -----------------------------------------81 4-3-3 熱穩定性測試 -----------------------------------------87 第五章 結論------------------------------------------------92 參 考 文 獻------------------------------------------------94 誌 謝----------------------------------------------------101 圖目錄 圖目錄----------------------------------------------------VIII 圖1-1 Pb-Sn 相圖-----------------------------------------4 圖2-1 Sn-Ag 相圖-----------------------------------------16 圖2-2 Sn-Ag-Cu 三元相圖----------------------------------17 圖2-3 Sn-Ag-Cu 三元相圖之Sn-rich 部份--------------------18 圖2-4 Sn-Zn 二元相圖-------------------------------------19 圖2-5 液滴滴在基材上,受三力平衡之示意圖------------------22 圖2-6 軟銲過程添加助熔劑(flux),助熔劑清除基材表面氧化膜, 使銲錫與基材產生潤濕現象----------------------------------25 圖2-7 (a)無助熔劑時 (b)有助熔劑時 , 固、液、氣相三者之間的界面張力示意圖 ----------------------26 圖 2-8 (a)潤濕天平儀器所量測的力與時間之關係圖, (b)在實際浸鍍過程中試片與熔融焊錫之相對位置圖-------------30 圖 2-9 (a) 常見的傳統波銲機示意圖------------------------32 (b) 雙道波銲機示意圖--------------------------------------32 圖3-1 實驗流程圖------------------------------------------35 圖3-2 拉伸試片之模具圖-----------------------------------41 圖3-3 拉伸試片示意圖-------------------------------------42 圖3-4 拉伸試驗機圖---------------------------------------43 圖 3-5 接觸角量測機---------------------------------------47 圖 3-6 潤溼天平設備--------------------------------------47 圖 3-7 潤濕天平示意圖------------------------------------48 圖4-1 Cu原子濃度與擴散時間之關係圖-----------------------51 圖 4-2 Sn-3.0Ag-0.5Cu-0.2Sb銲料原材DSC曲線圖-------------54 圖4-3 Sn-3.0Ag-0.5Cu-0.2Sb銲料擴散100小時之DSC曲線圖-----55 圖 4-4 Sn-3.0Ag-0.5Cu-0.2Sb銲料擴散50小時之DSC曲線圖-----56 圖4-5 0小時與100小時之XRD結構分析圖----------------------60 圖4-6 Sn-Sb二元相圖--------------------------------------61 圖4-7 擴散時間50小時銲料之EPMA圖-------------------------62 圖4-8 擴散50小時之銲料微結構 (A)SEI (B)BEI---------------63 圖4-9 相對於圖4-8中之a、b、c 三點EDX 分析----------------64 圖 4-10 (a)10小時 (b)50小時 (c)100小時 之擴散時間試片----67 圖4-11 不同擴散時間之錫滴與Cu之接觸角圖-------------------70 圖4-12 不同擴散時間之錫滴與Cu板之接觸角圖-----------------71 圖4-13 擴散時間(a)10小時與(b)100小時之銲料Cu板接合面------72 圖4-14 擴散時間0小時與100小時之潤濕力量測圖形-------------74 圖4-15 不同擴散時間與潤濕力之關係-------------------------75 圖4-16不同擴散時間與潤濕時間之關係圖----------------------76 圖4-17 不同擴散時間與硬度關係圖---------------------------79 圖4-18 經過微硬度機測試後之菱狀坑-------------------------80 圖4-19 不同Cu原子擴散時間與降伏強度關係圖-----------------83 圖4-20 擴散時間與拉伸試驗伸長率之關係圖-------------------84 圖4-21 不同擴散時間之拉伸試片破斷面-----------------------85 圖4-22 擴散時間30小時、80小時之拉伸試驗應力-應變曲線圖----86 圖4-23 熱處理與原材之不同擴散時間與降伏強度關係圖---------89 圖4-24 擴散時間100小時試片經熱處理後之微結構圖------------90 圖4-25 擴散100小時之試片,經熱處理後拉伸破斷面------------91

    參 考 文 獻

    1.T. B. Bassalski, Binary Alloy Phase Diagrams, William W. Scot, 1986,Vol.2,p. 1848.
    2.Z. Miric and A. Grusd, Lead0free alloys, Soldering & Surface Mount Technology, ,1998 Vol. 10, , pp. 19-25. 2. J. Glazer
    3.“Metallurgy of low temperature Pb-free solders for electronic assembly”, Int. Mater. Rev.,1995 Vol.40, p.65 .
    4.M. McCormack, and S. Jin, “New Lead-free Sn-Zn-In solder alloys“, J.
    Electron. Mater.,1994 Vol. 23, p. 687.
    5.游善溥,“錫鋅系無鉛銲錫與銅基材間附著性與界面反應之研究”,博士論文,成功大學材料科學及工程學系,第一章,第8 頁,2000
    6.H. Mavoori, J.Chin, S. Vaynman, B. Moran, L. Keer, and M. Fine,
    “Creep, stress relaxation, and plastic deformation in Sn-Ag and Sn-Zn
    eutectic solders”, J. Electron. Mater.,1997 Vol. 26, p. 783 .
    7.W.J. Plumbridge, “Review solders in electronics”, J. Mater. Sci.,1996 Vol.31, p. 2501 ,.
    8.J. Glazer, “Microstructure and mechanical properties of Pb-free solder
    alloys for low-cost electronic assembly: a review”, J. Electron. Mater.
    1994, Vol. 23, p. 693
    9.R.R. Tummala, “Fundamentals of Microsystems Packaging”, McGRAW-HILL,2000, Chap. 18, , pp. 735-740
    10.R.R. Tummala, “Fundamentals of Microsystems Packaging”, Mc-GRAW -HILL,2001, Chap. 21, pp. 860-865.
    11.Laura J. Turbini, Gregory C. Munie, Dennis Bernier, Jurgen Gamalski and David W.Bergman, “Examining the Environmental Impact of Lead-Free Soldering Alternatives“ IEEE Transactions on Electronics Packaging Manufacturing ,2001,Vol.24, No.1, pp. 4-9,
    12.編輯室,”無鉛銲接的開發動向” 電子與材料, 第一期,1999, pp.78-84.
    13.ESPEC Technology Report, 2002,No. 13, pp. 1-8
    14.饒慧美, “添加Sb、Cu對無鉛鈄料Sn-Ag銲點之機械性質及微結構研究,”國立成功大學機械研究所,碩士論文,2002.6
    15.P. T. Vianco, “Solder Alloys: A Look at the Past, Present and Future”, Welding Journal, 1997,PP.45-49
    16.P. T. Vianco and D. R. Frear, “Issues in the Replacement of Lead-Bearing”, JOM,1993, July,Vol. 45,No. 7,PP. 14-19.
    17.殷翠梅, “Sn-Ag系無鉛銲錫之振動破壞特性探討”,國立成功大學材料科學及工程學系,碩士論文,民國90年
    18.M. Hansen, K. Anderko, “Constitution of Binary Alloys”, McGraw-Hill, New York, 1958.
    19.J. Glqzer, “Metallurgy of Law Temperature Pb-Free Solders for Electronic Assembly”, International Materials Reviews, Vol. 40, No.2, pp.65-93
    20.F. Hua, J. Glazer, ”Lead-Free Solders for Electronic Assembly, Design and Reliability og Solders and Solders interconnections”. In R. K. Mahidhara, D.R> Frear, S. M. L. Liaw, W. L. Winterbottom (Eds.), The Minerals, Metals and Materials Society, 1997,pp. 65-74.
    21.M.McCormack, I. Artaki, S. Jin, A. M.Jackson, D. M. Machusak, G. W. Kammlott, D. W. Finley, “Wave Soldering with a Low Melting Point Bi-Sn alloy: Effects of Soldering Temperature and Circuit Board Finishes”, J. Electron. Mater., 1996,Vol.25, No. 7 pp.1128-1131.
    22.M. E. Loomas, S. Vaynman, G. Ghosh, M. E. Fine, “Investigation of Multi-component Lead-Free Solders”, J. Elctron. Mater., Vol23, No.8, pp.741-746., 1994
    23.R.J. Klein Wassink, “ Soldering in Electronic ” (Electrochemical publications,Ayr ), p. 83 ,1984.
    24.W.K. Choi, and H.M. Lee, “Effect of Ni layer thickness and soldering time on intermetallic compound formation at the interface between molten Sn-3.5Ag and Ni/Cu substrate”, J. Electron. Mater., 1999,Vol. 28, p.1251
    25.W.J. Tomlinson, and N.J. Bryan, “The strength of brass/Sn-Pb-Sb solder joints containing 0 to 10% Sb”, J. Mater. Sci., 1986 Vol. 21, p. 103
    26.H. Tanaka, M. Tanimoto, A. Matsuda, T. Uno, M. Kurihara, S. Shiga,
    “Pb-free surface-finishing on electronic components’ terminals for Pb-free soldering assembly“, J. Electron. Mater., 1999 ,Vol. 28, p. 1216 ,
    27.S. Jin, “Developing Lead-free solders: a challenge and opportunity”,
    JOM, July, 1993, p. 13
    28.F.A. Mohamed, and T.G. Langdon, “Creep behaviour in the superplastic Pb-62% Sn eutectic”, Phil. Mag.,1975, Vol. 32, p. 697
    29.D. Tribula, J. Electron. Packag., 1990, Vol. 112, p. 87 .
    30.D. Tribula, D.Grivas, D. Frear, and J.W. Morris, Jr., J. Electron.
    Packag., 1989, Vol. 111, p. 83
    31.V.I. Igoshev, J.I. Kleiman, D. Shangguan, C. Lock, S. Wong, and M.
    Wiseman, “Microstructure changes in Sn-3.5Ag solder alloy during
    creep”, J. Electron. Mater., 1998,Vol. 27, p. 1367.
    32.N. Wade, T. Akuzawa, S. Yamada, D. Sugiyama, I.S. Kim, and K.
    Miyahara, “Effect of microalloying on the creep strength and
    microstructure of an eutectic Sn-Pb solder alloy”, J. Electron. Mater.,
    1999,Vol. 28, p. 1286.
    33.S. Choi, T.R. Bieler, J.P. Lucas, and K.N. Subramanian, “Characterizationof the growth of intermetallic interfacial layers of Sn-Ag and Sn-Pb eutectic solders and their composite solders on Cu substrate during isothermal long-term aging”, J. Electron. Mater.,1999, Vol. 28, p.1209 .
    34.J.W. Morris, Jr., J. L. Freer Goldstein, and Z. Mei, “Microstructure and mechanical properties of Sn-In and Sn-Bi solders”, JOM, July, 1993, p.25.
    35.C.S. Huang, J.G. Duh, Y.M. Chen, and J.H. Wang, “Effects of Ni thickness and reflow times on interfacial reactions between Ni/Cu under-bump metallization and eutectic Sn-Pb solder in flip-chip technology”, J. Electron. Mater., 2003, Vol. 32, p. 89 .
    36.莊強名,“無鉛化共晶銲錫合金之振動破壞特性研究”,國立成功大學材料科學及工程學系,博士論文,民國90年。
    37.H. Reid, D. Moynihan, J. Leiberman, and B. Bradley, “Toxic Lead Reduction Act of 1990”, 1990.
    38.C. M. Chung, T. S. Lui, L. H. Chen, “Effect of Aluminum Addition on Tensile Properties of Naturally Aging Sn-Zn Eutectic Solder”, J. Materials Science, 2002, Vol.37, PP. 191-195.
    39.M. McCormack, S. Jin, H. S. Chen, and D. A. Machusak, “New Lead-Free Sn-Zn-In Solder Alloys”, J. Elec. Master.,1994,Vol. 23, pp.687-690.
    40.L. Ye, Z. Lai, L. Liu, and A. Tholen, “Recent Achievement in Microstructure Investigation of Sn-0.5Cu-3.4Ag Lead-Free Alloy by Adding Boron” International Symposium on Advanced Packaging Materials,1999, pp.262-267.
    41.K. L. Lin and T.P. Liu, “High Temperature Oxidation of a Sn-Zn-Al Solder”. Oxidation of Metals, 1998, Vol. 50, No3/4, pp.255-267.
    42.K. L. Lin , L. H. Wen and T. P. Liu,” The Microstructure of the Sn-Zn-Al Solder Alloys”, J. Electron. Mater., Vol.27,1998, No. 3, pp.97-105. ,
    43.A. Sebaoun, D. Vincent, and D. Treheux, “Ai-Zn-Sn Phase Diagram-Isothermal Diffusion in Ternary System”, Materials Science and Technology, , April 1987, Vol. 3, pp.241-248.
    44 I. E. Anderson, J. C. Foley, B. A. Cook and J. Harringa,”Alloying Effects in Near-Eutectic Sn-Ag-Cu Solder, Alloys for improved Microstructural Stability. Journal of Electronic Materials, 2001, Vol. 30, No.9,.
    45.ASM handbook, Hugh Baker, ASM International, Materials Park, Ohio, 1992, Vol.3 Alloy Phase Diadrams.
    46.M. McCormack and S. Jin, ”Progress in the Design of New Lead-Free Solder Alloys”, JOM, , July 1993 Vol. 45, No. 7, pp. 36-40.
    47.E. P. Wood and K. L. Nimmo, “In Search of New Lead-Free Electronic Solders” , 1994 Vol. 23, No. 8, pp. 709-713.
    48.Y. Miyazawa and T. Ariga, “Influence of Aging Treatment on Microstructure and Hardness of Sn-(Ag, Bi, Zn) Eutectic Solder Alloys”, Master. Trans, JIM, 2001 Vol. 42, pp. 776-782.
    49.Z. Mei and J. W. Morr, Jr., ”Superplastic Creep of Low Melting Point Solder Joints”, J. Electron. Mater. , 1992 Vol. 21, No. 4, pp.401-407.
    50.J. W. Morris, Jr., J. L. Freer Golestwin and Z. Mei, ”The Mechanics os solder Alloy Interconnects, Van Nostrand Reinhold, N. T. , 1994,P.4.
    51.R. J. K.Wassink, Soldering in Electronics, 2ndedn., Chap.7, 1989.
    52.Y. S. Wook, W. K. Choi and H. M. Lee, “Calculation of Surface Tension and Wetting Properties of Sn-Based Solder alloys”, Scripta Materialia, ,Jan. 1999Vol. 40, No. 3, pp. 297-302.
    53.G. Leonida, Handbook of Printed Circuit Design, Manufacture, Components & Assembly, Electrochemical Publications Limited,Ayr, Scotland, Chap. 5-6, 1981.
    54.H. H. Manko, Solders and Soldering, Second Edition, McGraw- HillBook Company, New York, Chap. 2-4, 1979.
    55.D. B. Knorr, L. E. Felton, “Designing Lead-free Solder Alloys for Advanced Electronics Assembly”, in: Proceedings of the Design for Manufacturability Conference, ASME N.Y. , New York, 1994 pp. 27-34.
    56.C. Lea, “Quantitative Solderability Measurement of Electronic Components Part 1 : The Wetting Balance”, Soldering & Surf. Mount Technol., 1990,No.4, pp. 8-13.
    57.F. G. Yost, F.M. Hosking, and D.R. Frear, The Mechanics of Solder Alloy Wetting and Spreading, Van Nostrand Reinhold, New York,Chap. 2, 1993.

    下載圖示 校內:2007-07-26公開
    校外:2009-07-26公開
    QR CODE