| 研究生: |
馮浩偉 Feng, Hao-wei |
|---|---|
| 論文名稱: |
利用水解法合成氮化鈦/氮化矽奈米複合材料之微結構及機械性質之研究 Microstructure and Mechanical Properties of TiN/Si3N4 Nanocomposites Synthesized by Hydrolysis Method |
| 指導教授: |
黃肇瑞
Huang, Jow-lay |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 94 |
| 中文關鍵詞: | 奈米複合材料 、氮化矽 、四異丙醇鈦 、水解法 、氮化鈦 |
| 外文關鍵詞: | titanium tetrakisisopropoxide, titanium nitride, silicon nitride, nano composites, hydrolysis method |
| 相關次數: | 點閱:101 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化矽基陶瓷的破壞韌性雖高於一般結構陶瓷(如氧化鋁),但仍具改善空間,其破壞的機構一般呈現脆性破壞為主,因此有許多研究透過添加強化相的方式改善氮化矽基陶瓷的機械性質。由於添加於基材中的第二相於混合過程是否均勻,將對複合材料燒結體的性質有重要的影響。因此本研究嘗試利用水解法將前驅物四異丙醇鈦(Ti(OC3H7)4)與Si3N4粉末混合後水解,使TiO2均勻地包覆在Si3N4粉末的表面,再將粉末以氨氣進行氮化處理,製備奈米TiN/ Si3N4複合粉末,探討複合粉末之氮化反應、表面形態;並將氮化後之奈米複合粉末,在10 atm氮氣下進行熱壓燒結,製備TiN/Si3N4複合陶瓷,並探討複合陶瓷的相組成,微結構、機械性質。
實驗結果顯示,經水解法製備所得之TiO2為非晶質結構,並均勻覆著於氮化矽顆粒表面。利用氨氣在900 sccm將TiO2進行氮化處理,TiO2在高於1000℃以上有氮化反應的進行,並在1100℃持溫5小時條件下可將TiO2氮化,形成TiN粒徑約30 nm之奈米TiN/Si3N4複合粉末。
奈米複合粉末經由10 atm氮氣氛下熱壓燒結之燒結體顯示,由水解法製備之奈米TiN有助於Si3N4於燒結過程之相變態,奈米TiN/ Si3N4複合粉末在1750℃可使氮化矽α相完全相變態為β相之Si3N4熱穩定相,燒結體的相組成有TiN、β相Si3N4以及Si2N2O相。燒結體中TiN有明顯的晶粒成長現象,由SEM觀察其晶粒大小約500 nm左右。
比較不同TiN的體積比的機械性質發現,隨著TiN的體積比愈高,其硬度值與抗彎強度會隨著下降,但是韌性值方面,含有10vol% TiN時有最大值韌性值6.56MPa‧m1/2。由電阻率的量測結果可知,隨著TiN的添加量愈多時,電阻率有下降的趨勢,而且在添加30 vol% TiN電阻率有劇烈下降的現象,其電阻率約為70 Ω.cm。
Silicon nitride (Si3N4) has excellent mechanical properties and thermal stability. However, like most ceramics, its brittle nature and difficult to be manufactured into complex shapes has limited its application. When the conductivity of silicon nitride based composite was increased by adding the conductive compound as second phase, these compounds can be easily shaped by electrical discharge machining. Because the homogenous distribution of second phase is important for the properties of composite, the TiN/Si3N4 nanocomposite powders were synthesized by hydrolysis method for homogenous distribution of second phase in this study.
Experimental results indicated that the amorphous TiO2 could cover the surface of the Si3N4 homogenously after the precursor (titanium tetrakisisopropoxide) were hydrolyzed. Using ammonia for nitridation reaction, TiO2 was nitrided completely at 1100℃ for 5 hr and the particles size of TiN were about 30 nm.
The composites were sintered by hot pressing sintering at 1750℃ for 1 hour in 10atm N2. The sintered body consisted of β-Si3N4、Si2N2O、TiN. The grain size of TiN was about 500 nm after sintering, and the larger grain size as increasing as the contents. The addition of 10 vol% TiN has the best toughness 6.56 MPa‧m1/2. The toughening mechanisms of the composites were crack deflection, bridging and branching. The addition 30 vol% TiN has the lowest resistivity 70 Ω.cm.
[1] M. J. Hoffmann and G. Petzow, "Microstructure Design of Si3N4-Based Ceramics, " pp3-15 in silicon nitride ceramics scientific and technological advances, proceeding of materials research society symposium Vol.287(Boston, MA, Dec. 1992), Edited by I. W. Chen, P. F. Becher, M. Mitomo, G. Petzow, and T. S. Yen. Materials Research Society, Pittsburgh, PA, (1993).
[2] M. Taguchi, “Application of High Technology Ceramics in Japanese Automobiles,” Adv. Ceram. Mat., 2(4): 752-762 (1987).
[3] R. Dillinger, J. Heinrich and J. Huber, “Slip-Cast Hot Isostatically Pressed Silicon Nitride Gas Turbine,” Mater. Sci. Eng., A109: 373-78 (1988).
[4] P. F. Becher and G. C. Wei, “Toughening Behavior in SiC-Whisker-Reinforced Alumina,” J. Am. Ceram. Soc., 67(12): C267-C269 (1984).
[5] P. F. Becher, ”Microstructural Design of Toughened Ceramics." J. Am. Ceram. Soc., 74(2): 255-269 (1991).
[6] G. Pezzotti, “Si3N4/SiC-Platelet Composite without Sintering Aids – A Candidate for Gas Turbine Engines," J. Am. Ceram. Soc. 76(5): 1313-1320 (1993).
[7] J. L. Huang and M. T. Lee, “Microstructure, Fracture Behavior and Mechanical Properties of TiN/Si3N4 Composites.” Materials Chemistry and Physics, 45(3): 203-209 (1996).
[8] C. Y. Chu and J. P. Singh, “High-Temperature Failure Mechanisms of Hot-Pressed Si3N4/Si3N4-Whisker-Reinforced Composites.” J. Am. Ceram. Soc., 76(5): 1349-1353 (1993).
[9] C. S. Trueman and J. Huddleston, “Materail Removal by Spalling during EDM of Ceramics,” J. Europ. Ceram. Soc., 20: 1629-35 (2000).
[10] N. L. Mordecai, T. C. Lee and J. Huddleston, “Developments in Spark Erosion of Ceramics,” Brit. Ceram. Trans., 94(1): 21-24 (1995).
[11] D. Jianxin and L. Taichiu, “Surface Integrity in Electro-Discharge
Machining, Ultrasonic Machining, and Diamond Saw Cutting of Ceramic Composites,” Ceram. Inter., 26: 825-30 (2000).
[12] Y. Akimune, F. Munakata, M. Ando, Y. Okamoto, and N. Hirosaki, “Optimization of Mechanical and Electrical Properties of TiN/Si3N4 Material by Agglomerates-Microstructure-Control,” J. Ceram. Soc. Japan., 105(2): 122-25 (1997).
[13] Y. Yasutomi and M. Sobue, “Development of Reaction-Bonded Electro-Conductive TiN-Si3N4 and Resistive Al2O3-Si3N4 Composites," Ceram. Eng. Sci. Proc., 11(7-8): 857-67 (1990).
[14] L. E. Toth, “Transition Metal Carbides and Nitrides”, Academic Press, New York and London (1971).
[15] T. I. Mah and M. G.. Mendiratta, “Fracture Toughness and Strenghth of Si3N4 - TiC Composites,” Ceram. Soc. Bull., 60(11) (1981).
[16] G. Hillinger and V. Hlavacek, “Direct Synthesis and Sintering of Silicon Nitride/Titanium Nitride Composite,” J. Am. Ceram. Soc., 78: 495-496 (1995).
[17] B. T. Lee, Y. J. Yoon and K. H. Lee, “Microstructural Characterization of Electroconductive Si3N4-TiN Composites,” Mater. Lett., 47: 71-76 (2001).
[18] A. Bellosi, S. Guicciardi and A. Tampieri, “Development and Characterization of Electroconductive Si3N4-TiN Composites,” J. Eur. Ceram. Soc., 9: 83-93 (1992).
[19] T. Hirai and S. Hayashi, “Density and Deposition Rate of Chemically Vapour-Deposited Si3N4-TiN Composites,” J. Mater. Sci., 18: 2401-2406 (1983).
[20] W. Lin and J. M. Yang, “Processing and Microstructural Development of In Situ TiN-Reinforced Silicon Nitride Silicon Oxynitride Composites,” J. Am. Ceram. Soc., 75(11): 2945-2952 (1992).
[21] Y. G. Gogotsi and F. Porz, “The Oxidation of Particulate-Reinforced Si3N4-TiN Composites,” Corrosion Science 33(4): 627-640 (1992).
[22] E. T. Tuurkdogan, P. M. Bills and V. A. Tiooett, “Silicon Nitride: Some Physico- Chemical Properties,” J. Appl. Chem., 8: 296-302 (1958).
[23] K. Matsuhiro and T. Takajashi, “Physical Properties of Sintered Silicon Nitride Controlled by Grain Boundary Chemical and Microstructure Morphology,” p.11-15, in proceeding of the MRS international meeting on advanced materials, edited by M. Doyama et.al., material research society, Pittsburgh, PA (1989).
[24] D. Hardie, and K. H. Jack, “Crystal Structure of Silicon Nitride,” Nature, 180: 332-333 (1957).
[25] Kenneth W. White, Feng Yu and Yi Fang, “In situ Reinforced Silicon Nitride – Barium Aluminosilicate Composite,” p.251-275, in Handbook of Ceramic Composites, edited by Narottam P. Bansal, Kluwer Academic Publishers, (2005).
[26] Masayoshi Ohashi, Shuzo Kanzaki and Hideyo Tabata, “Processing, Mechanical Properties, and Oxidation Behavior of Silicon Oxynitride Ceramics,” J. Am. Ceram. Soc. 74 (1): 109-14 (1991).
[27] Dörner, P., L. J. Gauckler, et al, “Calculation of Heterogeneous Phase Equilibria in the SiAlON System,” J. Mater. Sci. 16(4): 935-943 (1981).
[28] Cyrill Brosset and Ingvar Idrestedt, “Crystal Structure of Silicon Oxynitride, Si2N2O,” Nature, 4925: 1211 (1964).
[29] Wai-Yim Ching, “Electronic Structure and Bonding of All Crystalline Phases in the Silica–Yttria–Silicon Nitride Phase Equilibrium Diagram,” J. Am. Ceram. Soc., 87 (11): 1996–2013 (2004).
[30] R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites,” Ceram. Eng. Sci. Proc., 11 (7-8): 667-694 (1990).
[31] K. T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory,” Acta Metall., 31 (4): 565-79 (1983).
[32] B. Saruhan and G. Ziegler, “Processing of Silicon Nitride Matrix Composites with Various Reinforcing Components,” p.563-571 in Advanced Structural Inorganic Composites, edited by P. Vincenzini, Elsevier Science Publishers B.V., (1991).
[33] G. Wei and P. Becher, “Improvement in Mechanical in SiC by the Addition of TiC Particulate,” J. Am. Ceram. Soc., 67 (8): 571-591 (1984).
[34] R. A. Culter and A. V. Vikar, “The Effect of Binder Thickness and Residual Stress on the Fracture Toughness of Cemented Carbides,” J. Mater. Sci., 20: 3557-3573 (1985).
[35] M. Taya, S. Hayashi, A. S. Kobayashi, and H.S. Yoon, “Toughening of a Particulate Reinforced Ceramic-Matrix Composite by Thermal Residual Stress,” J. Am. Ceram. Soc., 73(5): 1382-1391 (1990).
[36] J. D. Eshelby, “The Determination of Elastic Fields of an Ellipsoidal Inclusion and Related Problems,” Proc. R. Soc. London., A241: 376-96 (1957).
[37] G. Leroy, J. D. Embury, G. Eduards and M. F. Ashby, “A Model of Ductile Fracture Based on The Nucleation and Growth of Voids,” Acta. Metall., 29: 1509-1522 (1981).
[38] C. Zener, “Grains, Phases, and Interfaces: An Interpretation of Microstructure,” Trans. Am. Inst. Min. Metall. Eng., 175: 15-51 (1948).
[39] N. J. Petch, “Cleavage Strength of Polycrystals,” J. Iron and Steel Inst.(London), 174 (1): 25-28 (1953).
[40] S.M. Choi and H. Awaji, “Nanocomposites-a New Material Design concept,” Sci. Tech. Adv. Mat., 6: 2 (2005).
[41] K. Niihara, “New Design Concept of Structural Ceramics-Ceramic Nanocomposite,” J. Ceram. Soc. Jpn., 99 (10): 974-82 (1991).
[42] L.C. Stearns, J. Zhao and M. P. Harmer, “Processing and Microstructure Development in Al2O3-SiC Nano Composites,” J. Euro.Ceram. Soc., 10: 473-477 (1992).
[43] J. A. Ayllón and A. Figueras, “Preparation of TiO2 Powder Using Titanium Tetraisopropoxide Decomposition in a Plasma Enhanced Chemical Vapor Deposition (PECVD) Reactor,” J. Mat. Sci. Let., 18(16): 1319-1321 (1999).
[44] E. J. Kim, and S. H. Hahn, “Microstructural Changes of Microemulsion-Mediated TiO2 Particles during Calcination,” Mat. Let., 49(3-4): 244-249 (2001).
[45] H. K. Park and D. K. Kim, “Effect of Solvent on Titania Particle Formation and Morphology in Thermal Hydrolysis of TiCl4,” J. Am. Ceram. Soc., 80(3): 743-749 (1997).
[46] E. Haro-Poniatowski, R. Rodriguez-Talavera, M.de la Cruz Heredia, O. Cano-Corona, and R. Arroyo-Murillo, Haroponiatowski, “Crystallization of Nanosized Titania Particles Prepared by the Sol-Gel Process,” J. Mat. Res., 9(8): 2102-2108 (1994).
[47] 王世敏、許祖勛、傅晶,納米材料製備技術,化學工業出版社,北京(2001)
[48] Li Y. Z, Fan Y, and Chen Y., “A Novel Method for Preparation of Nanocrystalline Rutile TiO2 Powders by Liquid Hydrolysis of TiCl4,” J. Mater. Chem., 12: 1387 – 1390 (2002).
[49] Negishi, N. and K. Takeuchi, “Preparation of TiO2 Thin Film Photocatalysts by Dip Coating Using a Highly Viscous Solvent,” Journal of Sol-Gel Science and Technology, 22(1): 23-31 (2001).
[50] Langlet and M., M. Burgos, “Low Temperature Preparation of High Refractive Index and Mechanically Resistant Sol-gel TiO2 Films for Multilayer Antireflective Coating Applications,” Journal of Sol-Gel Science and Technology, 22(1): 139-150 (2001).
[51] D. C. Hague and M. J. Mayo, “Controlling Crystallinity during Processing of Nanocrystalline Titania,” J. Am. Ceram. Soc., 77(7): 1957-1960 (1994).
[52] K. C. Song and S. E. Pratsinis, "Synthesis of Bimodally Porous Titania Powders by Hydrolysis of Titanium Tetraisopropoxide,” J. Mat. Res., 15(11): 2322-2329 (2000).
[53] J. Kim and K. Chang Song, “The Effect of Hydrolysis Temperature on Synthesis of Bimodally Nanostructured Porous Titania,” Journal of Nanoparticle Research, 2(4): 419-424 (2000).
[54] J. Kim, K. C. Song, et al., “Dopants for Synthesis of Stable Bimodally Porous Titania,” J. Eur. Ceram. Soc., 21(16): 2863-2872 (2001).
[55] K. C. Song and S. E. Pratsinis, “Control of Phase and Pore Structure of Titania Powders Using HCl and NH4OH Catalysts,” J. Am. Ceram. Soc., 84(1): 92-98 (2001).
[56] K. C. Song and S. E. Pratsinis, “The Effect of Alcohol Solvents on the Porosity and Phase Composition of Titania,” Journal of Colloid and Interface Science, 231(2): 289-298 (2000).
[57] S. Ito, S. Inoue, H. Kawada, M. Hara, M. Iwasaki and H. Tada, "Low-Temperature Synthesis of Nanometer-Sized Crystalline TiO2 Particles and Their Photoinduced Decomposition of Formic Acid,” Journal of Colloid and Interface Science, 216(1): 59-64 (1999).
[58]Y. G. Gogotsi, “Particulate Silicon Nitride-Based Composites,” J. Mater. Sci., 29(10): 2541-2556 (1994).
[59] K. Niihara and T. Hirai, Bull. Ceram. Soc. Jpn 21 (in Japanese), 26: 598-604 (1986).
[60] C. K. Narula, B. G. Demczyk, P. Czubrow and D. Seyferth, “Preparation of Silicon Nitride-Titanium Nitride and Titanium-Titanium Nitride Composites From (CH3)(3)Sinhticl3-Coated Si3N4 and Ti Particles,” J. Am. Ceram. Soc., 78(5): 1247-1251 (1995).
[61] S. Kawano and J. Takahashi, “Highly Electroconductive TiN/Si3N4 Composite Ceramics Fabricated by Spark Plasma Sintering of Si3N4 Particles with a Nano-Sized TiN Coating,” J. Mat. Chem., 12(2): 361-365(2002).
[62] S. Kawano and J. Takahashi, “Spark Plasma Sintering of Nano-Sized TiN Prepared from TiO2 by Controlled Hydrolysis of TiCl4 and Ti(O-i-C3H7)4 Solution,” J. Am. Ceram. Soc., 86(9): 1609-1611 (2003).
[63] S. Kawano and J. Takahashi, “The Preparation and Spark Plasma Sintering of Silicon Nitride-Based Materials Coated with Nano-Sized TiN,” J. Eur. Ceram. Soc. 24(2): 309-312 (2004).
[64]Lian Gao, “Multifunctional BN/Si3N4 and TiN/Si3N4 Nanocomposites Prepared by In Situ Nitridation Method,” Key Engineering Materials, 336-338: 2247-2250(2007).
[65]ASTM E855-81
[66] A. G. Evans and E. A. Carles, “Fracture Toughness Determinations by Indentation,” J. Am. Ceram. Soc., 59(7-8) 371-72 (1976).
[67] K. Terabe, K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, and Y. Iguchi, “Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide." J. Mat. Sci., 29(6): 1617-1622 (1994).
[68] O. Kubashewski, E. L. Evans and C. B. Alcock, “Metallurgical Thermochemistry,” Pergamon Press, London (1967).
[69] Zhang, G. Q. and O. Ostrovski, “Reduction of Titania by Methane-Hydrogen-Argon Gas Mixture,” Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 31(1): 129-139 (2000).
[70]K. Kamiya, T. Yoko and M Bessho, “Nitridation of TiO2 Fibres Prepared by the Sol-Gel Method,” J. Mat. Sci., 22(3): 937-941 (1987).
[71] T. Lopez, E. Sanchez, P. Bosch, Y. Meas, R. Gomez, T. Lopez and E. Sanchez, “FTIR and UV-Vis (diffuse reflectance) Spectroscopic Characterization of TiO2 Sol-Gel,” Materials Chemistry and Physics 32(2): 141-152 (1992).
[72]N. Wada, S. A. Solin , J. Wong and S. Prochazka, "Raman and IR Absorption Spectroscopic Studies on Alpha, Beta, and Amorphous Si3N4", Journal of Non-Crystalline Solids, 43(1) 7-15 (1981).
[73]S. Hirano, T. Yogo and K. Kikuta, "Processing of Functional Ceramics by Metallorganic Route,” J. Ceram. Soc. Jpn, 99(10) 1026-1035(1991).
[74] Bowen, L. J. and R. J. Weston, “Hot-pressing and the α-β Phase Transformation in Silicon Nitride,” J. Mater. Sci. 13(2): 341-350 (1978).
[75] I. M. Lifshitz and V. V. Slyozov, “The Kinetics of Precipitation from Supersaturated Solid Solutions,” J. Phys. Chem. Solids., (19):35-50 (1961).
[76] J. S. Vetrano, H. J. Kleebe, E. Hampp, M.J. Hoffmann and R.M. Cannon, “Nitride During Post-Sintering Heat Treatment,” J. Mater. Sci. Let., 11: 1249 (1992).
[77] R. G. Duan and G. Roebben, "Effect of TiX(X = C, N, O) Additives on Microstructure and Properties of Silicon Nitride Based Ceramics,” Scripta Materialia., 53(6): 669-673 (2005).
[78] C. M. Wang, H. Emoto and M. Mitomo, “Nucleation and Growth of Silicon Oxynitride Grains in a Fine-Grained Silicon Nitride Matrix,” J. Am. Ceram. Soc., (81): 1125–1132 (1998).
[79]R. G. Duan, G. Roebben, J. Vleugels and O. V. Biest, “In Situ Formation of Si2N2O and TiN in Si3N4-based Ceramic Composites,” Acta Materialia, 53(9) 2547-2554 (2005).
[80] M. B. Trigg and E. R. McCartney, “Comparison of the Reaction Systems ZrO2-Si3N4 and TiO2-Si3N4,” J. Am. Ceram. Soc. 64(11): C151-C152 (1981).
[81] G. Wotting, B. Kanka and G. Ziegler, “Microstructural Development, Microstructural Characterization and Relation to Mechanical Properties of Dense Silicon Nitride,” p.83-96 in Non-Oxide Technique and Engineering Ceramics, Edited by S.Hamphire, Elsevier Applied Sience, London (1986).
[82]G. Ziegler, J. Heinrich, and G. Wotting, “Review : Relationships Between Processing, Microstructure and Properties of Dense and Reaction Bonded Silicon Nitride,” J. Mater. Sci., 22: 3529 (1993).
[83]H. Emoto, Mitomo, Mamoru Wang, Chong-Min Hirosturu, Hideki Inaba, and Tohru, “Fabrication of Silicon Nitride-Silicon Oxynitride in-situ Composites,” J. Eur. Ceram. Soc., 18(5): 527-533 (1998).
[84] Dong-Soo Park, Hyun-Ju Choi and Byung-Dong Han, “Effect of Si2N2O Content on the Microstructure, Properties, and Erosion of Silicon Nitride-Si2N2O In-Situ Composites,” J. Mater. Res., 17(9) Sep: 2275-2280(2002)
[85] T. Rabe and R. Wasche, “Sintering Behaviour of Nanocrystalline Titanium Nitride Powders,” Nanostructured Materials, 6(1-4): 357-360 (1995).
[86] K. Ueno, T. Inoue, S. Sodeoka, M. Suzuki, H. Ishikawa and K. Uchiyama, “Si3N4-Matrix Composite with TiN Particles Formed by In-Situ Reaction,” J. Ceram. Soc. Jpn., 105: 304–307 (1997).
[87] T. Ekstrom, “SiAlON Composite Ceramics,” Key Engineering Materials, 89-91: 327-332 (1994).
[88] Shiro Shimada and Ken Kato, “Coating and spark plasma sintering of nano-sized TiN on Y-α-sialon,” Materials Science and Engineering A, 443: 47–53 (2007).