| 研究生: |
姚思羽 Yao, Ssu-Yu |
|---|---|
| 論文名稱: |
溶液熱法合成氮化碳薄膜及其相關性質應用 Study of Carbon Nitride Films Fabricated using Solvothermal Synthesis |
| 指導教授: |
張高碩
Chang, Kao-Shuo |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 氮化碳 、溶液熱法 、光催化 、光電化學 、複合材料 、螢光傳感器 |
| 外文關鍵詞: | C3N4, solvothermal process, photocatalyst, photoelectrochemical reaction, melon/rGO composite, Cu2+ sensing |
| 相關次數: | 點閱:84 下載:7 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
氮化碳是一種聚合物材料,因其半導體能帶結構和優異的物理化學穩定性質近年來被廣泛在光催化等領域。目前文獻研究大多以氮化碳粉末為主,而為了能更進一步探討其光電化學等應用,氮化碳薄膜的製備在近期開始獲得更多的關注。
本研究以溶液熱法成功製備氮化碳於FTO基板上。實驗中利用KOH/NaCl和LiCl/KCl作為複合劑進行形貌調控,透過XRD、FTIR、SEM和XPS進行材料結構與形貌的鑑定。
本文利用光降解亞甲基藍與羅丹明B來探討可見光下的光催化效能,並且另製備氮化碳與氧化還原石墨烯的複合材料進一步增強光催化效能。另外,透過光電化學分析可得知氮化碳薄膜在可見光下的光電流密度與光電轉換效率。再利用UV-vis和UPS量測可推斷得知能帶結構,其 Ec 和 Ev 橫跨氫氣、氧氣及超氧自由基的氧化還原電位,且用PL量測了解電子電洞對的再結合率。此外,本研究也利用螢光強度的變化來探討氮化碳薄膜對銅離子溶液的濃度偵測。
A polymeric semiconductor of carbon nitride (C3N4) has been regarded as a promising photocatalytic material because of its certain range of visible-light absorption, suitable band structure, and excellent stability. Most of the studies in the literature have been emphasized powder-based C3N4, which is not ideal for the applications of photodegradation, photoelectrochemical (PEC), and ion sensing measurements. The practical applications of C3N4 films and devices are still in the early stages of development due to challenging fabrication methods.
In this study, a low temperature solvothermal process was developed to synthesize various morphologies of C3N4 films on a fluorine-doped tin oxide (FTO) substrate. XRD, FTIR, and XPS were employed to analyze the structure and chemical composition of the C3N4 films. Furthermore, SEM was used to study the morphology variation.
Photocatalytic performance of various melon films and melon/ reduced graphene oxide (rGO) were investigated through photodegradation of Methylene Blue (MB) and Rhodamine B (RhB) and PEC reactions. The sample of melon with KOH/NaCl exhibited superior photodegradation and PEC performances under visible light illumination; however, no substantial performances were observed. The composite sample of melon/rGO exhibited substantially enhanced photodegradation and PEC activities. UV-vis and UPS results were used to deduce the band structures of melon films without any complex agents and with KOH/NaCl. The recombination of electron-hole pairs was also analyzed by PL. The energy band and PL results consistently interpreted the photodegradation and PEC reactions. Moreover, the feasibility of Cu2+ detection using melon films was also studied.
[1] X. Chen, Y. Jun, K. Takanabe, and K. Maeda, “Ordered Mesoporous SBA-15 Type Graphitic Carbon Nitride: A Semiconductor Host Structure for Photocatalytic Hydrogen Evolution with Visible Light,” Chem. Mater. 21, 4093 (2009).
[2] A. Fujishima, and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature 238, 37 (1972).
[3] Y.-C. Nie, H. Idriss, and M. A. Nadeem, “Photocatalytic degradation of organic pollutants coupled with simultaneous photocatalytic H2 evolution over graphene quantum dots/Mn-N-TiO2 /g-C3N4 composite catalysts: Performance and mechanism,” Appl. Catal. B Environ. 227, 312 (2018).
[4] G. Peng, M. Volokh, J. Tzadikov, J. Sun, and M. Shalom, “Carbon Nitride/Reduced Graphene Oxide Film with Enhanced Electron Diffusion Length: An Efficient Photo-Electrochemical Cell for Hydrogen Generation,” Adv. Energy Mater. 8, 1800566 (2018).
[5] S. Bai, J. Jiang, Q. Zhang, and Y. Xiong, “Steering charge kinetics in photocatalysis: intersection of materials syntheses, characterization techniques and theoretical simulations,” Chem. Soc. Rev. 44, 2893 (2015).
[6] R. Marschall, “Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity,” Adv. Funct. Mater. l, 2440 (2014).
[7] A. Ajmal, I. Majeed, R. N. Malik, H. Idriss, and M. A. Nadeem, “Principles and mechanisms of photocatalytic dye degradation on TiO2 based photocatalysts: a comparative overview,” RSC Adv. 4, 37003 (2014).
[8] Z. Chen, H. N. Dinh, and E. Miller, Photoelectrochemical Water Splitting: Standards, Experimental Methods, and Protocols (2013).
[9] K. Maeda and K. Domen, “Photocatalytic water splitting: Recent progress and future challenges,” J. Phys. Chem. Lett. 1, 2655 (2010).
[10] L. Wang, Y. Zhang, L. Chen, H. Xu, and Y. Xiong, “2D Polymers as Emerging Materials for Photocatalytic Overall Water Splitting,” Adv. Mater. 30, 1 (2018).
[11] L. Wang, Y. Tong, J. Feng, J. Hou, J. Li, X. Hou, and J. Liang, “G-C3N4-based films: A rising star for photoelectrochemical water splitting,” Sustain. Mater. Technol. 19, 89 (2019).
[12] T. Bak, J. Nowotny, M. Rekas, and C. Sorrell, “Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects,” Int. J. Hydrogen Energy 27, 991 (2002).
[13] J. Zhu and M. Zäch, “Nanostructured materials for photocatalytic hydrogen production,” Curr. Opin. Colloid Interface Sci. 14, 260 (2009).
[14] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G. I. N. Waterhouse, L. Wu, C. Tung, and T. Zhang, “Alkali-Assisted Synthesis of Nitrogen Deficient Graphitic Carbon Nitride with Tunable Band Structures for Efficient Visible-Light-Driven Hydrogen Evolution,” Adv. Mater. 29, 1605148 (2017).
[15] S. Na Phattalung, S. Limpijumnong, and J. Yu, “Passivated co-doping approach to bandgap narrowing of titanium dioxide with enhanced photocatalytic activity,” Appl. Catal. B Environ. 200, 1 (2017).
[16] J. Nowotny, M. A. Alim, T. Bak, M. A. Idris, M. Ionescu, K. Prince, M. Z. Sahdan, K Sopian, M. A. M. Teridi, and W. Sigmund, “Defect chemistry and defect engineering of TiO2-based semiconductors for solar energy conversion,” Chem. Soc. Rev. 44, 8424 (2015).
[17] Z. Wan, G. Zhang, X. Wu, and S. Yin, “Novel visible-light-driven Z-scheme Bi12GeO20/g-C3N4 photocatalyst: Oxygen-induced pathway of organic pollutants degradation and proton assisted electron transfer mechanism of Cr(VI) reduction,” Appl. Catal. B Environ. 207, 17 (2017).
[18] X. Dong and F. Cheng, “Recent development in exfoliated two-dimensional g-C3N4 nanosheets for photocatalytic applications,” J. Mater. Chem. A 3, 23642 (2015).
[19] S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P. M. Ajayan, “Exfoliated Graphitic Carbon Nitride Nanosheets as Efficient Catalysts for Hydrogen Evolution Under Visible Light,” Adv. Mater. 25, 2452 (2013).
[20] Q. Lin, L. Li, S. Liang, M. Liu, J. Bi, and L. Wu, “Efficient synthesis of monolayer carbon nitride 2D nanosheet with tunable concentration and enhanced visible-light photocatalytic activities,” Appl. Catal. B Environ. 163, 135 (2015).
[21] M. Tahir, C. Cao, N. Mahmood, F. K. Butt, A. Mashmood, F. Idrees, S. Hussain, M. Tanveer, Z. Ali, and I. Aslam, “Multifunctional g-C3N4 Nanofibers: A Template-Free Fabrication and Enhanced Optical, Electrochemical, and Photocatalyst Properties,” ACS Appl. Mater. Interfaces 6, 1258 (2014).
[22] X. Bai, L. Wang, R. Zong, and Y. Zhu, “Photocatalytic Activity Enhanced via g-C3N4 Nanoplates to Nanorods,” J. Phys. Chem. C 117, 9952 (2013).
[23] J. Fu, B. Zhu, C. Jiang, B. Cheng, W. You, and J. Yu, “Hierarchical Porous O-Doped g-C3N4 with Enhanced Photocatalytic CO2 Reduction Activity,” Small 1, 1603938 (2017).
[24] H. Tang, S. Chang, K. Wu, G. Tang, Y. Fu, Q. Liu, and X. Yang, “Band gap and morphology engineering of TiO2 by silica and fluorine co-doping for efficient ultraviolet and visible photocatalysis,” RSC Adv. 6, 63117 (2016).
[25] S. Chen, Y. Hu, S. Meng, and X. Fu, “Study on the separation mechanisms of photogenerated electrons and holes for composite photocatalysts g-C3N4-WO3,” Appl. Catal. B Environ. 150, 564 (2014).
[26] C. Pu, J. Wan, E. Liu, Y. Yin, J. Li, Y. Ma, J. Fan, and X. Hu, “Two-dimensional porous architecture of protonated GCN and reduced graphene oxide via electrostatic self-assembly strategy for high photocatalytic hydrogen evolution under visible light,” Appl. Surf. Sci. 399, 139 (2017).
[27] X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, “A metal-free polymeric photocatalyst for hydrogen production from water under visible light,” Nat. Mater. 8, 76 (2009).
[28] Y. Cui, Z. Ding, P. Liu, M. Antonietti, X. Fu, and X. Wang, “Metal-free activation of H2O2 by g-C3N4 under visible light irradiation for the degradation of organic pollutants,” Phys. Chem. Chem. Phys. 14, 1455 (2012).
[29] S. Yang, X. Feng, X. Wang, and K. Müllen, “Graphene-Based Carbon Nitride Nanosheets as Efficient Metal-Free Electrocatalysts for Oxygen Reduction Reactions,” Angew. Chemie Int. Ed. 50, 5339 (2011).
[30] X. She, H. Xu, Y. Xu, J. Yan, J, Xia, L. Xu, Y. Song, Y. Jiang, Q. Zhang, and H. Li, “Exfoliated graphene-like carbon nitride in organic solvents: enhanced photocatalytic activity and highly selective and sensitive sensor for the detection of trace amounts of Cu2+,” J. Mater. Chem. A 2, 2563 (2014).
[31] Z. Zhou, Y. Zhang, Y. Shen, S. Liu, and Y. Zhang, “Molecular engineering of polymeric carbon nitride: advancing applications from photocatalysis to biosensing and more,” Chem. Soc. Rev. 47, 2298 (2018).
[32] J. Liebig, “Uber einige Stickstoff—Verbindungen,” Ann. der Pharm.10, 1 (1834).
[33] E. C. Franklin, “THE AMMONO CARBONIC ACIDS,” J. Am. Chem. Soc. 44, 486 (1922).
[34] L. Pauling and J. H. Sturdivant, “The Structure of Cyameluric Acid, Hydromelonic Acid and Related Substances,” Proc. Natl. Acad. Sci. 23, 615 (1937).
[35] C. E. Redemann and H. J. Lucas, “Some Derivatives of Cyameluric Acid and Probable Structures of Melam, Melem and Melon,” J. Am. Chem. Soc. 62, 842 (1940).
[36] R. S. Hosmane, M. A. Rossman, and N. J. Leonard, “Synthesis and structure of tri-s-triazine,” J. Am. Chem. Soc. 104, 5497 (1982).
[37] D. M. Teter, and R. J. Hemley, “Low-Compressibility Carbon Nitrides,” Science 271, 53 (1996).
[38] E. Kroke, P. Kroll, B. Noll, E. Horath-Bordon, A. D. Norman, and M. Schwarz, “Tri-s-triazine derivatives. Part I. From trichloro-tri-s-triazine to graphitic C3N4 structuresPart II: Alkalicyamelurates M3[C6N7O3], M = Li, Na, K, Rb, Cs, manuscript in preparation,” New J. Chem. 26, 508 (2002).
[39] B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller, and W. Schnick, “Melem (2,5,8-Triamino-tri-s-triazine), an Important Intermediate during Condensation of Melamine Rings to Graphitic Carbon Nitride: Synthesis, Structure Determination by X-ray Powder Diffractometry, Solid-State NMR, and Theoretical Studies,” J. Am. Chem. Soc. 125, 10288 (2003).
[40] W.-J. Ong, L.-L. Tan, Y. H. Ng, S.-T. Yong, and S.-P. Chai, “Graphitic Carbon Nitride (g-C3N4)-Based Photocatalysts for Artificial Photosynthesis and Environmental Remediation: Are We a Step Closer To Achieving Sustainability?,” Chem. Rev. 116, 7159 (2016).
[41] B. V. Lotsch, M. Doblinger, J. Sehnert, L. Seyfarth, J. Senker, O. Oeckler, and W. Schnick, “Unmasking Melon by a Complementary Approach Employing Electron Diffraction, Solid-State NMR Spectroscopy, and Theoretical Calculations—Structural Characterization of a Carbon Nitride Polymer,” Chem. - A Eur. J. 13, 4969 (2007).
[42] T. Tyborski, C. Merschjann, S. Orthmann, F. Yang, M.-C. Lux-Steiner, and T. Schedel-Niedrig, “Crystal structure of polymeric carbon nitride and the determination of its process-temperature-induced modifications,” J. Phys. Condens. Matter 25, 395402 (2013).
[43] F. K. Kessler, Y. Zheng, D. Schwarz, C. Merschjann, W Schnick, X. Wang, and M. J. Bojdys, “Functional carbon nitride materials — design strategies for electrochemical devices,” Nat. Rev. Mater. 2, 17030 (2017).
[44] V. W. H. Lau, M. B. Mesch, V. Duppel, V. Blum, J. Senker, and B. V. Lotsch, “Low-molecular-weight carbon nitrides for solar hydrogen evolution,” J. Am. Chem. Soc. 137, 1064 (2015).
[45] G. Algara-Siller, N. Severin, S. Y. Chong, T. Bjorkman, R. G. Palgrave, A. Laybourn, M. Antonietti, Y. Z. Khimyak, A. V. Krasheninnikov, J. P. Rabe, U. Kaiser, A. I. Cooper, A. Thomas, and M. J. Bojdys, “Triazine-Based Graphitic Carbon Nitride: a Two-Dimensional Semiconductor,” Angew. Chemie Int. Ed. 53, 7450 (2014).
[46] J. Senker, E. Wirnhier, W. Schnick, B. V. Lotsch, D. Gunzelmann, and M. Döblinger, “Poly(triazine imide) with Intercalation of Lithium and Chloride Ions [(C3N3)2(NHxLi1−x)3⋅LiCl]: A Crystalline 2D Carbon Nitride Network,” Chem. Eur. J. 17, 3213 (2011).
[47] M. Döblinger, B. V. Lotsch, J. Wack, J. Thun, J. Senker, and W. Schnick, “Structure elucidation of polyheptazine imide by electron diffraction—a templated 2D carbon nitride network,” Chem. Commun. 12, 1541 (2009).
[48] C.-Y. Hsu and K.-S. Chang, “Fabrication and Photocatalytic Application of Aromatic Ring Functionalized Melem Oligomers,” J. Phys. Chem. C 122, 3506 (2018).
[49] K. Schwinghammer, M. B. Mesch, V. Duppel, C. Ziegler, J. Senker, and B. V. Lotsch, “Crystalline Carbon Nitride Nanosheets for Improved Visible-Light Hydrogen Evolution,” J. Am. Chem. Soc. 136, 1730 (2014).
[50] V. W. Lau, I. Moudrakovski, T. Botari, S. Weinberger, M. B. Mesch, V. Duppel, J. Senker, V. Blum, and B. V. Lotsch, “Rational design of carbon nitride photocatalysts by identification of cyanamide defects as catalytically relevant sites,” Nat. Commun. 7, 12165 (2016).
[51] S. Cao, J. Low, J. Yu, and M. Jaroniec, “Polymeric Photocatalysts Based on Graphitic Carbon Nitride,” Adv. Mater. 27, 2150 (2015).
[52] G. Zhang, J. Zhang, M. Zhang, and X. Wang, “Polycondensation of thiourea into carbon nitride semiconductors as visible light photocatalysts,” J. Mater. Chem. 22, 8083 (2012).
[53] J. Liu, H. Wang, and M. Antonietti, “Graphitic carbon nitride ‘reloaded’: emerging applications beyond (photo)catalysis,” Chem. Soc. Rev. 45, 2308 (2016).
[54] Y. S. Jun, E. Z. Lee, X. Wang, W. H. Hong, G. D. Stucky, and A. Thomas, “From melamine-cyanuric acid supramolecular aggregates to carbon nitride hollow spheres,” Adv. Funct. Mater. 23, 3661 (2013).
[55] M. Shalom, S. Inal, C. Fettkenhauer, D. Neher, and M. Antonietti, “Improving carbon nitride photocatalysis by supramolecular preorganization of monomers,” J. Am. Chem. Soc. 135, 7118 (2013).
[56] X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, and Y. Xie, “Enhanced Photoresponsive Ultrathin Graphitic-Phase C3N4 Nanosheets for Bioimaging,” J. Am. Chem. Soc. 135, 18 (2013).
[57] J. Xu, L. Zhang, R. Shi, and Y. Zhu, “Chemical exfoliation of graphitic carbon nitride for efficient heterogeneous photocatalysis,” J. Mater. Chem. A 1, 14766 (2013).
[58] Z. Zhou, J. Wang, J. Yu, Y. Shen, Y. Li, A. Liu, S. Liu, and Y. Zhang, “Dissolution and Liquid Crystals Phase of 2D Polymeric Carbon Nitride,” J. Am. Chem. Soc. 137, 2179 (2015).
[59] X.-H. Li, J. Zhang, X. Chen, A. Fischer, A. Thomas, M. Antonietti, and X. Wang, “Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion,” Chem. Mater. 23, 4344 (2011).
[60] J. Liu, R. Cazelles, Z. P. Chen, H. Zhou, A. Galarneau, and M. Antonietti, “The bioinspired construction of an ordered carbon nitride array for photocatalytic mediated enzymatic reduction,” Phys. Chem. Chem. Phys. 16, 14699 (2014).
[61] J. Barrio, L. Lin, P. Amo-Ochoa, J. Tzadikov, G. Peng, J. Sun, F. Zamora, X. Wang, and M. Shalom, “Unprecedented Centimeter-Long Carbon Nitride Needles: Synthesis, Characterization and Applications,” Small 14, 1800633 (2018).
[62] Z. Mo, H. Xu, Z. Chen, X. She, Y. Song, J. Wu, P. Yan, L. Xu, L. Lei, S. Yuan, and H. Li, “Self-assembled synthesis of defect-engineered graphitic carbon nitride nanotubes for efficient conversion of solar energy,” Appl. Catal. B Environ. 225, 154 (2018).
[63] Y. Cui, Z. Ding, X. Fu, and X. Wang, “Construction of Conjugated Carbon Nitride Nanoarchitectures in Solution at Low Temperatures for Photoredox Catalysis,” Angew. Chemie Int. Ed. 51, 11814 (2012).
[64] S. Wang, Q. Yan, P. Dong, C. Zhao, Y. Wang, F. Liu, and L. Li, “Morphology and band structure regulation of graphitic carbon nitride microspheres by solvothermal temperature to boost photocatalytic activity,” Appl. Phys. A 124, 416 (2018).
[65] J. Safaei, N. A. Mohamed, M. F. M. Noh, M. F. Soh, M. A. Riza, N. S. M. Mustakim, N. A. Ludin, M. A. Ibrahim, W. N. R. W. Isahak, and M. A. M. Teridi, “Facile fabrication of graphitic carbon nitride, (g-C3N4) thin film,” J. Alloys Compd. 769, 130 (2018).
[66] G. Peng, L. Xing, J. Barrio, M. Volokh, and M. Shalom, “A General Synthesis of Porous Carbon Nitride Films with Tunable Surface Area and Photophysical Properties,” Angew. Chemie Int. Ed. 57, 1186 (2018).
[67] J. Xu and M. Shalom, “Electrophoretic Deposition of Carbon Nitride Layers for Photoelectrochemical Applications,” ACS Appl. Mater. Interfaces 8, 13058 (2016).
[68] J. Bian, Q. Li, C. Huang, J. Li, Y. Gao, M. Zaw, and R. Zhang, “Thermal vapor condensation of uniform graphitic carbon nitride films with remarkable photocurrent density for photoelectrochemical applications,” Nano Energy 15, 353 (2015).
[69] J. Liu, H. Wang, Z. P. Chen, H. Moehwald, S. Fiechter, R. Krol, L. Wen, L. Jiang, M. Antonietti, “Microcontact-Printing-Assisted Access of Graphitic Carbon Nitride Films with Favorable Textures toward Photoelectrochemical Application,” Adv. Mater. 27, 712 (2015).
[70] M. Shalom, S. Gimenez, F. Schipper, I. Herraiz-Cardona, J. Bisquert, and M. Antonietti, “Controlled Carbon Nitride Growth on Surfaces for Hydrogen Evolution Electrodes,” Angew. Chemie Int. Ed. 53, 3654 (2014).
[71] X. Xie, X. Fan, X. Huang, T. Wang, and J. He, “In situ growth of graphitic carbon nitride films on transparent conducting substrates via a solvothermal route for photoelectrochemical performance,” RSC Adv. 6, 9916 (2016).
[72] Q. Gu, X. Gong, Q. Jia, J. Liu, Z. Gao, X. Wang, J. Long, and C. Xue, “Compact carbon nitride based copolymer films with controllable thickness for photoelectrochemical water splitting,” J. Mater. Chem. A 5, 19062 (2017).
[73] Z. Chen, H. Wang, J. Xu, and J. Liu, “Surface Engineering of Carbon Nitride Electrode by Molecular Cobalt Species and Their Photoelectrochemical Application,” Chem. An Asian J. 13, 1539 (2018).
[74] H. Montigaud, B. Tanguy, G. Demazeau, S. Courjault, M. Birot, and J. Dunogues, “Graphitic form of C3N4 through the solvothermal route,” C. R. Acad. Sci. Paris 325, 229 (1997).
[75] Q. Guo, Y. Xie, X. Wang, S. Lv, T. Hou, and X. Liu, “Characterization of well-crystallized graphitic carbon nitride nanocrystallites via a benzene-thermal route at low temperatures,” Chem. Phys. Lett. 380, 84 (2003).
[76] Q. Guo, Y. Xie, X. Wang, S. Zhang, T. Hou, and S. Lv, “Synthesis of carbon nitride nanotubes with the C3N4 stoichiometry via a benzene-thermal process at low temperatures” Chem. Commun. 398, 26 (2004).
[77] X. Lu, Z. Liu, J. Li, J. Zhang, and Z. Guo, “Novel framework g-C3N4 film as efficient photoanode for photoelectrochemical water splitting,” Appl. Catal. B Environ. 209, 657 (2017).
[78] M. Zhang, X. Bai, D. Liu, J. Wang, and Y. Zhu, “Enhanced catalytic activity of potassium-doped graphitic carbon nitride induced by lower valence position,” Appl. Catal. B Environ. 164, 77 (2015).
[79] T. Sano, S. Tsutsui, K. Koike, T. Hirakawa, Y. Teramoto, N. Negishi, and K. Takeuchi, “Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase,” J. Mater. Chem. A 1, 6489 (2013).
[80] M. Volokh, G. Peng, J. Barrio, and M. Shalom, “Carbon Nitride Materials for Water Splitting Photoelectrochemical Cells,” Angew. Chemie Int. Ed. 58, 6138 (2019).
[81] A. Fischer, M. Antonietti, and A. Thomas, “Growth confined by the nitrogen source: Synthesis of pure metal nitride nanoparticles in mesoporous graphitic carbon nitride,” Adv. Mater. 19, 264 (2007).
[82] Z. Zhou, Y. Shen, Y. Li, A. Liu, S. Liu, and Y. Zhang, “Chemical Cleavage of Layered Carbon Nitride with Enhanced Photoluminescent Performances and Photoconduction,” ACS Nano 9, 12480 (2015).
[83] J. Tian, Q. Liu, A. M. Asiri, A. O. Al-Youbi, and X. Sun, “Ultrathin Graphitic Carbon Nitride Nanosheet: A Highly Efficient Fluorosensor for Rapid, Ultrasensitive Detection of Cu2+,” Anal. Chem. 85, 5595 (2013).
[84] W.-C. Lu, L.-C. Tseng, and K.-S. Chang, “Fabrication of TiO2-Reduced Graphene Oxide Nanorod Composition Spreads Using Combinatorial Hydrothermal Synthesis and Their Photocatalytic and Photoelectrochemical Applications,” ACS Comb. Sci. 19, 585 (2017).
[85] H. Zhou, A. Meng, Y. Long, Q. Li, and Y. Zhang, “Interactions of municipal solid waste components during pyrolysis: A TG-FTIR study,” J. Anal. Appl. Pyrolysis 108, 19 (2014).
[86] A. B. Jorge, D. J. Martin, M. T. S. Dhanoa, A. S. Rahman, N. Makwana, J. Tang, A. Sella, F. Corà, S. Firth, J. A. Darr, and P. F. McMillan, “H2 and O2 Evolution from Water Half-Splitting Reactions by Graphitic Carbon Nitride Materials,” J. Phys. Chem. C 117, 7178 (2013).
[87] C. P. Bergmann, Carbon Nanomaterials as Adsorbents for Environmental and Biological Applications (2015).
[88] C. Zong, K. Ai, G. Zhang, H. Li, and L. Lu, “Dual-emission fluorescent silica nanoparticle-based probe for ultrasensitive detection of Cu2+,” Anal. Chem. 83, 3126 (2011).