| 研究生: |
梁芳綺 Liang, Fang-Chi |
|---|---|
| 論文名稱: |
整合臺灣廢棄物數據估算建築都市礦及預測二次建材資源產量-以臺北市與高雄市為例 Analysis of Building Material Stocks Using Demolition Waste Data and Secondary Resources Prediction: Cases of Taipei City and Kaohsiung City |
| 指導教授: |
陳必晟
Chen, Pi-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 85 |
| 中文關鍵詞: | 建材都市礦時空分析 、不確定性分析 、建築壽命分佈 、建築材料強度 、建築拆除廢棄物資料 |
| 外文關鍵詞: | Spatiotemporal analysis of building materials, Uncertainty analysis, Material intensity, Building lifespan distribution, Demolition waste data |
| 相關次數: | 點閱:126 下載:28 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
經環保署統計,建築營造業已成為臺灣產出最多事業廢棄物的產業。為了積極管理事業廢棄物,並將物質再利用、再循環等循環經濟實踐於建築業中,當前都市採礦的議題十足重要。在都市採礦的概念中,將存在於現有建築的建材與構件視為具再利用價值的二次資源,稱之為建材都市礦,而於建築生命週期結束時,可進拆解,相當於開採出來二次資源,未來再投入於新的產品或建築中。都市採礦蘊藏量的探勘關注某地區與城市的潛在都市礦量與空間分布,進而發掘最合適的開採區域,其中最常見且被廣泛應用的都市礦分析方法為由下而上方法。由下而上方法為透過建築材料強度係數與總樓地板面積,估算各建築蘊含的都市礦量,並且可與空間資料合併來討論該區域的都市礦空間分布狀況。然而,此方法在過去的研究多仰賴經驗或相關法規,將建築壽命視為固定值。然而,建築之間的壽命有很大的差異,這是影響都市礦產出量估算正確性的主要因素之一,因為一棟建築的壽命將決定其建築材料的最終開採時間。
經過文獻回顧,都市礦分析方法可分類為四大類型:由上而下方法、由下而上方法、遙測方法與其他方法。由上而下方法為根據國家或地區統計的比例來估算系統的材料流入量與流出量,此方法與由下而上方法均屬於高資料需求的方法,而前者更關注於都市礦存量計算,對於建築壽命分析討論相對詳盡,並捨棄討論都市礦的空間分布。遙測方法則可適用於缺乏關鍵數據,改以相對好取得的夜間光線數據與衛星圖像,分析都市礦空間分布與產量。其他方法則包括不使用前三種方法,或為綜合地使用上述分析方法,進而突破單一分析方法的侷限性,獲得更豐富的研究成果。由下而上方法與由上而下方法對資料需求高,前者雖然應用性高但無法將壽命分析納入討論,後者則捨棄空間資訊並專注在存量計算,選用單一種方法難以全面地分析都市礦產量。在臺灣,近年來大多數政府資料都有以電子化的形式保存,資料集種類多元也有被長期定期管理。因此若研究想要討論臺灣的建築都市礦存量,研究人員只要能申請到適合的、可讀性高的資料集,儘管會花費很多的時間與精力,在由下而上方法中加入壽命分析將會是可能的。因此,本研究將在由下而上方法中融入建築壽命變異性,透過分析臺灣建築使用執照與廢棄物清理計劃書,獲得建築壽命分布結果、取得臺灣的建築材料強度,進而模擬臺北市與高雄市於2023年的都市礦產出量。
本研究對五都建築使用執照資料與廢棄物清理計劃書資料進行資料前處理,並使用ArcGIS pro 軟體的空間結合功能進行資料合併。接著採用貝葉斯信息量準則(Bayesian Information Criterion),分別將總資料的建築壽命資料與建築材料強度資料進行分布擬合,並透過獲得的分布種類與參數,進行模擬卡羅模擬來預測現有建築的都市礦產出量,模擬2023年臺北市與高雄市的平均都市礦產出量。結果顯示本研究確實可透過臺灣的建築與拆除資料,在由下而上方法架構中同時考量建築壽命分析,並且同時貢獻更多臺灣建築材料強度數據。經過蒙地卡羅模擬,發現2023年臺北市平均都市礦產出量為2,464,936公噸,高雄市平均產出量為14,871,984公噸。同時本研究對數據進行不確定性分析,發現不確定性最高的建材類行為生物質、最低為金屬礦物。其中,材料不確定性高的原因與原始資料的地址欄位填寫不全有關。
When the circular economy has attracted much attention in recent years, urban mine has become one popular research topic. However, the most used inventory approaches are demanding for data. Therefore, many studies are hard to juggle the discussion over spatial analysis of urban mines and accurate inventory calculation. In our case, we collected the government datasets that had been well-archived and preserved electronically. So, we can combine two common inventory approaches. This study used Building Use Permit data and Waste Disposal Plans data. After data processing and spatial data integration, 2,630 demolition cases were finally obtained, mostly located in Taipei City and Kaohsiung City. By analyzing these demolition cases, we conducted a building lifetime analysis and calculated the building material intensities. According to the above results, the material intensities and lifetimes of real buildings are predicted by Monte Carlo simulations, and then future urban mineral outflows can be estimated. According to the results, we obtained more kinds of material intensities data than in previous studies in Taiwan. In addition, we examined the lifetime distribution for different types of buildings in the municipality of Taiwan. Based on this detailed data preparation and modeling, the spatiotemporal analysis of building materials in cities and the time for exploitation are presented.
Aksözen, M., Hassler, U., & Kohler, N. (2017). Reconstitution of the dynamics of an urban building stock. Building Research & Information, 45(3), 239-258. doi:10.1080/09613218.2016.1152040
Arbabi, H., Lanau, M., Li, X., Meyers, G., Dai, M., Mayfield, M., & Densley Tingley, D. (2022). A scalable data collection, characterization, and accounting framework for urban material stocks. Journal of Industrial Ecology, 26(1), 58-71. doi:https://doi.org/10.1111/jiec.13198
Bergsdal, H., Brattebø, H., Bohne, R. A., & Müller, D. B. (2007). Dynamic material flow analysis for Norway's dwelling stock. Building Research & Information, 35(5), 557-570. doi:10.1080/09613210701287588
Buchner, H., Laner, D., Rechberger, H., & Fellner, J. (2015). Dynamic Material Flow Modeling: An Effort to Calibrate and Validate Aluminum Stocks and Flows in Austria. Environmental Science & Technology, 49(9), 5546-5554. doi:10.1021/acs.est.5b00408
Cai, W., Wan, L., Jiang, Y., Wang, C., & Lin, L. (2015). Short-Lived Buildings in China: Impacts on Water, Energy, and Carbon Emissions. Environmental Science & Technology, 49(24), 13921-13928. doi:10.1021/acs.est.5b02333
Chau, C. K., Hui, W. K., Ng, W. Y., & Powell, G. (2012). Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options. Resources, Conservation and Recycling, 61, 22-34. doi:https://doi.org/10.1016/j.resconrec.2012.01.001
Cheng, K.-L., Hsu, S.-C., Li, W.-M., & Ma, H.-W. (2018). Quantifying potential anthropogenic resources of buildings through hot spot analysis. Resources, Conservation and Recycling, 133, 10-20. doi:10.1016/j.resconrec.2018.02.003
Daigo, I., Iwata, K., Oguchi, M., & Goto, Y. (2017). Lifetime Distribution of Buildings Decided by Economic Situation at Demolition: D-based Lifetime Distribution. Procedia CIRP, 61, 146-151. doi:https://doi.org/10.1016/j.procir.2016.11.221
Ergun, D., & Gorgolewski, M. (2015). Inventorying Toronto’s single detached housing stocks to examine the availability of clay brick for urban mining. Waste Management, 45, 180-185. doi:https://doi.org/10.1016/j.wasman.2015.03.036
Ergun, D. N. (2014). The potential environmental benefits of reusable and recyclable materials stocks in Toronto's single-detached housing (Version 1). Toronto Metropolitan University. https://doi.org/10.32920/ryerson.14661621.v1 ([])
Fischer-Kowalski, M., Krausmann, F., Giljum, S., Lutter, S., Mayer, A., Bringezu, S., . . . Weisz, H. (2011). Methodology and Indicators of Economy-wide Material Flow Accounting. Journal of Industrial Ecology, 15(6), 855-876. doi:https://doi.org/10.1111/j.1530-9290.2011.00366.x
Fishman, T., Schandl, H., Tanikawa, H., Walker, P., & Krausmann, F. (2014). Accounting for the Material Stock of Nations. Journal of Industrial Ecology, 18(3), 407-420. doi:https://doi.org/10.1111/jiec.12114
Gontia, P., Nägeli, C., Rosado, L., Kalmykova, Y., & Österbring, M. (2018). Material-intensity database of residential buildings: A case-study of Sweden in the international context. Resources, Conservation and Recycling, 130, 228-239. doi:https://doi.org/10.1016/j.resconrec.2017.11.022
Haberl, H., Wiedenhofer, D., Schug, F., Frantz, D., Virág, D., Plutzar, C., . . . Hostert, P. (2021). High-Resolution Maps of Material Stocks in Buildings and Infrastructures in Austria and Germany. Environmental Science & Technology, 55(5), 3368-3379. doi:10.1021/acs.est.0c05642
Heeren, N., & Fishman, T. (2019). A database seed for a community-driven material intensity research platform. Scientific Data, 6(1), 23. doi:10.1038/s41597-019-0021-x
Hsiao, T. Y., Huang, Y. T., Yu, Y. H., & Wernick, I. K. (2002). Modeling materials flow of waste concrete from construction and demolition wastes in Taiwan. Resources Policy, 28(1), 39-47. doi:https://doi.org/10.1016/S0301-4207(03)00004-7
Jasiński, D., Meredith, J., & Kirwan, K. (2018). The life cycle impact for platinum group metals and lithium to 2070 via surplus cost potential. The International Journal of Life Cycle Assessment, 23(4), 773-786. doi:10.1007/s11367-017-1329-4
Kleemann, F., Lederer, J., Aschenbrenner, P., Rechberger, H., & Fellner, J. (2016). A method for determining buildings’ material composition prior to demolition. Building Research & Information, 44(1), 51-62. doi:10.1080/09613218.2014.979029
Kleemann, F., Lederer, J., Rechberger, H., & Fellner, J. (2017). GIS-based Analysis of Vienna's Material Stock in Buildings. Journal of Industrial Ecology, 21(2), 368-380. doi:https://doi.org/10.1111/jiec.12446
Lanau, M., Liu, G., Kral, U., Wiedenhofer, D., Keijzer, E., Yu, C., & Ehlert, C. (2019). Taking Stock of Built Environment Stock Studies: Progress and Prospects. Environ Sci Technol, 53(15), 8499-8515. doi:10.1021/acs.est.8b06652
Laner, D., Rechberger, H., & Astrup, T. (2014). Systematic Evaluation of Uncertainty in Material Flow Analysis. Journal of Industrial Ecology, 18(6), 859-870. doi:https://doi.org/10.1111/jiec.12143
Lederer, J., Fellner, J., Gassner, A., Gruhler, K., & Schiller, G. (2021). Determining the material intensities of buildings selected by random sampling: A case study from Vienna. Journal of Industrial Ecology, 25(4), 848-863. doi:https://doi.org/10.1111/jiec.13100
Li, S., Rismanchi, B., & Aye, L. (2022). A simulation-based bottom-up approach for analysing the evolution of residential buildings’ material stocks and environmental impacts – A case study of Inner Melbourne. Applied Energy, 314, 118941. doi:https://doi.org/10.1016/j.apenergy.2022.118941
Liu, G., Xu, K., Zhang, X., & Zhang, G. (2014). Factors influencing the service lifespan of buildings: An improved hedonic model. Habitat International, 43, 274-282. doi:https://doi.org/10.1016/j.habitatint.2014.04.009
Liu, Y., Li, J., Chen, W.-Q., Song, L., & Dai, S. (2022). Quantifying urban mass gain and loss by a GIS-based material stocks and flows analysis. Journal of Industrial Ecology, n/a(n/a). doi:https://doi.org/10.1111/jiec.13252
Müller, E., Hilty, L. M., Widmer, R., Schluep, M., & Faulstich, M. (2014). Modeling Metal Stocks and Flows: A Review of Dynamic Material Flow Analysis Methods. Environmental Science & Technology, 48(4), 2102-2113. doi:10.1021/es403506a
Marinova, S., Deetman, S., van der Voet, E., & Daioglou, V. (2020). Global construction materials database and stock analysis of residential buildings between 1970-2050. Journal of Cleaner Production, 247, 119146. doi:https://doi.org/10.1016/j.jclepro.2019.119146
Miatto, A., Schandl, H., & Tanikawa, H. (2017). How important are realistic building lifespan assumptions for material stock and demolition waste accounts? Resources, Conservation and Recycling, 122, 143-154. doi:10.1016/j.resconrec.2017.01.015
Moitra, S. D. (1990). Skewness and the Beta Distribution. The Journal of the Operational Research Society, 41(10), 953-961. doi:10.2307/2583273
Oguchi, M., & Fuse, M. (2015). Regional and Longitudinal Estimation of Product Lifespan Distribution: A Case Study for Automobiles and a Simplified Estimation Method. Environmental Science & Technology, 49(3), 1738-1743. doi:10.1021/es505245q
Rauch, J. N. (2009). Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources. Proceedings of the National Academy of Sciences, 106(45), 18920-18925. doi:doi:10.1073/pnas.0900658106
Raychaudhuri, S. (2008, 7-10 Dec. 2008). Introduction to Monte Carlo simulation. Paper presented at the 2008 Winter Simulation Conference.
Rossum, G. V., & Drake, F. L. (2009). Python 3 Reference Manual: CreateSpace.
Sandberg, N. H., Sartori, I., & Brattebø, H. (2014). Using a dynamic segmented model to examine future renovation activities in the Norwegian dwelling stock. Energy and Buildings, 82, 287-295. doi:https://doi.org/10.1016/j.enbuild.2014.07.005
Schiller, G., Miatto, A., Gruhler, K., Ortlepp, R., Deilmann, C., & Tanikawa, H. (2019). Transferability of Material Composition Indicators for Residential Buildings: A Conceptual Approach Based on a German-Japanese Comparison. Journal of Industrial Ecology, 23(4), 796-807. doi:https://doi.org/10.1111/jiec.12817
Sprecher, B., Verhagen, T. J., Sauer, M. L., Baars, M., Heintz, J., & Fishman, T. (2021). Material intensity database for the Dutch building stock: Towards Big Data in material stock analysis. Journal of Industrial Ecology, n/a(n/a). doi:https://doi.org/10.1111/jiec.13143
Takahashi, K. I., Terakado, R., Nakamura, J., Adachi, Y., Elvidge, C. D., & Matsuno, Y. (2010). In-use stock analysis using satellite nighttime light observation data. Resources, Conservation and Recycling, 55(2), 196-200. doi:https://doi.org/10.1016/j.resconrec.2010.09.008
Tanikawa, H., Fishman, T., Okuoka, K., & Sugimoto, K. (2015). The Weight of Society Over Time and Space: A Comprehensive Account of the Construction Material Stock of Japan, 1945–2010. Journal of Industrial Ecology, 19(5), 778-791. doi:https://doi.org/10.1111/jiec.12284
Tanikawa, H., & Hashimoto, S. (2009). Urban stock over time: spatial material stock analysis using 4d-GIS. Building Research & Information, 37(5-6), 483-502. doi:10.1080/09613210903169394
Vilaysouk, X., Saypadith, S., & Hashimoto, S. (2022). Semisupervised machine learning classification framework for material intensity parameters of residential buildings. Journal of Industrial Ecology, 26(1), 72-87. doi:https://doi.org/10.1111/jiec.13174
Wang, J., Zhang, Y., & Wang, Y. (2018). Environmental impacts of short building lifespans in China considering time value. Journal of Cleaner Production, 203, 696-707. doi:https://doi.org/10.1016/j.jclepro.2018.08.314
Wiedenhofer, D., Fishman, T., Lauk, C., Haas, W., & Krausmann, F. (2019). Integrating Material Stock Dynamics Into Economy-Wide Material Flow Accounting: Concepts, Modelling, and Global Application for 1900–2050. Ecological Economics, 156, 121-133. doi:https://doi.org/10.1016/j.ecolecon.2018.09.010
Yang, D., Guo, J., Sun, L., Shi, F., Liu, J., & Tanikawa, H. (2020). Urban buildings material intensity in China from 1949 to 2015. Resources, Conservation and Recycling, 159, 104824. doi:https://doi.org/10.1016/j.resconrec.2020.104824
小松, 幸. (1992). 建物寿命の年齢別データによる推計に関する基礎的考察. 日本建築学会計画系論文報告集, 439(0), 91-99. doi:10.3130/aijax.439.0_91
林建宏(2009)。我國建築廢棄物產出因子與數量推估研究-以全國事業管制系統為對象。國立中央大學營建管理研究所碩士論文,桃園縣。 取自:https://hdl.handle.net/11296/6vy36b
高雄市政府民政局網站(民111年8月)。人口統計查詢:本市各區里戶口數月統計。取自:https://cabu.kcg.gov.tw/Stat/StatRpts/StatRpt1.aspx?yq=111&mq=7&dq=
張又升(2002)。建築物生命週期二氧化碳減量評估。國立成功大學建築學系碩博士班博士論文,台南市。 取自https://hdl.handle.net/11296/zwv5mh
黃榮堯(1998)。《建築拆除污染及廢棄物產生現況與調查架構研究》,內政部建築研究所。
葉世文、黃榮堯(2004)。《建築廢棄物產生量推估及應用範例之研究》,內政部建築研究所協同研究報告。
鄭文吉. (2012). 漫談蒙地卡羅法的原理及其應用. 高雄區農業改良場研究彙報, 第23卷第1期.
臺北市資料大平台(民111年7月31日)臺北市各行政區最新月份人口數及戶數。取自:https://data.taipei/dataset/detail?id=6a1dbb4e-e99c-4e67-ab09-f6d83852dc99
臺北市政府地政局(民109年9月29日)。建築改良物耐用年數及每年折舊率表。取自:https://land.gov.taipei/cp.aspx?n=5710DCA168362376