簡易檢索 / 詳目顯示

研究生: 陳福智
Chen, Fu-Chih
論文名稱: 評估茶籽萃取物改善體外細胞胰島素抗性與患高血壓之糖尿病老鼠之血糖控制
Assessment ameliorating functions of extract from Camellia sinensis (L.) O. Kuntze seed for TNF-α induced insulin resistance in Hep G2 cell and hyperglycemia in SHR with diabetes
指導教授: 蕭世裕
Shaw, Shyh-Yu
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 68
中文關鍵詞: 茶樹類黃酮胰島素代謝症候群第二型糖尿病
外文關鍵詞: Camellia sinensi, flavonoid, insulin, metabolic syndrome, T2DM
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究目的在評估茶樹籽萃取物為非皂素與兒茶素之類黃酮 (NCF) 對於改善因腫瘤壞死因子 (tumor necrosis factor-α,TNF-α) 所誘導的肝細胞胰島素抗性與患高血壓之糖尿病老鼠的高血壓與血糖改善效果。
    首先,我們在人類肝癌細胞 Hep G2培養液中,分別加入 5μM 胰島素、5μM 胰島素及 30 ng / ml TNF-α,經2~6小時觀察。結果顯示TNF-α會降低IR、 IRS-1、 IRS-2、 PI3K-α、 Akt / PKB、 GLUT-2、 AMPK、 GCK、丙酮酸激酶和 PPAR-γ等蛋白質表現;並活化了 p65、 MAPKs (p38、 JNK1/2 和 ERK1/2)、 iNOS 及 COX-2 等;這顯示 TNF-α 使 Hep G2 細胞表現出胰島素抗性。在已產生胰島素抗性的Hep G2 細胞中加入不同濃度 NCF (500、 1000、 2000 ppm),發現Hep G2 細胞不僅胰島素信號傳導的蛋白質表達增加,而且也降低了發炎蛋白,如 p38,JNK1/2, iNOS 和 COX-2。我們推測 NCF 可藉著抑制p38、 JNK1/2、 iNOS 和 COX-2 蛋白質表現達到改善 TNF-α 誘導的胰島素抗性。
    第二,我們進行 NCF 對於患高血壓之糖尿病老鼠的高血壓與血糖改善實驗。8週齡高血壓老鼠 (SHR) 分為 4 組 (每組 8 隻):(1) RD 組:常規飲食。(2) DM組:注射streptozotocin (STZ, 50 mg/kg) 和 nicotinamide (NA, 60 mg/kg),並餵食高脂飲食(HFD)。(3) NCF 0.5 組別與 (4) NCF 5 組別 : 注射STZ / NA餵食HFD並分別加口服灌餵NCF 0.5 mg/kg/day、NCF 5 mg/kg/day,持續餵食四週後。老鼠的第二型糖尿病被成功的誘發出而造成體重減輕、高血壓、高血糖、高糖化血色素、低胰島素、低腸促胰激素、高的 IL-6、 TNF-α、 MDA 及惡化了血管收縮與舒張的蛋白調節 (AGTR1, AGTR2, ETB, eNOS) 及調降了骨骼肌與肝臟葡萄糖代謝蛋白 (AMPK, IRB, IRS-1, PI3K, Akt/PKB, PPAR-γ, GLUT-4, HKase, PKase, GSK-3α, PEPCK, G6Pase) 與肝臟的自由基清除蛋白 (catalase, GPx)。上述的高血糖、高血壓、高血脂等相關生化指標、葡萄糖代謝、血壓調控與抗氧化反應皆可被 NCF改善並呈現劑量依賴性地改善。
    由本次的研究結果,我們認為NCF具有對抗第二型糖尿、抗過氧化和抗發炎作用。雖然 NCF 並不含有皂素與兒茶素但擁有高量的可以調控第二型糖尿病的總黃酮 (40.9 μg/mg)。因此由本研究證實從茶籽萃取物中分離出的NCF具有發展成為控制第二型糖尿病並改善糖尿病引起之血管併發症的藥劑潛力。

    The aim of this study is to investigate the extract of Camellia sinensis (L.) O. Kuntze seeds, contained non-catechin flavonoids (NCF), in improving hepatocytes insulin resistance by TNF-α and ameliorating hypertension and hyperglycemia on SHR with T2DM.
    First, we used Hep G2 cell to be treated with 5μM insulin or with 5μM insulin plus 30 ηg/ml TNF-α for 2 to 6 hours. TNF-α decreased the protein expressions of IR, IRS-1, IRS-2, PI3K-α, Akt/PKB, GLUT-2, AMPK, GCK, pyruvate kinase, and PPAR- γ, and activated p65 and MAPKs (p38, JNK1/2 and ERK1/2), iNOS and COX-2. It showed that TNF-α induced the insulin resistance of Hep G2 cells. The Hep G2 cells with insulin resistance treated with NCF (500, 1000, 2000 ppm) not only increased the protein expressions of insulin signaling, but also reduced the inflammation proteins, as p38, JNK1/2, iNOS and COX-2. We suggest that NCF could ameliorate TNF-α induced insulin resistance through inhibiting p38, JNK1/2, iNOS and COX-2.
    Second, we examined the anti-hypertension and anti-hyperglycemia effects of NCF treating in SHR with T2DM. 8-week-old SHRs were divided into four groups (Every group contains 8 rats): (1) RD group, fed regular diet, (2) DM group, which were injected with streptozotocin (STZ, 50 mg/kg) and nicotinamide (NA, 60 mg/kg) and fed high-fat-diet (HFD), (3) NCF 0.5 group and (4) NCF 5 group, which were injected with STZ/NA and fed HFD plus oral gavage NCF 0.5 mg/kg/day, and NCF 5 mg/kg/day for four weeks respectively. T2DM was successfully induced as evidenced by lower body weight; and higher blood pressure, blood glucose, HbA1c; and lower insulin, GLP-1; and higher IL-6, TNF-α, MDA; and deterioration of proteins regulating vasocontraction and vasodilation (AGTR1, AGTR2, ETB, eNOS) in vascular vessel, regulating glucose metabolism (AMPK, IRB, IRS-1, PI3K, Akt/PKB, PPAR-γ, GLUT-4, HKase, PKase, GSK-3α, PEPCK, G6Pase) in skeletal muscle and liver and free radicals scavengers (catalase, GPx) in liver. These biochemical parameters were improved dose dependently by NCF。
    From the present results, we think that NCF had anti-T2DM, anti-peroxidation and anti-inflammatory effects. NCF possessed high concentrations of total flavonoid (40.9 μg/mg), not saponins and catechins, could efficiently control T2DM. Thus, NCF could potentiality be developed into an agent for the control of T2DM and related vascular complication.

    CONTENTS Abstract Ⅰ List of tables Ⅱ List of figures Ш Chapter 1 Introduction 1.1 Camellia sinensis classification 1 1.2 Biological activity of composition in Camellia sinensis seed 1 1.3 Metabolic syndrome and Diabetes mellitus 3 1.4 Outline of this thesis 6 Chapter 2 Preparation non-catechin flavonoids (NCF) from Camellia sinensis (L.) O. Kuntze seed 2.1 Materials and methods 7 2.1.1 Extraction of NCF from Camellia sinensis (L.) O. Kuntze seed 7 2.1.2 Identification of NCF by TLC, HPLC, LC-Q-TOF-MS 7 2.1.3 Estimation of flavonoids 9 2.2 Results 9 2.3 Discussion 10 Chapter 3 Assessment ameliorating functions of extract from Camellia sinensis (L.) O. Kuntze seed for TNF-α induced insulin resistance in HepG2 cell 3.1 Materials and methods 12 3.1.1 Cell culture 12 3.1.2 MTT assay 12 3.1.3 Glucose uptake assay 12 3.1.4 Western blot analysis 13 3.1.5 Statistical evaluation 13 3.2 Results 14 3.3 Discussion 14 Chapter 4 Assessment ameliorating functions of extract from Camellia sinensis (L.) O. Kuntze seed for TNF-α induced insulin resistance in hyperglycemia in SHR with diabetes 4.1 Materials and methods 18 4.1.1 Animals and experiments 18 4.1.2 Measurement of blood pressure and heart rate 18 4.1.3 Measurement of OGTT 18 4.1.4 Measurement of serum biochemical parameters 19 4.1.5 Western blot analysis 19 4.1.6 Statistical evaluation 20 4.2 Results 20 4.3 Discussion 21 Chapter 5 Conclusion 25 References 26

    References
    1. Tariq M., Naveed A., Barkat A. K. The morphology, characteristics, and medicinal properties of Camellia sinensis’ tea. J. Med. Plants Res. Vol.4, pp. 2028-2033, 2010.
    2. Mukhtar, H., N. Ahmad, Tea polyphenols:Prevention of cancer and optimizing health. Am. J. Clin. Nutr. Vol. 71, pp. 1698S-1702S, June 2000.
    3. Harman, D. Free-radical theory of aging. Increasing the functional life span. Annals of the New York Academy of Sci. Vol. 717, pp. 1-15, 1994.
    4. Ming, T.L. Monograph of the Genus Camellia. Kunming, China: Yunnan Science and Technology Press. pp. 352. 2000.
    5. Gao, J.Y., Parka, C.R., Du, Y.Q. Collected species of the genus Camellia an illustrated outline. Hangzhou, Zhejiang, China: Zhejiang Science and Technology Press, 2005.
    6. Sealy, J.R., A Revision of the Genus Camellia. The Royal Horticultural Society, London, 1958.
    7. Chang, H.T. Bartholomew B Camellias. Portland, Oregon, USA: Timber Press, 1984.
    8. Lu, H.F., Shen, J.B., Lin, X.Y., Fu, J.L. Relevance of Fourier transform infrared spectroscopy and leaf anatomy for species classification in Camellia (Theaceae). Taxon. Vol. 57, pp. 1274–1288, 2008
    9. Chen, L.H., Wang, S.Z., Nelson, M. Genetic diversities within Camellia species confirmed by random amplified polymorphic DNA (RAPD) markers. Journal of the American Society for Horticultural Science. Vol. 40, pp.1105–1147, 2005
    10. Yang, J.B., Li, H.T., Yang, S.X., Li, D.Z., Yang, Y.Y. The application of four DNA sequences to studying molecular phylogeny of Camellia (Theaceae). Acta Botanica Yunnanica. Issue 2, pp. 108–114, 2006.
    11. Fazel, M.; Sahari, M.A., Barzegar, M. Determination of main tea seed oil antioxidants and their effects on common kilka oil. Int. Food Res. J. Vol. 15, pp. 209-217, 2008.
    12. Roberts, G. R. Polar lipid composition of the leaves and seeds from the tea plant (Camellia sinensis L). J. Sci. Food, Agric. Vol. 25, pp. 473-481, 1974.
    13. Sengupta, C., Sengupta, A., Ghosh, A. Triglyceride composition of tea seed oil. J. Sci. Food, Agric. Vol. 27, pp. 1115-1122, 1976.
    14. Rajaei, A., Barzegar, M., Sahari, M.A. Comparison of antioxidative effect of tea and sesame seed oils extracted by different methods. J. Agric. Sci. Technol. Vol. 10, pp. 345-350, 2008.
    15. Sahari, M.A., Ataii, D., Hamedi, M. Characteristics of tea seed oil in comparison with sunflower and olive oils and its effect as a natural antioxidant. J. Am. Oil Chem. Soc. Vol. 81, pp. 585-588, 2004.
    16. Fattahi-far, E., Sahari, M.A., Barzegar, M. Interesterification of tea seed oil and its application in margarine production. J. Am. Oil Chem. Soc. Vol. 83, pp. 841-845, 2006
    17. Lee, C.P., Shih, P.H., Hsu, C.L., Yen, G.C. Hepatoprotection of tea seed oil (Camellia oleifera Abel.) against CCl4-induced oxidative damage in rats. Food Chem. Toxicol. Vol. 45, pp. 888-895, 2007.
    18. Wu, X.H., Huang, Y.F., Xie, Z.F., Health functions and prospective of Camellia oil. Food Sci. Technol. Vol. 5, pp. 94-96, 2005.
    19. Wang, W.J., Chen, C.G., Chen, J. The positive role of medical care of Oil tea. Food Nutr. China. Vol. 9, pp. 48-51, 2007.
    20. Lee, C.P., Yen, G.C., Antioxidant activity and bioactive compounds of tea seed (Camellia oleifera Abel.) oil. J. Agric. Food Chem. Vol. 54, pp. 779-784. 2006.
    21. Yoshioka, T., Nishimura, T., Matsuda, A., Kitagawa. Chemical Pharmacology Bulletin (Tokyo). Vol. 18, pp. 1610, 1970.
    22. Zhang, X.F., Han, Y.Y., Bao, G.H., Ling, T.J., Zhang, L., Gao, L.P., Xia, T. A. new saponin from tea seed pomace (Camellia oleifera Abel) and its protective effect on PC12 Cells. Molecules. Vol. 17, pp. 11721–11728, 2012.
    23. Huang, H.Q., Zhang, X., Xu, Z.X., Su, J., Yan, S.K., Zhang, W.D. Fast determination of saikosaponins in Bupleurum by rapid resolution liquid chromatography with evaporative light scattering detection. J. Pharm. Biomed. Vol. 49, pp. 1048–1055, 2009.
    24. Kuo, P.C., Lin, T.C., Yang, C.W., Lin, C.L., Chen, G.F., Huang, J.W. Bioactive saponin from tea seed pomace with inhibitory effects against Rhizoctonia solani. J. Agric. Food Chem. Vol. 58, pp. 8618–8622, 2010.
    25. Matsui, Y., Kobayashi, K., Masuda, H., Kigoshi, H., Akao, M., Sakurai, H., Kumagai, H. Quantitative analysis of saponins in a tea-leaf extract and their antihypercholesterolemic activity. Biosci. Biotechnol. Biochem. Vol. 73, pp. 1513–1519, 2009.
    26. Hu, J.L., Nie, S.P., Huang, D.F., Li, C., Xie, M.Y. Extraction of saponin from Camellia oleifera cake and evaluation of its antioxidant activity. Int. J. Food Sci. Technol. Vol. 47, pp. 1676–1687, 2012.
    27. Yoshikawa, M., Morikawa, T., Yamamoto, K., Kato, Y., Nagatomo, A., Matsuda, H. Floratheasaponins A-C, acylated oleanane-type triterpene oligoglycosides with anti-hyperlipidemic activities from flowers of the tea plant (Camellia sinensis). J. Nat. Prod. Vol. 68, pp. 1360–1365, 2005.
    28. Huang, Q., He, M., Chen, H., Shao, L., Liu, D., Luo, Y., Dai, Y. Protective effects of sasanquasaponin on injury of endothelial cells induced by anoxia and reoxygenation in vitro. Basic Clin. Pharmacol. Toxicol. Vol. 101, pp. 301–308, 2007.
    29. Sugimoto, S., Yoshikawa, M., Nakamura, S., Matsuda, H. Medicinal Flowers. Xxv. Structures of Floratheasaponin J and Chakanoside Ii from Japanese Tea Flower, Flower Buds of Camellia Sinensis. Heterocycles. Vol. 78, pp. 1023–1029, 2009.
    30. Matsuda, H., Nakamura, S., Fujimoto, K., Moriuchi, R., Kimura, Y.; Ikoma, N.; Hata, Y., Muraoka, O., Yoshikawa, M. Medicinal Flowers. XXXI. Acylated Oleanane-Type Triterpene Saponins, Sasanquasaponins I-V, with Antiallergic Activity from the Flower Buds of Camellia sasanqua. Chem. Pharm. Bull. Vol. 58, pp. 1617–1621.,2010.
    31. Murakami, T., Nakamura, J., Kageura, T., Matsuda, H., Yoshikawa, M. Bioactive saponins and glycosides. XVII. Inhibitory effect on gastric emptying and accelerating effect on gastrointestinal transit of tea saponins: Structures of assamsaponins F, G, H, I, and J from the seeds and leaves of the tea plant. Chem. Pharm. Bull. Vol. 48, pp. 1720–1725. 2000.
    32. Liao, Z., Yin, D., Wang, W., Zeng, G., Liu, D., Chen, H., Huang, Q., He, M. Cardioprotective effect of sasanquasaponin preconditioning via bradykinin—NO pathway in isolated rat heart. Phytother. Res. Vol. 23, pp. 1146–1153, 2009.
    33. Jos’e, M. L., Paulo, E. S. M. Phenolic compounds of green tea: Health benefits and technological application in food. Asian Paci fi c Journal of Tropical Biomedicine. Vol. 6, pp. 709-719, 2016.
    34. Stratton, I.M., Adler, A.I., Neil, H.A., Matthews, D.R., Manley, S.E., Cull, C.A., Hadden, D., Turner, R.C., Holman, R.R. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (ukpds 35): Prospective observational study. British Medical Journal. Vol. 321, pp. 405–412, 2000.
    35. Assoc, A.D. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. Vol. 36, pp. 1033–1046, 2013.
    36. Krebs, M., Roden, M. Nutrient-induced insulin resistance in human skeletal muscle. Curr. Med. Chem. Vol. 11, pp. 901–908, 2004.
    37. Qu, X., Seale, J.P., Donnelly, R. Tissue and isoform-selective activation of protein kinase c in insulin-resistant obese zucker rats-effects of feeding. J. Endocrinol. Vol. 162, pp. 207–214, 1999.
    38. Zhu, J., Wang, Y., Zhang, Y., Xia, M. The anthocyanin cyanidin-3-o-β-glucoside, a flavonoid, increases hepatic glutathione synthesis and protects hepatocytes against reactive oxygen species during hyperglycemia: involvement of a cAMP-PKA-dependent signaling pathway. Free Radical Biology Medicine. Vol. 52, pp. 314-327, 2012.
    39. Cushnie, T.P.T. and Lamb, A.J. Antimicrobial activity of flavonoids. Inter Jour Antimicro Agents. Vol. 26, pp. 343-356, 2005.
    40. Krook, A., Bjornholm, M., Galuska, D., Jiang, X.J., Fahlman, R., Myers, M.G., Jr., Wallberg-Henriksson, H., Zierath, J.R. Characterization of signal transduction and glucose transport in skeletal muscle from type 2 diabetic patients. Diabetes. Vol. 49, pp. 284–292.,2000..
    41. Cusi, K., Maezono, K., Osman, A., Pendergrass, M., Patti, M.E., Pratipanawatr, T., DeFronzo, R.A., Kahn, C.R., Mandarino, L.J. Insulin resistance differentially affects the pi 3-kinase- and map kinase-mediated signaling in human muscle. J. Clin. Investig. Vol. 105, pp. 311–320, 2000.
    42. Alberti, K. G. M. M. R., Eckel, H., Grundy, S. M. Harmonizing the metabolic syndrome: a joint interim statement of the international diabetes federation task force on epidemiology and prevention; National heart, lung, and blood institute; American heart association; World heart federation; International atherosclerosis society; And international association for the study of obesity”. Circulation. Vol. 120, pp. 1640–1645, 2009.
    43. Alberti, K. G. M. M., Zimmet, P. The metabolic syndrome-a new worldwide definition. The Lancet. Vol. 366, pp.1059–1062, 2005.
    44. Olijhoek, J. K., Van Der Graaf, Y., Banga, J.-D., Algra, A., Rabelink, T. J., and Visseren, F. L. J. The Metabolic Syndrome is associated with advanced vascular damage in patients with coronary heart disease, stroke, peripheral arterial disease or abdominal aortic aneurysm. European Heart Journal. Vol. 25, pp. 342–348, 2004.
    45. Sanjay B., John S. Y., Sylvia K., Justine, I. D., Sarah, H. W., Kasia, J L., Jeremy B. S., David B. Lancet Diabetes Endocrinol. Vol. 7, pp. 25–33, 2019.
    46. Eckel, R. H., Grundy, S. M., and Zimmet, P. Z. The metabolic syndrome. The Lancet. Vol. 365, pp. 1415–1428, 2005.
    47. Wu, J. S., Yang, Y. C., Lu, F. H., Wu, C. H., Wang, R. H., and Chang, C. J. Population-Based Study on the Prevalence and Risk Factors of Orthostatic Hypotension in Subjects With Pre-Diabetes and Diabetes. Diab care. Vol. 32, pp. 69–74, 2009.
    48. Thivolet, C. Beta cells in type-1 diabetes: victims or activators of T cell response. Diabetes Metab.(Paris). Vol. 28, pp. 267–269, 2002.
    49. Gillespie, K.M. Type 1 diabetes: pathogenesis and prevention. CMAJ. Vol. 175, pp. 165-170, 2006.
    50. Narendran, P., Estella, E., Fourlanos, S. Immunology of type 1 diabetes. Q. J. Med. Vol. 98, pp. 547–556, 2005.
    51. Weinman, E. O., Strisower, E. H., Chaikoff, I. L. Conversion of fatty acids to carbohydrate: application of isotopes to this problem and role of the Krebs cycle as a synthetic pathway. Physiol. Vol. 37, pp. 252–272, 1957.
    52. Figueiredo, L. F., Schuster, S., Kaleta, C., Fell, D.A. Can sugars be produced from fatty acids? A test case for pathway analysis tools. Bioinformatics. Vol. 25, pp. 152–158, 2009.
    53. Basu, S., Shankar, V., Yudkin, J.S. Comparative effectiveness and cost-effectiveness of treat-to-target versus benefit-based tailored treatment of type 2 diabetes in low-income and middle-income countries: a modelling analysis. Lancet Diabetes Endocrinol. Vol. 4: 922–32, 2016
    54. Kahn, S. E., Hull, R. L., Utzschneider, K.M. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. Vol. 444, pp. 840–846, 2006.
    55. Stumvoll, M., Goldstein, B.J., Van, H. T. W. Type 2 diabetes: principles of pathogenesis and therapy. Lancet. Vol. 365, pp. 1333–1346, 2005
    56. Reaven, G. M. Role of insulin resistance in human disease. Diabetes. Vol. 37, pp. 1595–1607, 1988.
    57. Olivia, O., Jerrold, M. O. The cellular and signaling networks linking the immune system and metabolism in disease. Nature Medicine. Vol. 18, pp. 363-374, 2012
    58. Yang, Q. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature . vol. 436, pp. 356–362, 2005.
    59. Rui, L., Yuan, M., Frantz, D., Shoelson, S., White, M. F. SOCS-1 and SOCS-3 block insulin signaling by ubiquitin-mediated degradation of IRS1 and IRS2. J Biol. Chem. Vol. 277, pp. 42394–42398, 2002.
    60. Ehses, J.A., Ellingsgaard, H., Boni-Schnetzler, M., Donath, M.Y. Pancreatic islet inflammation in type 2 diabetes: from alpha and beta cell compensation to dysfunction. Arch Physiol. Biochem. Vol. 115, pp. 240–247, 2009.
    61. Carrillo, L. R. M., Barengo, N. C., Albitres, F. L., Bernabe, O. A. The risk of mortality among people with type 2 diabetes in Latin America: A systematic review and meta-analysis of population-based cohort studies. Diabetes Metab. Res. Rev. e3139,2019.
    62. Mabry, T. J., Markham, K.R., Thomas, M.B. The Systematic Identification of Flavonoids. Springer Verlag, New York, U.S.A. 1970.
    63. Nagy, M., Grancai, D. Colorimetric determination of flavanones in propolis. Pharmazie. Vol. 51, pp. 100-101, 1996.
    64. Chang, C. C., Yang, M. H., Wen, H. M., Chen, J. C. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food. Drug. Anal. Vol. 10, pp. 178-182, 2002.
    65. Woisky, R., Salatino, A. Analysis of propolis: some parameters and procedures for chemical quality control. J. Apic. Res. Vol.37, 99-105, 1998.
    66. Mokashi, P., Khanna, A., Pandita, N. Flavonoids from Enicostema littorale blume enhances glucose uptake of cells in insulin resistant human liver cancer (HepG2) cell line via IRS-1/PI3K/Akt pathway. Biomed. Pharmacother. Vol. 90, pp. 268-277 , 2017.
    67. Cordero-Herrera, I., Martín, M.Á., Goya, L., Ramos, S. Cocoa flavonoids attenuate high glucose-induced insulin signalling blockade and modulate glucose uptake and production in human HepG2 cells. Food. Chem. Toxicol. Vol. 64, pp. 10-9, 2014.
    68. Wang, J., Huang, Y., Li, K., Chen, Y., Vanegas, D., McLamore, E.S., Shen, Y. Leaf Extract from Lithocarpus polystachyus Rehd. Promote Glycogen Synthesis in T2DM Mice. PLOS One. e0166557 , 2016.
    69. Sun, W., Zhang, B., Zheng, H., Zhuang, C., Li, X., Lu, X., Quan, C., Dong, Y., Zheng, Z., Xiu ,Z. Trivaric acid, a new inhibitor of PTP1b with potent beneficial effect on diabetes. Life. Sci. Vol. 169, pp. 52-64, 2017.
    70. Chen, F.C., Shen, K.P., Chen, J.B., Lin, H.L., Hao, C.L., Yen, H.W., Shaw, S.Y. PGBR extract ameliorates TNF-α induced insulin resistance in hepatocytes. Kaohsiung. J. Med. Sci. Vol. 34, pp. 14-21, 2018.
    71. Chao, C.L., Huang, H.C., Lin, H.C., Chang, T.C., Chang, W.L. Sesquiterpenes from Baizhu Stimulate Glucose Uptake by Activating AMPK and PI3K. Am. J. Chin. Med. Vol. 44, pp. 963-979 , 2016.
    72. Jeon, S. M. Regulation and function of AMPK in physiology and diseases. Experimental & Molecular Medicine. 48, e245, 2016.
    73. Lu, B., Wu, H., Gu, P., Du, H., Shao, J., Wang, J., Zou, D. Improved glucose-stimulated insulin secretion by intra-islet inhibition of protein-tyrosine phosphatase 1B expression in rats fed a high-fat diet. J. Endocrinol. Invest. Vol. 35, pp. 63-70, 2012.
    74. Bhuvaneswari, S., Anuradha, C.V. Astaxanthin prevents loss of insulin signaling and improves glucose metabolism in liver of insulin resistant mice. Can. J. Physiol. Pharmacol. Vol. 90, pp. 1544-1552, 2012.
    75. Polvani, S., Tarocchi, M., Tempesti, S., Bencini, L., Galli, A. Peroxisome proliferator activated receptors at the crossroad of obesity, diabetes, and pancreatic cancer. World. J. Gastroenterol. Vol. 22, pp. 2441-2459, 2016.
    76. Dong, K., Ni, H., Wu, M., Tang, Z., Halim, M., Shi, D. ROS-mediated glucose metabolic reprogram induces insulin resistance in type 2 diabetes. Biochem. Biophys. Res. Commun. Vol. 476, pp. 204-211, 2016.
    77. Odegaard, A. O., Jacobs, D. R. Jr., Sanchez, O. A., Goff, D. C. Jr., Reiner, A. P., Gross, M. D. Oxidative stress, inflammation, endothelial dysfunction and incidence of type 2 diabetes. Cardiovasc. Diabetol. Vol. 15: 51, 2016.
    78. Kuroda, M., Sakaue, H. Adipocyte Death and Chronic Inflammation in Obesity. J. Med. Invest. Vol. 64, pp. 193-196 , 2017.
    79. Liu, C., Feng, X., Li, Q., Wang, Y., Li, Q., Hua, M. Adiponectin, TNF-α and inflammatory cytokines and risk of type 2 diabetes: A systematic review and meta-analysis. Cytokine. Vol. 86, pp. 100-109, 2016.
    80. Budluang, P., Pitchakarn, P., Ting, P., Temviriyanukul, P., Wongnoppawich, A., Imsumran, A. Anti-inflammatory and anti-insulin resistance activities of aqueous extract from Anoectochilus burmannicus. Food. Sci. Nutr. Vol. 5, pp. 486-496, 2016.
    81. Li, Y., Yang, P., Chang, Q., Wang, J., Liu, J., Lv, Y., Wang, T.T.Y., Gao, B., Zhang, Y., Yu, L.L. Inhibitory Effect of piceatannol on TNF-α-mediated inflammation and insulin resistance in 3T3-L1 adipocytes. J. Agric. Food. Chem. Vol. 65, pp. 4634-4641, 2017.
    82. Santos, S. H., Andrade, J. M., Fernandes, L. R., Sinisterra, R. D., Sousa, F. B., Feltenberger, J. D., Alvarez-Leite, J. I., Santos, R. A. Oral Angiotensin-(1-7) prevented obesity and hepatic inflammation by inhibition of resistin/TLR4/MAPK/NF-κB in rats fed with high-fat diet. Peptides. Vol. 46, pp. 47-52, 2013.
    83. Vazquez-Prieto, M. A., Bettaieb, A, Haj, F. G., Fraga, C. G., Oteiza, P. I. (-)-Epicatechin prevents TNFα-induced activation of signaling cascades involved in inflammation and insulin sensitivity in 3T3-L1 adipocytes. Arch. Biochem. Biophys. Vol. 527, pp. 113-118, 2012.
    84. Priyanka, A., Sindhu, G., Shyni, G. L., Preetha Rani, M. R., Nisha, V. M., Raghu, K. G. Bilobalide abates inflammation, insulin resistance and secretion of angiogenic factors induced by hypoxia in 3T3-L1 adipocytes by controlling NF-κB and JNK activation. Int. Immunopharmacol. Vol. 42, pp. 209-217, 2017.
    85. Lu, J. C., Chang, Y. T., Wang, C. T., Lin, Y. C., Lin, C. K., Wu, Z. S. Trichostatin A modulates thiazolidinedione-mediated suppression of tumor necrosis factor α-induced lipolysis in 3T3-L1 adipocytes. PLOS One. e71517, 2013.
    86. Huang, C. T., Chang, M. C., Chen, Y. L., Chen, T. C., Chen, C. A., Cheng, W. F. Insulin-like growth factors inhibit dendritic cell-mediated anti-tumor immunity through regulating ERK1/2 phosphorylation and p38 dephosphorylation. Cancer. Lett. Vol. 359, pp. 117-126, 2015.
    87. Tsai, C. W., Liu, K. L., Lin, Y. R., Kuo, W. C. The mechanisms of carnosic acid attenuate tumor necrosis factor-α-mediated inflammation and insulin resistance in 3T3-L1 adipocytes. Mol. Nutr. Food. Res. Vol. 58, pp. 654-664, 2014.
    88. Priyanka, A., Sindhu, G., Shyni, G. L., Preetha-Rani, M. R., Nisha, V. M., Raghu, K. G. Bilobalide abates inflammation, insulin resistance and secretion of angiogenic factors induced by hypoxia in 3T3-L1 adipocytes by controlling NF-κB and JNK activation. Int. Immunopharmacol. Vol. 42, pp. 209-217, 2017.
    89. Tsuzuki, T., Shinozaki, S., Nakamoto, H., Kaneki, M., Goto, S., Shimokado, K., Kobayashi, H., Naito, H. Voluntary exercise can ameliorate insulin resistance by reducing iNOS-mediated S-nitrosylation of Akt in the liver in obese rats. PLOS One. e0132029, 2015.
    90. Chuang, C.C., Bumrungpert, A., Kennedy, A., Overman, A., West, T., Dawson, B., McIntosh, M.K. Grape powder extract attenuates tumor necrosis factor α-mediated inflammation and insulinresistance in primary cultures of human adipocytes. J. Nutr. Biochem. Vol. 22, pp. 89-94, 2011.
    91. Rippe, J.M., Angelopoulos, T.J. Sugars, obesity, and cardiovascular disease: results from recent randomized control trials. Eur. J. Nutr. Vol. 55, pp. 45-53, 2016
    92. Meex, R.C., Schrauwen-Hinderling, V.B., Moonen-Kornips, E., Schaart, G., Mensink, M., Phielix, E., van de Weijer, T., Sels, J.P., Schrauwen, P., Hesselink, M.K. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes. Vol. 59, pp. 572-579, 2010.
    93. Alemany, M. Relationship between energy dense diets and white adipose tissue inflammation in metabolic syndrome. Nutr. Res. Vol. 33, pp. 1-11, 2013.
    94. Liu, X., Mameza, M. G., Lee, Y. S., Eseonu, C. I., Yu, C. R., Kang Derwent, J. J., Egwuagu, C. E. Suppressors of cytokine-signaling proteins induce insulin resistance in the retina and promote survival of retinal cells. Diabetes. Vol.57, pp. 1651-1658, 2008.
    95. Jeong, H. S., Kim, S., Hong, S. J., Choi, S. C., Choi, J. H., Kim, J. H., Park, C. Y., Cho, J. Y., Lee, T. B., Kwon, J. W. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial. J. Med. Food. Vol. 19, pp. 346-352, 2016.
    96. Shen, K. P., Lin, H. L., Chang, W. T., Lin, J. C., An, L. M., Chen, I. J., Wu, B. N. Eugenosedin-A ameliorates hyperlipidemia-induced vascular endothelial dysfunction via inhibition of α1-adrenoceptor/5-HT activity and NADPH oxidase expression. Kaohsiung. J. Med. Sci. Vol. 30, pp. 116-24, 2014.
    97. Kostapanos, M. S., Florentin, M., Elisaf, M. S., Mikhailidis, D. P. Hemostatic factors and the metabolic syndrome. Curr. Vasc. Pharmacol. Vol. 11, pp. 880-905, 2013.
    98. Belemets, N., Kobyliak, N., Virchenko, O., Falalyeyeva, T., Olena, T., Bodnar, P., Savchuk, O., Galenova, T., Caprnda, M., Rodrigo, L. Effects of polyphenol compounds melanin on NAFLD/NASH prevention. Biomed. Pharmacother. Vol. 88, pp. 267-276, 2017.
    99. Torres-Rodríguez, M. L., García-Chávez, E., Berhow, M., de Mejia, E. G. Anti-inflammatory and anti-oxidant effect of Calea urticifolia lyophilized aqueous extract on lipopolysaccharide-stimulated RAW 264.7 macrophages. J. Ethnopharmacol. Vol. 188, pp. 266-74, 2016.
    100. Beseni, B. K., Bagla, V. P., Njanje, I., Matsebatlela, T. M., Mampuru, L., Mokgotho, M. P. Antioxidant, Antiglycation, and Hypoglycaemic Effect of Seriphium plumosum Crude Plant Extracts. Evid. Based. Complement. Alternat. Med. Vol. 2017, Article ID 6453567, 2017.
    101. Dada, F. A., Oyeleye, S. I., Ogunsuyi, O. B., Olasehinde, T. A., Adefegha, S. A., Oboh, G., Boligon, A. A. Phenolic constituents and modulatory effects of Raffia palm leaf (Raphia hookeri) extract on carbohydrate hydrolyzing enzymes linked to type-2 diabetes. J. Tradit. Complement. Med. Vol. 7, pp. 494-500, 2017.
    102. Omodanisi, E. I., Aboua, Y. G., Oguntibeju, O. O. Assessment of the Anti-Hyperglycaemic, Anti-inflammatory and Antioxidant Activities of the Methanol Extract of Moringa Oleifera in Diabetes-Induced Nephrotoxic Male Wistar Rats. Molecules. Vol. 22:439, 2017.
    103. Babu, P. V., Si, H., Fu, Z., Zhen, W., Liu, D. Genistein prevents hyperglycemia-induced monocyte adhesion to human aortic endothelial cells through preservation of the cAMP signaling pathway and ameliorates vascular inflammation in obese diabetic mice. J. Nutr. Vol. 142, pp. 724-730, 2012.
    104. Valsecchi, A. E., Franchi, S., Panerai, A. E., Rossi, A., Sacerdote, P., Colleoni, M. The soy isoflavone genistein reverses oxidative and inflammatory state, neuropathic pain, neurotrophic and vasculature deficits in diabetes mouse model. Eur. J. Pharmacol. Vol. 650, pp. 694-702, 2011.
    105. Yen, C. H., Chen, S. J, Liu, J. T., Tseng, Y. F., Lin, P. T. Effects of water extracts of Graptopetalum paraguayense on blood pressure, fasting glucose, and lipid profiles of subjects with metabolic syndrome. Biomed. Res. Int. Vol. 2013, Article ID 809234, 2013.
    106. Chen, S. J., Yen, C. H., Huang, Y. C, Lee, B. J., Hsia, S.; Lin, P. T. Relationships between inflammation, adiponectin, and oxidative stress in metabolic syndrome. PLOS One. e45693, 2012.
    107. Jeong, H. S., Kim, S., Hong, S. J., Choi, S. C., Choi, J. H., Kim, J. H., Park, C. Y., Cho, J. Y., Lee, T. B., Kwon, J. W. Black Raspberry Extract Increased Circulating Endothelial Progenitor Cells and Improved Arterial Stiffness in Patients with Metabolic Syndrome: A Randomized Controlled Trial. J. Med. Food. Vol. 19, pp. 346-352, 2016.
    108. Shen, K. P., Lin, H. L., Chang, W. T., Lin, J. C., An, L. M., Chen, I. J., Wu, B. N. Eugenosedin-A ameliorates hyperlipidemia-induced vascular endothelial dysfunction via inhibition of α1-adrenoceptor/5-HT activity and NADPH oxidase expression. Kaohsiung. J. Med. Sci. Vol. 30, pp. 116-124, 2014.
    109. Putnam, K., Shoemaker, R., Yiannikouris, F., Cassis, L. A. The renin-angiotensin system: a target of and contributor to dyslipidemias, altered glucose homeostasis, and hypertension of the metabolic syndrome. Am. J. Physiol. Heart. Circ. Physiol. Vol. 302, pp. H1219-H1230, 2012.
    110. Kohan, D.E. Endothelin, hypertension and chronic kidney disease: new insights. Curr. Opin. Nephrol. Hypertens. Vol. 19, pp. 134-139, 2010.
    111. Huang, P. L. eNOS, metabolic syndrome and cardiovascular disease. Trends. Endocrinol. Metab. Vol. 20, pp. 295-302, 2009.
    112. Boden, G. Gluconeogenesis and glycogenolysis in health and diabetes. J. Investig. Med. Vol. 52, pp. 375-378, 2004.
    113. Shen, K. P., Hao, C. L., Yen, H. W., Chen, C. Y., Wu, B. N., Lin, H. L. Pre-germinated brown rice prevents high-fat diet induced hyperglycemia through elevated insulin secretion and glucose metabolism pathway in C57BL/6J strain mice. J. Clin. Biochem. Nutr. Vol. 56, pp. 28-34, 2015.
    114. Bathina, S., Das, U. N. Dysregulation of PI3K-Akt-mTOR pathway in brain of streptozotocin-induced type 2 diabetes mellitus in Wistar rats. Lipids. Health. Dis. Vol. 17:168, 2018.
    115. Abdelgadir, E., Rashid, F., Bashier, A., Ali, R. SGLT-2 inhibitors and cardiovascular protection: lessons and gaps in understanding the current outcome trials and possible benefits of combining SGLT-2 inhibitors with GLP-1 agonists. J. Clin. Med. Res. Vol. 10, pp. 615-625, 2018.
    116. Park, Y. K., Koo, M. H., Ikegaki, M. and Contado, J. L. Comparison of the flavonoid aglycone contents of Apis mellifera propolis from various regions of Brazil. Arq. Biol. Tecnol. Vol. 40, pp. 97-106, 1997.
    117. Didry, N., Dubreuil, L. and Pinkas, M. New procedure for direct bioautographic TLC assay as applied to a tincture of Ranunculus bulbosus. J. Ethnopharmacol. Vol. 29, pp. 283-290, 1990.
    118. Bankova, V., Christov, R., Stoev, G. and Popov, S. Determination of phenolics from propolis by capillary gas chromatography. J. Chromatogr. Vol. 607, pp. 150-153, 1992.
    119. Christov, R. and Bankova, V. Gas chromatographic analysis of underivatized phenolic constituents from propolis using an electron-capture detector. J. Chromatogr. Vol. 623, pp. 182-185, 1992.
    120. Vennat, B., Argouet-Grand, A., Gross, D. and Pourrat, A. Qualitative and quantitative analysis of flavonoids and identification of phenolic acids from a propolis extract. J. Pharmacie Belgique. Vol. 50, pp. 438-444, 1995.
    121. Martos, I., Cossentini, M., Ferreres, F., TomasBarberan, F. A. Flavonoid composition of Tunisian honeys and propolis. J. Agric. Food Chem. Vol. 45, pp. 2824-2829, 1997.
    122. Rajesh, M., Nagarajan, A., Perumal, S., Sellamuthu, Manian. The antioxidant activity and free radical scavenging potential of two different solvent extracts of Camellia sinensis (L.) O. Kuntz, Ficus bengalensis L. and Ficus racemosa L. Vol.107, pp. 1000-1007, 2008.

    下載圖示 校內:2024-07-01公開
    校外:2024-07-01公開
    QR CODE