簡易檢索 / 詳目顯示

研究生: 游銘永
Yu, Ming-Yung
論文名稱: 利用原子層沉積系統成長之氧化鋁介電層及其應用於電阻式隨機存取記憶體
Resistive Random Access Memory with ALD Aluminum Oxide Dielectric Layer
指導教授: 曾永華
Tzeng, Yon-Hua
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 77
中文關鍵詞: 電阻式隨機存取記憶體氧化鋁原子層沉積
外文關鍵詞: Resistive Random Access Memory, Aluminum oxide, Atomic Layer Deposition
相關次數: 點閱:101下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中, 我們成功地利用原子層沉積系統(ALD)成長之氧化鋁薄膜作為介電層(Insulator)應用於非揮發性電阻式記憶體(RRAM)中,在鍍製氧化鋁薄膜時採用TMA(Trimethylaluminum)作為鋁的前驅物(precursor)及H2O作為反應時的氧化劑來提供氧原子來反應,接著分別以鈦金屬以及鉑金屬分別作為上、下電極,其結構為鉑-氧化鋁薄膜-鈦三層結構。藉由外部提供電場,使得記憶體可在高阻態、低阻態間來回切換,其高阻態、低阻態的電流值可經由一個較小的讀取電壓得知。
    本論文中所製作之氧化鋁薄膜記憶體具有相當大的開關電流比值(on/off ratio>103),在高阻態、低阻態之電流值分別都可以保持長時間的穩定性(retention>104秒),並且有超過10次以上的開關切換次數。一般電阻式記憶體的開關特性可以用燈絲傳導機制(Filamentary conduction theory)來解釋,當絕緣層與金屬電極為歐姆接觸時,一般在其高阻態、低阻態之導通機制分別為空間電荷侷限電流(Space charge limit current)理論及歐姆定律。
    氧化鋁為high k材料,擁有高介電常數(k=10),大的電子能隙(9 eV),高崩潰電場(5-10 MV cm-1)以及良好的熱和化學穩定性等等。因此,在氧化鋁薄膜中,當氧離子藉由外部電場的影響而遷移到上電極,其所留下的氧空缺(oxygen vacancy)形成之燈絲導通路徑可作為電子的穩定傳導路線,所以氧化鋁及許多其他二元金屬氧化物薄膜很適合作為電阻式記憶體之介電層。

    In this thesis, aluminum oxide thin film, deposited by an atomic layer deposition (ALD) system, is utilized as the dielectric film for the fabrication of resistive random access memory (RRAM) with a titanium (Ti) layer as the top electrodes and platinum (Pt) as the bottom electrodes. The RRAM with a metal-insulator-metal (MIM) structure of Ti/Al2O3/Pt is switched between the high resistance state (HRS; OFF state) and its low resistance state (LRS; ON state) by the external electrical stimulation. The HRS or LRS are probed by applying a low applied voltage across two counter electrodes and measuring its conduction current.
    It is observed that the Ti/Al2O3/Pt structure shows good ON/OFF conduction current ratio >103 with measured, retention time >104 s and switching cycles >10 times. The trap-controlled space charge limit current (SCLC) might have dominated the conduction current of the HRS while the conduction current of the LRS might be dominated by the Ohmic conduction.
    Al2O3 is known as a high-k material, with a dielectric constant k=10, a large energy band gap (9 eV), high breakdown strength (5-10 MV cm-1) and has good thermal and chemical stability. When oxygen ions migrate to the top electrode by external electrical stimulation, the conductive filamentary channel composed of oxygen vacancy is stable in the Al2O3 thin film. Therefore, Al2O3 and some other binary metal oxide thin films are suitable dielectric materials for RRAM.

    目錄 摘要 1 Abstract 2 誌謝 6 目錄 7 圖目錄 10 表目錄 13 第一章 緒論 14 1.1前言 14 第二章 文獻回顧 17 2.1氧化鋁薄膜介紹 17 2.1.1 氧化鋁簡介 17 2.2.1 物理氣相沉積法 20 2.2.2 化學氣相沉積法 21 2.3 新型非揮發性記憶體介紹 25 2.3.1 相變化記憶體(PCRAM) 25 2.3.2 鐵電記憶體(FeRAM) 27 2.3.3 磁阻式記憶體(MRAM) 29 2.3.4 電阻式記憶體(RRAM) 31 2.4電阻式記憶體材料與結構 33 2.5電阻轉換特性與機制介紹 33 2.5.1燈絲理論(filament theory) 34 2.5.2界面操作(interface-type-path) 37 2.5.3氧化還原反應機制(Redox reaction mechanism) 37 2.6介電層導電機制 39 2.6.1穿隧(Tunneling) 39 2.6.2蕭特基發射(Schottky emission) 39 2.6.3普爾-夫倫克爾發射(Poole-Frenkel emission) 40 2.6.4歐姆傳導(Ohmic conduction) 40 2.6.5空間電荷限制電流(space-charge-limited current) 40 第三章 實驗儀器介紹 42 3.1 原子層沉積系統(Atomic Layer Deposition System) 42 3.2 射頻濺射系統(Radio Frequency Sputtering System) 42 3.3 熱蒸鍍機(Thermal evaporator) 43 3.4 拉曼光譜儀系統(Raman Spectroscope System) 44 3.5 原子力顯微鏡(Atomic Force Microscope, AFM) 44 3.6 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 45 第四章 實驗流程與結果討論 46 4.1 基板清洗 46 4.2 下電極的製作 47 4.3 ALD成長氧化鋁薄膜 50 4.4 上電極的製作 56 4.5 氧化鋁薄膜分析 58 4.5.1 表面形貌分析 59 4.5.2 EDS元素分析 60 4.5.3 介電常數 61 4.6 氧化鋁薄膜應用於電阻式隨機存取記憶體 62 4.7 氧化鋁電阻式記憶體的電性 63 4.7.1 氧化鋁電阻式記憶體的電壓-電流曲線圖 63 4.7.2 氧化鋁電阻式記憶體的維持時間 65 4.7.3 氧化鋁電阻式記憶體的耐久度 66 4.8 氧化鋁電阻式記憶體加入石墨烯的電性 67 4.9 氧化鋁電阻式記憶體加入氟化石墨烯的電性 69 第五章 結論與未來展望 72 參考文獻 74

    [1] W. W. Zhuang, et al. “ Novel colossal magnetoresistive thin film nonvolatile resistance random access memory (RRAM)” in IEDM Tech. Dig.,193-196, 2002
    [2] K. Kim, et al. “the future prospect of nonvolatile memory” VLSI-TSA-Tech., 2005
    [3] Pinggang Peng, et al. “Resistive switching behavior in diamond-like carbon films grown by pulsed laser deposition for resistance switching random access memory application,” J. Appl. Phys. 111,084501, 2012
    [4] H. Tain, et al. “Monitoring Oxygen Movement by Raman Spectroscopy of Resistive Random Access Memory with a Graphene-Inserted Electrode” Nano Lett. 13, 651−657, 2013
    [5] http://web.it.nctu.edu.tw/~FMPANLAB/ALD.htm
    [6] Miche Houssa, “High-k Gate Dielectrics” Institute of Physics Publishing, 2004
    [7] Stefan Lai, et al. “OUM- a- 180 nm Nonvolatile Memory Cell Element Technology for Stand Alone and Embedded Application” IEDM Tech. Dig., 803-806, 2001
    [8] Andrea L, et al. “Phase Change Memories” phys. stat. sol. (a) 205, No. 10, 2281–2297, 2008
    [9] H. S. Philip Wong, et al. “Phase Change Memory”, Proceedings of the IEEE, Vol. 98, No. 12, 2010
    [10] D. Wu, et al. “Spatial variations in local switching parameters of ferroelectric random access memory capacitors” Appl. Phys. Lett. 95, 092901, 2009
    [11] Takashi Nakamura, et al. “Fabrication Technology of Ferroelectric Memories” Jpn. J. Appl. Phys. 37, 1325-1327, 1998
    [12] J. Slaughter, et al. “High Speed Toggle MRAM with MgO-Based Tunnel Junctions,” In IEDM Tech. Dig., Washington, D.C., 2005
    [13] J. G. Zhu, et al. “Magnetic tunnel junctions” Materialstoday, Vol. 9, No. 11, 2006
    [14] Rainer Waser, et al. “Redox-Based Resistive Switching Memories–Nanoionic Mechanisms, Prospects, and Challenges”, Adv. Mater., 21, 2632–2663, 2009
    [15] D, Lee, et al. “Resistance switching of copper doped MoOx films for nonvolatile memory applications” Appl. Phys. Lett. 90, 122104, 2007
    [16] http://ae.ctu.edu.tw/ezfiles/24/1024/img/439/990420.pdf
    [17] Y. M. Ching, D. Birnie III ,W. D. Kingery,“Physical Ceramic : Principles for Ceramic Science and Engineering”, John Wiley & Sons, Inc, New York, 1997
    [18] P. Vitanov, A. Harizanova, T. Ivanova, T. Ivanova, “Chemical Deposition of Al2O3 Thin Films on Si Substrates”, Thin Solid Films, 517, 6327-6330, 2009
    [19] I. Piwoński, K. Soliwoda, “The Effect of Ceramic Nanoparticles on Tribological Properties of Alumina Sol-Gel Thin Coatings”, Ceramics International, 36, 47-54, 2010
    [20] F.Fietzke, et al. “The deposition of hard crystalline Al2O3 layers by means of bipolar pulsed magnetron sputtering”, Surface and Coatings Tech. , vol. 86-87, pp. 657-663, 1996
    [21] B. Chen, D. Yang, P.A. Charpentier, S. Nikumb, “Optical and Structural Properties of Pulsed Laser Deposited Ti: Al2O3 Thin Films”, Solar Energy Materials and Solar Cells, 92, 1025-1029, 2008
    [22] T. Ishizaka, Y. Kurokawa, T. Makino, Y. Segawa, ”Optical Properties of Rare Earth Ion (Nd3+, Er3+ and Tb3+)-Doped Alumina Films Prepared by the Sol-Gel Method”, Optical Materials, 15, 293-299, 2001
    [23] M. Lebedev, S. Krumdieck, “Optically Transparent, Dense α-Al2O3 Thick Films Deposited on Glass at Room Temperature”, Current Applied Physics, 8233-236, 2008.
    [24] P. Vitanov, A. Harizanova, T. Ivanova, T. Ivanova, “Chemical Deposition of Al2O3 Thin Films on Si Substrates”, Thin Solid Films, 517, 6327-6330, 2009
    [25] I. Piwoński, K. Soliwoda, “The Effect of Ceramic Nanoparticles on Tribological Properties of Alumina Sol-Gel Thin Coatings”, Ceramics International, 36, 47-54, 2010
    [26] R. Cueff, G. Baud, M. Benmalek, J.P. Besse, J.R. Butruille, H.M. Dunlop, M.J acquet, “Characterization and adhesion study of thin alumina coatings sputtered on PET”, Thin Solid Films, vol. 270, pp. 230-236, 1995
    [27] US Patent 6352627, ”Method and Device for PVD Coating”, Cemecon-ceramic, Metal Coatings (DE), 2002
    [28] D. M. Mattox, “Handbook of Physical Vapor Deposition (PVD) Processing”, William Andrew Inc., P. 1-10, 1998
    [29] A. C. Jones, M. L. Hitchman, “Chemical Vapour Deposition: Precursors Processes and Applications”, Royal Society of Chemistry, P. 1-36, 2009
    [30] US Patent 6472014 B1, “Uniform Surface Texturing for PVD/CVD Hardware”, Novellus Systems, Inc. (San Jose, CA), 2002
    [31] A. Sawa, et al. “Hysteretic current-voltage-characteristics and resistance switching at a rectifying Ti/Pr07Ca03MnO3 interface”, Appl. Phys. Lett. 85, pp.4073, 2004
    [32] T. Fujii, et al. “Hysteretic current-voltage-characteristics and resistance switching at an epitaxial oxide Schottky junction SrRuO3/SrTi99Nb001O3” , Appl. Phys. Lett. 86, pp.012107, 2005
    [33] J. K. Lee, et al. “Extraction of trap location and energy from random telegraph noise in amorphous TiOx resistance random access memories”, Appl. Phys. Lett. 98, pp.143502, 2010
    [34] A. Sawa, et al. “Resistive switching in transition metal oxides”, Materialstoday 11 pp.28, 2008
    [35] U. Russo, et al. “Self-Accelerated Thermal Dissolution Model for Reset Programming in Unipolar Resistive-Switching Memory(RRAM) Devices”, IEEE Transactions On Electron Devices. Vol. 56, (2), pp.193, 2009
    [36] A. Beck, et al. “Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett. 139, pp.77, 2000
    [37] K. Terabe, et al. “Quantized conductance atomic switch”, Nature 433, pp.47, 2005
    [38] Rainer Waser, et al. “Resistive non-volatile memory devices”, Microelectronic Engineering 86, pp.1925-1928, 2009
    [39] J, Yoon, et al. “Analysis of copper ion filaments and retention of dual-layered devices for resistance random access memory applications”, Microelectronic Engineering 86, pp.1929-1932, 2009
    [40] H, Choi, et al. “Nanoscale Resistive Switching of a Copper-Carbon-Mixed Layer for Nonvolatile Memory Applications”, IEEE Electron Device Letters, Vol. 30 (3), pp.302-304, 2009
    [41] S. Basu, et al. “Liquid-Phase Deposition of Al2O3 Thin Films on GaN”, Journal of The Electrochemical Society, 154 (12) , H1041-H1046 , 2007
    [42] H. S. Philip Wong, et al. “Metal-Oxide RRAM”, Proceedings of the IEEE, Vol. 100, No. 6, 2012
    [43] Yi Wu, et al. “Al2O3-Based RRAM Using Atomic Layer Deposition (ALD) With 1-μA RESET Current”, IEEE ELECTRON DEVICE LETTERS, VOL. 31, NO. 12, 2010
    [44] C. Y. Huang, et al. “Improved Resistive Switching Characteristics by Al2O3 Layers Inclusion in HfO2-Based RRAM Devices”, Solid State Letters, 2 (8) P63-P65 ,2013
    [45] J. Song, et al. “Effects of Ultrathin Al Layer Insertion on Resistive Switching Performance in an Amorphous Aluminum Oxide Resistive Memory”, Appl. Phys. Express 3, 091101,2010

    無法下載圖示 校內:2020-08-31公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE