| 研究生: |
張威盛 Chang, Wei-Sheng |
|---|---|
| 論文名稱: |
改進的二維經驗模態分解法:以均值作法快速分解訊號 An Improved Bidimensional Empirical Mode Decomposition: A Mean Approach for Fast Decomposition |
| 指導教授: |
郭淑美
Guo, Shu-Mei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 資訊工程學系 Department of Computer Science and Information Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 經驗模態分解 、均值包絡 、提洛涅三角化 、卷積 |
| 外文關鍵詞: | Empirical mode decomposition, mean envelope, Delaunay triangulation, convolution |
| 相關次數: | 點閱:89 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出的快速二維經驗模態分解法,係結合均值濾波、快速卷積及基於提洛涅三角化方法之次序統計濾波器窗口決定法等三種演算法,對經驗模態分解法內的過篩程序自各層面達到加速效果。在包絡插補上,基於過去文獻之探討而提出改良的均值濾波器方法,直接插補出均值包絡,並針對線性卷積這項特性,以奇異值分解方式降低卷積運算的運行時間。文中提出的濾波器結合了次序統計濾波器,並以提洛涅三角化方法改進在決定濾波器窗口大小時,因需計算大量歐幾里德距離而產生的耗時問題。最後,實驗結果顯示此論文之方法較過去文獻更能快速地分解出高品質的本質模態函數。
In this thesis, a mean approach is proposed for the acceleration of the bidimensional empirical mode decomposition (BEMD). In the envelope generation process, the proposed method uses a modified mean filter to approximate the interpolated envelope of conventional BEMD, and utilizes a convolution algorithm based on singular value decomposition (SVD) to further reduce the computation time. Order statistics filter width determination, originally used in the fast and adaptive bidimensional empirical mode decomposition (FABEMD), is applied to adaptively formulate an envelope. Considering the computation efficiency, the proposed method improves the algorithm for calculating distances among extrema by using Delaunay triangulation (DT). The experimental results show that the mean approach can produce intrinsic mode functions faster than FABEMD , while retaining acceptable quality.
[1] Bhuiyan, S. M., N. O. Attoh-Okine, K. E. Barner, A. Y. Ayenu-Prah, and R. R. Adhami, “Bidimensional empirical mode decomposition using various interpolation techniques,” Advances in Adaptive Data Analysis, vol. 1, pp. 309-338, 2009.
[2] Bhuiyan, S. M. A., R. R. Adhami, and J. F. Khan, “Fast and adaptive bidimensional empirical mode decomposition using order-statistics filter based envelope estimation,” The European Association for Signal Processing (EURASIP) Journal on Advances in Signal Processing, vol. 2008, no. 3, Article ID 728356, pp. 1–18, Jan. 2008.
[3] Blakely, C. D., “A fast empirical mode decomposition technique for nonstationary nonlinear time series,” Preprint submitted to Elsevier Science, vol. 3, 2005.
[4] Damerval, C., S. Meignen, and V. Perrier, “A fast algorithm for bidimensional EMD,” Signal Processing Letters, IEEE, vol. 12, pp. 701-704, 2005.
[5] Gonzalez, R. C. and R. E. Woods, Digital Image Processing. Boston, MA, USA: Pearson/Prentice Hall, 2008.
[6] Huang, B. and A. Kunoth, “An Optimization Based Empirical Mode Decomposition Scheme for Images,” Journal of Computational and Applied Mathematics, vol. 240, pp. 174-183, 2012.
[7] Huang, N. E., Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, et al., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 454, no. 1971, pp. 903-995, 1998.
[8] Kim, D., M. Park, and H.S. Oh, “Bidimensional statistical empirical mode decomposition,” Signal Processing Letters, IEEE, vol. 19, pp. 191-194, 2012.
[9] Linderhed, A., “2D empirical mode decompositions in the spirit of image compression,” Society of Photographic Instrumentation Engineers (SPIE) AeroSense 2002, Orlando, Florida, pp. 1-8, 2002.
[10] Niang, O., É. Deléchelle, and J. Lemoine, “A spectral approach for sifting process in empirical mode decomposition,” IEEE Transactions on Signal Processing, vol. 58, pp. 5612-5623, 2010.
[11] Niang, O., A. Thioune, E. Delechelle, and J. Lemoine, “Spectral intrinsic decomposition method for adaptive signal representation,” International Scholarly Research Network (ISRN) Signal Processing, vol. 2012, Article ID 457152, 10 pages, 2012.
[12] Niang, O., A. Thioune, M. C. E. Gueirea, E. Deléchelle, and J. Lemoine, “Partial differential equation-based approach for empirical mode decomposition: application on image analysis,” IEEE Transactions on Image Processing, vol. 21, pp. 3991-4001, 2012.
[13] Nunes, J. C., Y. Bouaoune, E. Delechelle, O. Niang, and P. Bunel, “Image analysis by bidimensional empirical mode decomposition,” Image and Vision Computing, vol. 21, no. 12, pp. 1019-1026, 2003.
[14] Nunes, J. C., S. Guyot, and E. Deléchelle, “Texture analysis based on local analysis of the bidimensional empirical mode decomposition,” Machine Vision and Applications, vol. 16, pp. 177-188, 2005.
[15] Pan, J. and Y. Tang, “Extremum mean empirical mode decomposition,” Image and Signal Processing (CISP), 2012 5th International Congress on, pp. 1556-1561, 2012.
[16] Rilling, G., P. Flandrin, and P. Gonçalvés, “On empirical mode decomposition and its algorithms,” Preceedings of IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, pp. 8-11, June 2003.
[17] Wu, Z. and N. E. Huang, “Ensemble empirical mode decomposition: a noise-assisted data analysis method,” Advances in Adaptive Data Analysis, vol. 1, pp. 1-41, 2009.
[18] Wu, Z., N. E. Huang, and X. CHEN, “The multi-dimensional ensemble empirical mode decomposition method,” Advances in Adaptive Data Analysis, vol. 1, pp. 339-372, 2009.
[19] Yeh, M. H., “The complex bidimensional empirical mode decomposition,” Signal Processing, vol. 92, pp. 523-541, 2012.
[20] Young, D. (2011). Fast 2-D convolution. Available: http://www.mathworks.com/matlabcentral/fileexchange/22619-fast-2-d-convolution