| 研究生: |
利鴻源 Li, Hong-Yuan |
|---|---|
| 論文名稱: |
微波電漿用於火焰穩駐和電子推進器之穩駐機制研究與發展 Development of a Novel Microwave-Plasma Stabilization Mechanism for Flame Stabilization and Electric Propulsion |
| 指導教授: |
趙怡欽
Chao, Yei-Chin |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2013 |
| 畢業學年度: | 102 |
| 語文別: | 英文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 微波 、次極限貧油預混火焰 、微波集中燃燒器 、微波誘發電漿 |
| 外文關鍵詞: | Microwave, sub-limit lean premixed flame, Concentrated-microwave burner, microwave induced plasma |
| 相關次數: | 點閱:154 下載:8 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
外加微波可藉由影響火焰中帶電離子和電子的運動而達成增加火焰燃燒速度並有效穩駐火焰於近貧油燃燒極限之目的,根據此原理與想法本研究建立一微波產生系統以觀測研究在不同微波功率下對於火焰外型與穩駐極限的影響。微波藉由共振腔的設計而放大功率,由測量結果可知功率最大值位於距離節點微波1/4波長的奇數倍位置處。此外本論文設計一嶄新的集中微波燃燒器以期能進一步集中微波能量並提高火焰吸收微波的效率,配合數值模擬所得之電場強度分布結果做為後續設計的參考依據。本論文中,根據微波輸入功率的不同,微波增強火燄的機制可區分三個階段。低功率(<40瓦特)單純由微波電場對火焰中的化學反應產生增強的作用。中高功率(40-60瓦特)則為過渡階段,這時火焰增強的效應主要來自於電漿後方離子和周圍中性分子碰撞所造成的局部升溫作用,當功率超過60瓦特時,則由電漿內生成的高能活性基直接和火焰偶合而大幅增強火焰強度,微波能量的耦合效率亦在本研究中加以計算和討論。由結果顯示微波和火焰面中的帶電粒子耦合反應後,可產生一電漿穩駐之次極限貧油預混火焰,藉由光譜分析得知電漿火焰中產生大量的CH和OH活性基而貧油燃燒極限當量比亦可從原本的0.82降低至0.38,遠低於一般預混甲烷火焰的貧油燃燒極限。最後將此生成電漿概念應用於離子推進器,在常溫大氣環境下建立一微波電漿推進器並加以測試和分析。結果顯示電漿生成後可提升部分推力,使得比衝值高於一般冷流體條件,由於此實驗皆於大氣環境下進行,是故僅可利用離子與中性氣體間碰撞反應加熱氣體進行熱電加速方式。電能式推進器就原理上而言越高等級的真空條件可以達到更高的電離度,便於採用靜電亦或電磁感應方式來加速離子,這些方式可將推進器比衝值提升至2000~3000 s以上,日後推進器的改良與規劃上亦將朝向此一發展方向進行。
By affecting the ion motions and electron temperature in the flame, microwave is shown to effectively enhance and stabilize the flame in the sub-limit lean premixed region. In this study, we first develop and set up the concentrated-microwave jet combustor system for fundamental studies of the stabilization mechanism of the sub-lean limit flames. The control parameters and operation characteristics of the integrated system is further investigated. The microwave energy is enhanced and applied to the combustion system by means of a rectangular resonant cavity. In the resonator, standing waves occur due to resonance. In order to concentrate the microwave energy and enhance the absorption of microwave energy by the flame, a novel design of microwave centralized burner is used to incorporate microwave (2.45 GHz) electromagnetic energy directly into the reaction zone of a premixed laminar methane–air flame for flame enhancement. Depending upon the input microwave power, three enhanced stages (1) Electric Field Enhanced (2) Transition and (3) Full Plasma Assisted can be categorized. The stabilization process, mechanism of the lean and sub-limit lean methane flame and coupling efficiency is also discussed and calculated. The results show that with the onset of a plasma flame by microwave, a significant rise in both excited state species, CH and OH radical numbers was observed and has been shown to broaden the lean flammability limit with microwave induced plasma. Finally, a prototype of a novel microwave induced plasma thruster system suitable even for atmospheric ground tests is proposed and developed.
Bulewicz, E. M., and Padley, P. J., 1963, “Study of ionization in cyanogen flames at reduced pressure by the cyelotron resonance method,” 9th Int. Symp. Combust., p. 638.
Bradley, D., and Weinberg, F. J., 1986, “Advanced combustion methods,” Academic Press, New York, p. 331.
Balaam, P., and Micci, M. M., 1991, “Performance measurements of a resonant cavity electrothermal thruster,” IEPC, vol. 91. p. 031.
Balaam, P., and Micci, M. M., 1995, “Investigation of stabilized resonant cavity microwave plasma for propulsion,” Journal of Propulsion and Power, vol. 11, no. 5, pp. 1021–1027.
Bromberg, L., Cohn, D. R., Rabinovich, A., and Alexeev, N., 1999, “Plasma catalytic reforming of methane,” Int. J. Hydrogen Energy, vol. 24, no. 12, pp. 1131–1137.
Bromberg, L., Cohn, D. R., Rabinovich, A., and Heywood, J., 2001, “Emissions reductions using hydrogen from plasmatron fuel coverters,” Int. J. Hydrogen Energy, vol. 26, no. 10, pp. 1115–1121.
Calcote, H. F., and Pease, R. N., 1951, “Electrical properties of flames. Burning flames in longitudinal electric fields,” Ind. Eng. Chem., vol. 43, pp 2726–2731.
Calcote, H. F., 1957, “Mechanisms for the formation of ions in flames,” Combust. Flame, vol. 1, pp. 385-403.
Calcote, H. F., 1962, “Ion production and recombination in flames,” 8th Int. Symp. Combust., p. 184.
Calcote, H. F., 1963, “Ion and electron profiles in flames,” 9th Int. Symp. Combust., p. 622.
Calcote, H. F., Kurzius, S. C., and Miller, J., 1965, “Negative and secondary ion formation in low-pressure flames,” 10th Int. Symp. Combust., p. 605.
Clements, R. M., Smith, R. D., and Smy, P. R., 1981, “Enhancement of flame speed by intense microwave radiation,” Comb. Sci. and Tech., vol. 26, pp. 77-81.
Chung, S. H., and Lee, B. J., 1991, “On the characteristics of laminar lifted flames in a nonpremixed jet,” Combust. Flame, vol. 86, pp. 62–72.
Chintala, N., Bao, A., Lou, G., and Adamovich, I., 2006, “Measurements of combustion efficiency in nonequilibrium RF plasma-ignited flows,” Combustion Flame, vol. 144, no. 4, pp. 744–756.
Edward, G., and Mark, K., 1984, “Microwave effects on premixed flames,” Combust. Flame, vol. 56, pp. 293-306.
Ershov-Pavlov, E., and Stepanov, K., 2001, “Temperature measurements using line intensity in emission spectra of fluctuating plasmas.” Proceedings of the 15th International Symposium on Plasma Chemistry, pp. 1057-1062.
Feugier, A., and Van Tiggelen, A., 1965, “Identification of negative flame-ion,” 10th Int. Symp. Combust., p. 621.
Fialkov, A. B., 1997, “Investigations on ions in flames,” Prog. Energy Combust. Sci., vol. 23, pp. 399–528.
Green, J. A., and Sugden, T. M., 1963, “Some observations on the mechanism of ionization in flames containing hydrocarbons,” 9th Int. Symp. Combust., p. 607
Hawley, M. C., and Morimand, T. J., 1989, “Review of research and development of microwave electrothermal truster,” AIAA Paper, vol. 89, p.5620.
Hemawan, K. W., Wichman, I. S., Lee, T., Grotjohn, T. A., and Asmussen, J., 2009, “Compact microwave re-entrant cavity applicator for plasma-assisted combustion,” Review of Scientific Instruments, vol. 80, p. 053507.
Ikeda, Y., Shinohara, K., Takada1, N., and Sasaki, K., 2009, “Enhancement of burning velocity in premixed burner flame by irradiating microwave power,” Journal of Physics D: Applied Physics, vol. 42, p. 182008.
Jaggers, H. C., and von Engel, A., 1971, “The effect of electric fields on the burning velocity of various flames,” Combust. Flame, vol. 16, pp. 275-285.
Ju, Y., Macheret, S. O., Shneider, M. N., Miles, R. B., and Sullivan, D. J., 2004, “Microwave techniques for the combustion enhancement of laminar flames,” AIAA 2004-3707.
King, I. R., 1958, “Effect of Pressure on ion formation in propane‐air flames,” J. chem. Phys., vol. 29, p. 681.
Knewstubb, P. F., 1958, “Mass spectrometry of the ions present in hydrocarbon flames,” 7th Int. Symp. Combust., p. 247.
King, I. R., 1960, “Ion recombination rates in methane-air flames,” J. chem. Phys., vol. 31, p. 855.
Kono, M., Carleton, F. B., Jones, A. R., and Weinberg, F. J., 1989, “The effect of nonsteady electric fields on sooting flames,” Combust. Flame, vol. 78, pp. 357–364.
Kuznetsova, I. V., Kalashnikov, N. Y., Gutsol, A. F., Fridman, A. F., and Kennedy, L. A., 2002, “Effect of ’overshooting’ in the transitional regimes of the low-current gliding arc discharge,” J. Appl. Phys., vol. 92, no. 8, pp. 4231–4237.
Korolev, Y. D., and Matveev, I. B., 2006, “Nonsteady-state processes in a plasma pilot for ignition and flame control,” IEEE Trans. Plasma Sci., vol. 34, pt. 1, no. 6, pp. 2507–2513.
Kim, M. K., Ryu, S. K., Won, S. H., and Chung, S. H., 2010, “Electric fields effect on liftoff and blowoff of nonpremixed laminar jet flames in a coflow,”Combust. Flame, vol. 157, pp. 17–24.
Kim, M. K., Kim, H. H., and Chung, S. H., 2011, “Effect of AC electric fields on the stabilization of premixed bunsen flames,” Proc. Combust. Inst., vol. 33, pp. 1137–1144.
Lawton, J., and Weinberg, F., 1969, “Electrical aspects of combustion,” Clarendon Press.
Lee, S. M., Park, C. S., Cha, M. S., and Chung, S. H., 2005, "Effect of electric fields on the liftoff of nonpremixed turbulent jet flame," IEEE Trans. Plasma Sci. vol. 33 (5), pp.1703–1709.
Lou, G., Bao, A., Nishihara, M., Keshav, S., Utkin, Y. G., Rich, J. W., Lempert, W. R., and Adamovich, I. V., 2007, “Ignition of premixed hydrocarbon/air flows by repetitively pulsed, nanosecond pulse duration plasma,” Proc. Combustion Inst., vol. 31, no. 2, pp. 3327–3334.
Lee, D. H., Kim, K. T., Cha, M. S., and Song, Y. H., 2007, “Optimization scheme of a rotating gliding arc reactor for partial oxidation of methane,” Proc. Combustion Inst., vol. 31, no. 2, pp. 3343–3351.
MacLatchy, C. S., Clements, R. M., and Smy, P. R., 1982, “An experimental investigation of the effect of microwave radiation on a propane-air flame,” Combust. Flame, vol. 45, pp. 161-169.
Mueller, P., 1990, “Microwave electrothermal thrusters using waveguide heated plasmas,” AIAA Paper, vol. 90, p. 2562.
Micci, M. M., and Balaam, P., 1992, “Investigation of free-floating resonant cavity microwave plasma for propulsion,” Journal of Propulsion and Power, vol. 8, No. 1, pp. 103–109.
Mintusov, E., Serdyuchenko, A., Choi, I., Lempert, W. R., and Adamovich, I. V., 2009, “Mechanism of plasma assisted oxidation and ignition of ethylene–air flows by a repetitively pulsed nanosecond discharge,” Proc. Combustion Inst., vol. 32, no. 2, pp. 3181–3188.
Michael, J. B., Dogariu, A., Shneider, M. N., and Miles, R. B., 2010, “Subcritical microwave coupling to femtosecond and picosecond laser ionization for localized, multipoint ignition of methane/air mixtures,” J. Appl. Phys., vol. 108, p. 093308.
Ombrello, T., Ju, Y., and Fridman, A., 2008, “Kinetic ignition enhancement of diffusion flames by nonequilibrium magnetic gliding arc plasma,” AIAA J., vol. 46, no. 10, pp. 2424–2433.
Ombrello, T., Won, S. H., and Ju, Y., 2009, “Lifted flame speed enhancement by plasma excitation of oxygen,” 47th AIAA Aerospace Sciences Meeting, paper AIAA-2009-689.
Proncelet, J., Berendsen, R., and Van Tiggelen, A., 1959, “Comparative study of ionization in acetylene-oxygen and acetylene-nitrous oxide flames,” 7th Int. Symp. Combust., p. 256.
Power, J. L., 1992, “Microwave electrothermal propulsion for space,” IEEE Transactions on Microwave Theory and Techniques, vol. 40, No. 6, pp. 1179–1191.
Power, J. L., and Sullivan, D. J., 1993, “Preliminary investigation of high power microwave plasma for electrothermal thruster use,” AIAA Paper, vol. 93, pp. 2106.
Qin, X., Puri, I. K., and Aggarwal, S. K., 2002, “Characteristics of lifted triple flames stabilized in the near field of a partially premixed axisymmetric jet,” Proc. Combust. Instit., vol. 29, pp. 1565-1572.
Shu, Z., Krass, B. J., Choi, C. W., Aggarwal, S. K., Katta, V. R., and Ouri, I. K., 1998, “An experimental and numerical investigation of the structure of steady two-dimensional partially premixed methane-air flame,” Proc. Combust. Instit., vol. 27, pp. 625-632.
Starikovskaia, S. M., Kosarev, I. N., and Starikovskii, A. Yu., 2005, “Gas mixture ignition by nanosecond discharge,” European Combustion Meeting.
Starikovskii, A. Yu., Anikin, N. B., Kosarev, I. N., Mintoussov, I. I., and Starikovskaia, S. M., 2006, “Plasma-assisted combustion,” Pure Appl. Chem., vol. 78, pp. 1265–1294.
Starikovskii, A. Y., Anikin, N. B., Kosarev, I. N., Mintoussov, E. I., Nudnova, M. M., Rakitin, A. E., Roupassov, D. V., Starikovskaia, S. M., and Zhukov, V. P., 2008, “Nanosecond-pulsed discharges for plasma-assisted combustion and aerodynamics,” J. Propulsion Power, vol. 24, no. 6, pp. 1182–1197.
Stockman, E. S., Zaidi, S. H., Miles, R. B., Carter, C. D., and Ryan, M. D., 2009, “Measurements of combustion properties in a microwave enhanced flame,” Combustion Flame, vol. 156, no. 7, pp. 1453–1461.
Sun, W., Uddi, M., Ombrello, T., Won, S., Carter, C., and Ju, Y., 2011, “Effects of non-equilibrium plasma discharge on counterflow diffusion flame extinction,” Proc. Combustion Inst., vol. 33, no. 2, pp. 3211–3218.
Stariskovskiy, A., and Aleksandrov, N., 2012, “Plasma-assisted ignition and combustion,” Progress in Energy and Combustion Science, pp. 1-50.
Ward, M. A. V., 1977, “Potential uses of microwave to increase internal combustion engine efficiency and reduce exhaust pollutants,” J. of Microwave Power, vol. 12(3), pp. 187-199.
Ward, M. A. V., and Wu, T. T., 1978, “A theoretical study of the microwave heating of a cylindrical shell, flame-front electron plasma in an internal combustion engine,” Combust. Flame, vol. 32, pp. 57-71.
Ward, M. A. V., 1979, “Interaction of propane-air laminar flame plasmas with the microwave TM010 mode excited in a cylindrical combustion bomb cavity,” J. of Microwave Power, vol. 14(3), pp. 241-259.
Ward, M. A. V., 1980, “Microwave stimulated combustion,” J. of Microwave Power, vol. 15(3), pp. 193-202.
Whitehair, S., and Asmusse, J., 1985, “Recently experimental with a microwave electrothermal thrusters,” AIAA Paper, vol. 85, p. 2051.
Wolk, B., DeFilippo, A., Chen, J. Y., Dibble, R., and Nishiyama, A., 2013, “Enhancement of flame development by microwave-assisted spark ignition in constant volume combustion chamber,” Combust. Flame, vol. 160, pp. 1225–1234.
Uddi, M., Jiang, N., Mintusov, E., Adamovich, I. V., and Lempert, W. R., 2008, “Atomic oxygen measurements in air and air/fuel nanosecond pulse discharges by two photon laser induced fluorescence,” 46th AIAA Aerospace Sciences Meeting, paper AIAA-2008-1110.
Zaidi, S. H., Stockman, E. S., Qin, X., Zhao, Z., Macheret, S., Ju, Y., Miles, R. B., Sullivan, D. J., and Kline, J. F., 2006, “Measurements of hydrocarbon flame speed enhancement in high-q microwave cavity,” 44th AIAA Aerospace Sciences Meeting, p.1217.