| 研究生: |
梁閎森 Liang, Hung-Sen |
|---|---|
| 論文名稱: |
現地共代謝氣提法之模場及數學模式研究 Pilot study and mathematical modeling for in-situ cometabolic air sparging |
| 指導教授: |
郭明錦
Kuo, Ming-Ching |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 資源工程學系 Department of Resources Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 191 |
| 中文關鍵詞: | 甲苯蒸氣 、水平多孔管 、好氧生物共代謝 、三氯乙烯 |
| 外文關鍵詞: | toluene-vapor, aerobic cometabolism, TCE, horizontal porous tubes |
| 相關次數: | 點閱:176 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近來因有機溶劑使用甚為頻繁,使含氯有機物如三氯乙烯(Trichloroethylene,TCE)成為台灣地下水與土壤常見之污染物。三氯乙烯存在於污染場址地下含水層中時,具有比水重、不易溶解、不易移動之特性,是屬於DNAPL(Dense Nonaqueous-Phase Liquids)的一種污染物。因此,有效的整治程序顯的相當重要。其中,利用好氧性現地微生物來降解含水層中三氯乙烯的方式,因其整治速率快、成本經濟低、過程環保且有效,固成為目前地下水生物整治重要研發方向之一。
許多研究指出現地生物復育整治效率常未能如實驗室理想;主要由於現地生物復育之工程瓶頸,如(1)使用垂直井復育有效半徑不大 (僅約5公尺左右),(2)電子供給者及電子接受者在地下未能與污染物有效接觸,及(3)好氧共代謝微生物阻塞井篩,導致清除費用龐大。本研究針對以上現地生物復育技術之主要工程瓶頸,研究發展創新之並聯式水平多孔管擠注系統,設計並建立現地三氯乙烯好氧生物共代謝反應槽。現地三氯乙烯好氧生物共代謝試驗顯示本論文之創新擠注系統可增加現地生物復育之有效半徑,平均分布電子接受者及電子供給者在地下含水層,解決微生物阻塞,降低整治成本及提高整治效率。
此外,本論文依據並聯式水平多孔管擠注系統之特性,建立一維流況下生物降解(Biotransformation)之數值模式。藉由模式分析,本研究發現現地甲苯分解菌對三氯乙烯具有高共代謝效率,且在總長12公尺皆具生物活性之反應槽的共代謝反應中,三氯乙烯之降解效率只需6公尺便可達90%。相較過去垂直井系統之生物降解,本模式也反應出(1)現地生物復育有效半徑增加,(2)電子接受者及電子供給者平均分布在地下含水層,及(3)解決微生物阻塞之優點。
Trichloroethylene (TCE) was widely used as a solvent in the second 50 years of the 20th century. Because of uniform disposal practices for spent solvents in the past, it has become a major groundwater contaminant in Taiwan. In-situ biological methods offer promise for restoring aquifer contaminated organics, including TCE. Aerobic cometabolism is a powerful biological process that microorganisms growing on primary substrate produce enzyme and fortuitously transform secondary substrate.
The efficiency of in-situ bioremediation is commonly lower than that observed in the laboratory. It is mainly due to the following limitations encountered in the field applications, i.e., (1) the radius of influence of vertical wells is small, (2) the contact of electron acceptors and electron donors with the contaminants is not effective, and (3) clogging of well screens requires huge work-over and remediation costs. Through the pilot test, it was demonstrated that using horizontal porous tubes injection system to inject toluene-vapor could improve above engineering limitations.
Furthermore, this research constructs a system of partial differential equations describes basic processes of microbial growth, utilization of electron donor and acceptor, degradation of contaminant, advective transport, dispersion, and sorption in porous media. Simulations provide good matches to the observed TCE. It was demonstrated that the efficiency of TCE degradation of 0.43 mg/L of influence TCE could reach 90% in 6 meters.
呂淑慧、李季眉、盧至人,“酚分解菌共代謝三氯乙烯之連續流試驗”,第二十四屆廢水處理技術研討會論文集,pp481-492,1999。
郭明錦,水平多孔隙管測漏結構,中華民國專利第144063號,1999。
郭明錦,水平多孔管擠注技術在土壤現地生物復育之研究與應用,NSC 91-2211-E-006-056,2002。
郭明錦、范愷軍、梁康阜、韓吟龍、李春樹、陳建宏、林立婷、王俊軍、朱秀鋒,以甲苯蒸氣為主要基質共代謝含氯烯類有機物。中華民國專利第204902號,2004。
郭明錦、梁康阜、范愷軍、韓吟龍、林立婷、朱秀鋒,並聯式土壤氣體採樣方法。中華民國專利第294032號,2008。
梁康阜,水平多孔隙管在管線偵漏及未飽和層生物通氣法之研究與應用,國立成功大學碩士論文,2003。
梁康阜及郭明錦,生物通氣注氣系統之改善與應用,2003環境污染控制評估研討會,新竹,2003。
梁康阜、郭明錦、盧至人,「注入電子接受者及(或)電子供給者進入受污染地下水層之系統及方法」,中華民國專利(發明第252841號),2006。
陳祥明,數值分析,中央圖書出版社,台北,1990。
楊志田,數值方法,新加坡商亞洲湯姆生國際出版有限公司,新加坡,2001。
張峻嘉、盧至人、李季眉、黃錦怡、邱明良,“酚分解菌共代謝三氯乙烯之研究-砂管柱連續流試驗”,第二十四屆廢水處理技術研討會,pp179-184,1999。
蔡文田,含氯有機溶劑之毒性及新陳代謝機制,工業污染防治期刊,43(7),1992。
Acomb, L., D. McKay, P. Currier, S. Berglund, T. Sherhart, and C. Benediktsson, Neutron probe measurements of air saturation near an air sparging well. In situ aeration: Air sparging, bioventing and related remediation processes, R. Hinchee, R. Miller, and P. Johnson, eds., Battelle, Columbus, Ohio, pp. 47–61, 1995.
Ahlfeld, D., A. Dahmani, and W. Ji, A conceptual model of field behavior of air sparging and its implications for application, Groundwater Monitoring and Remediation, Fall, pp. 132-139, 1994.
Beggs, H. D., Gas production operations, Oil & Gas Consultants International, Inc., 1984.
Bird, R., W. Stewart, and E. Lightfoot, Transport phenomena, Wiley, New York, 1960.
Borden, R.C. and P.B. Bedient, Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation. 1. Theoretical development, Water Resour. Res., 22(13), pp. 1973-1982, 1986.
Bouwer, E.J. and P.L. McCarty, Utilization rates of trace halogenated organic compounds in acetate-supported biofilms, Biotechnology and Bioengineering, 27, pp. 1564-1571, 1985.
Charbeneau, R.J., Groundwater hydraulics and pollutant transport, Prentice-Hall, Inc., New Jersey, 2000.
Chen, M., R. Hinkley, and J. Killough, Computed tomography imaging of air sparging in porous media, Water Resour. Res., 32(10), pp. 3013-3024, 1996.
Chiu, S.Y., L.T. Fan, I.C. Kao, and L.E. Erickson, Kinetic behavior of mixed populations of activated sludge, Biotechnology and Bioengineering, 9(2), pp. 179-199, 1972.
Clark, A., D. Wilson, and R. Norris, Using models for improving in-situ cleanup of groundwater, Envir. Technol., 6(4), pp. 34–41, 1996.
Duba, A.G., K.J. Jackson, M.C. Jovanovich, R.B. Knapp, and R.T. Taylor, TCE remediation using in situ, resting-state bioaugmentation, Environmental Science and Technology, 30(6), pp. 1982-1989, 1996.
Elder, C.R. and C.H. Benson, Air channel formation, size, spacing, and tortuosity during air sparging, GWMR, 19(2), pp. 171-181, 1999.
Elder, C.R., C.H. Benson, and G.R. Eykholt, Modeling mass removal during in situ air sparging, Journal of Geotechnical and Geoenvironmental Engineering, 125(11), pp. 947-958, 1999.
Fetter, C.W., Contaminant hydrogeology. 2nd ed., Prentice-Hall, Inc., New Jersey, 1999.
Fogel, M.M., A.R. Taddeo, and S. Fogel, Biodegradation of chlorinated ethenes by a methane-utilizing mixed culture, Appl. Environ. Microbiol., 51, pp. 720-724, 1986.
Forsythe, G.E., and C.B. Moler, Computer solution of linear algebraic system, Prentice-Hall Englewood Cliffs, New York, 1967.
Gear, C.W., Numerical initial-value problems in ordinary differential equations, Prentice-Hall, Englewood Cliffs, New Jersey, 1971.
Hinchee, R.E., R.N. Miller, and P.C. Johnson, In situ aeration: air sparging, bioventing, and related remediation process, Battelle Press, pp. 215-222, 1995.
Hopkins, G.D., J. Munkata, L. Semprini, and P.L. McCarty, Trichloroethylene concentration effects on pilot field-scale in-situ groundwater bioremediation by phenol-oxidizing microorganisms, Environ. Sci. Technol., 27(12), pp. 2524-2547, 1993.
Hopkins, G.D., L. Semprini, and P.L. McCarty, Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms, Applied and Environmental Microbiology, 59(7), pp. 2277-2285, 1993.
Ji, Wei, A. Dahmani, D.P. Ahlfeld, J.D. Lin and E. Hill, Laboratory study of air sparging: air flow visualization, GWMR, 13(4), pp. 115-126, 1993.
Kissel, J.C., P.L. McCarty, and R.L. Street, Numerical simulation of mixed-culture biofilm, J. of Environmental Engineering (ASCE), 110(2), pp. 393-411,1984.
Kuo, M.C.T., C.M. Chen, C.H. Lin, H.C. Fang, and C.H. Lee, Survey of volatile organic compounds in soil and groundwater at industrial sites in Taiwan, Bull. Environ. Contam. Toxicol., 65, pp. 654-659, 2000.
Kuo, M.C.T., K.F. Liang, Y.L. Han, and K.C. Fan, Pilot studies for in-situ aerobic cometabolism of trichloroethylene using toluene-vapor as the primary substrate, Water Research, 38, pp. 4125-4134, 2004.
Lee, C.Y and W.D. Liu, The identifiability of kinetic parameters of trichloroethylene biodegradation by phenol-oxidizing cultures grown from various conditions, Journal of Environmental Science and Health, A35(1), pp. 31-48, 2000.
Liang, K.F. and M.C. Tom Kuo, A new leak detection system for long-distance pipelines utilizing soil-gas techniques, GWMR, 26(3), pp. 53-59, 2006.
Little, C.D., A.V. Palumbo, S.E. Herbes, M.E. Lidstrom, R.L. Tyndall, and P.J. Gilmer, Trichloroethylene biodegradation by a methane-oxidizing bacterium, Appl. Environ. Microbiol., 54(4), pp. 951-956, 1988.
Liu, W.D. and C.Y. Lee, Kinetic analysis of inhibitory substrate degradation in bioaugmented activated sludge process, Journal of Environmental Science and Health, A36(2), pp. 243-257, 2001.
Lu, C.J., C.M. Lee, and M.S. Chung, The comparison of trichloroethylene removal rates by methane- and aromatic-utilizing microorganisms, Water Science and Technology, 38(7), pp. 19-24, 1998.
Mackay, D. and W.Y. Shiu, A critical review of Henry’s law constants for chemicals of environmental interest, J. Phys. Chem. Ref. Data, 10(4), pp. 1175-1199, 1981.
Marley, M.C., C.J. Bruell, H.H. Hopkins, Air sparging technology: A practice update, In: R.E. Hinchee, R.N. Miller, P.C. Johnson (Eds.), In Situ Aeration: Air Sparging, Bioventing, and Related Remediation Processes, Battelle Press, Columbus, OH, pp. 31–38, 1995.
McCabe, W. A., and J. C. Smith , Unit operations of chemical engineering. McGraw-Hill, Inc., 1976.
McCarty, P.L., B.E. Rittmann, and E.J. Bouwer, Microbiological processes affecting chemical transformations in groundwater. In: Groundwater Pllution Microbiology. John Wiley & Sons Inc., New York. pp. 89-115, 1984.
McCarty, P.L., M.N. Goltz, G.D. Hopkins, M.E. Dolan, J.P. Allan, B.T. Kawakami, and T.J. Carrothers, Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection, Environ. Sci. Technol., 32(1), pp. 88-100, 1998.
Mckay, D.J., L.J. Acomb, Neutron moisture probe measurements of fluid displacement during in situ air sparging, Groundwater Monitoring and Remediation, Fall, pp. 86-94, 1996.
Molz, F.J., M.A. Widdowson, and L.D. Benefield, Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media, Water Resources Research, 22(8), pp. 1207-1216, 1986.
Nelson, M.J.K., S.O. Montgomery, E.J. O’Neill, and P.H. Pritchard, Aerobic metabolism of trichloroethylene by a bacterial isolate, Appl. Environ. Microbiol., 52, pp. 383-384, 1986.
Nelson, M.J.K., S.O. Montgomery, W.R. Mahaffey, and P.H. Pritchard, Biodegradation of trichloroethylene and involvement of an aromatic biodegradative pathway, Appl. Environ. Microbiol., 53, pp. 949-954, 1987.
Nelson, M.J.K., S.O. Montgomery, and P.H. Pritchard, Trichloroethylene metabolism by microorganisms that degrade aromatic compounds, Appl. Environ. Microbiol., 54, pp. 604-606, 1988.
Nyer, E, F. Lenzo, and J. Burdick, in situ reactive zones: dehalogenation of chlorinated hydrocarbons, Groundwater Monitoring review, 1, 1998.
Ogata, A. and R.B. Banks, A solution of the differential equation of longitudinal dispersion in porous media, U.S. Geological Survey Professional Paper 411-A, 1961.
Perry, R. H., and C. H. Chilton, Chemical engineering’s handbook. McGraw-Hill, New York, 1974.
Peterson, J.W., M.J. DeBoer, and K.L. Lake, A laboratory simulation of toluene cleanup by air sparging of water-saturated sands, J. Hazard. Mater. 72, pp. 167-178, 2000.
Rabideau, A., J. Blayden, and C. Ganguly, Field performance of air-sparging system for removing TCE from grounder, Environ. Sci. Technol., 33(1), pp. 157-162, 1999.
Remson, I., G.M. Hornberger, and F.J. Molz, Numerical mthods in subsurface hydrology, Wiley-Interscience, New York, 1971.
Rittmann, B.E. and P.L. McCarty, Environmental biotechnology: principles and applications, McGraw-Hill Higher Education, New York, 2001.
Roberts, P.V., G.D. Hopkins, D.M. Mackay, and L. Semprini, A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 1, methodology and field characterization, Ground Water, 28(4), pp. 591-604, 1990.
Semprini, L., P.V. Roberts, G.D. Hopkins, and P.L. McCarty, A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 2, results of biostimulation and biotransformation experiments, Ground Water, 28(5), pp. 715-727, 1990.
Semprini, L., G.D. Hopkins, P.V. Roberts, D. Grbic-Galic, and P.L. McCarty, A field evaluation of in-situ biodegradation of chlorinated ethenes: Part 3, studies of competitive inhibition, Ground Water, 29(2), pp. 239-250, 1991.
Semprini, L. and P.L. McCarty, Comparison between model simulations and field results for in-situ biorestoration of chlorinated alphatics. Part 1. Biostimulation of methanotrophic bacteria, Ground Water, 29(3), pp. 365-374, 1991.
Semprini, L. and P.L. McCarty, Comparison between model simulations and field results for in-situ biorestoration of chlorinated alphatics. Part 2. Cometabolic transformations, Ground Water, 30(1), pp. 37-44, 1992.
Skelland, A., Diffusional mass transfer. Wiley, New York, 1974.
Stoer, J. and R. Bulirsch, Introduction to numerical analysis, Fractals, 3, pp. 217-229, 1995.
Strikwerda, J.C., Finite difference schemes and partial differential equations, Brooks/Cole Publishing, Pacific Grove, CA, 1989.
Srinivasan, P. and J.W. Mercer, Simulation of biodegradation and sorption processes in ground water, Ground Water, 26(4), pp. 475-487, 1988.
Sutfin, J.A. and D. Ramey, In situ biological treatment of TCE-impacted soil and groundwater: Demonstration results, Environmental Progress, 16(4), pp. 287-296, 1997.
Thomas, J.W., Numerical partial differential equations, Springer-Verlag, New York, 1995.
Treybal, R. E., Mass-transfer operations. McGraw-Hill, Inc., 1980.
U.S. DOE., Portsmouth annual environmental report, DOE/OR/11-1729&D1 BJC/PORTS-13, 1998.
U.S. EPA, Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications, http:// www.epa.gov.clu-in.org, 2000.
U.S. EPA, Trichloroethylene, http://www.epa.gov/ttn/atw/hlthef/tri-ethy.html, 2005.
Vannelli, T., M. Logan, D.M. Arciero, and A.B. Hooper, Degradation of halogenated aliphatic compounds by the ammonia-oxidizing bacterium Nitrosomonas europaea, Appl. Environ. Microbiol., 56, pp. 1169-1171, 1990.
Wackett, L.P., and D.T. Gibson, Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1, Appl. Environ. Microbiol., 54, pp. 1703-1708, 1988.
Wackett, L.P., G.A.Brusseau, S.R. Householder, and R.S. Hanson, Survey of microbial oxygenases: trichloroethylene degradation by propane-oxidizing bacteria. Appl. Environ. Microbiol., 55, pp. 2960-2964, 1989.
Wang, H.F. and M.P. Anderson, Introduction to groundwater modeling: Finite difference and finite element, W.H. Freeman, New York, 1982.
Wanner, U.I. And P.L. MaCarty., Development and evaluation of semicontinuous slurry microcosms to simulate in-situ biodegradation of trichloroethylene in contaminated Aquifers, Environmental Science and Technology, 31, pp. 2915-2922, 1997.
Wilson, J.T. and B.H. Wilson, Biotransformation of trichloroethylene in soil, Appl. Environ. Microbiol., 49(1), pp. 242-243, 1985.
Wilson, D., C. Lahoz, and J. Maroto, Groundwater cleanup by in-situ sparging. VIII. Effect of air channeling on dissolved volatile organic compounds removal efficiency, Separation Sci. and Technol., 29(18), pp. 2387-2418, 1994.
Yang, Yanru and P.L. McCarty, Biologically enhanced dissolution of tetrachloroethene DNAPL, Environmental Science and Technology, 34(14), pp. 2979-2984, 2000.