簡易檢索 / 詳目顯示

研究生: 詹逸民
Chan, I-Min
論文名稱: 高效能有機發光元件製作技術之研究
The Study of High Performance Organic Light Emitting Devices
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 187
中文關鍵詞: 顯示器光化學有機發光二極體
外文關鍵詞: photochemistry, organic light-emitting diode, display
相關次數: 點閱:73下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分為三大部分,第一部份針對有機發光二極體(OLED)元件用的氧化銦錫(indium tin oxide-ITO)陽極做了改善處理,藉由開發的大氣壓電漿處理方式、氧化鎳(NiO)無機改質膜和開發了四氟化碳/氧(CF4/O2)混合型氣體電漿,效果更勝於傳統的氧氣(O2)電漿。 第二部分則是針對傳統雙層元件的缺點做改善,加入適當的電洞阻擋層可以大幅的增進元件效能,並利用多重激發子(exciton)或載子(carrier)侷限結構進一步改良三層元件的效能。 第三部分是利用TPD分子與BPhen或BCP分子複合所產生的特殊光電現象,異核複合分子(exciplex)與電致異核複合分子(electroplex),將元件設計為模糊接面(fuzzy-junction),我們可以發出不同於TPD與BPhen或BCP波長的光並達到相當高的亮度與效率。
    ITO為目前在平面顯示器上最廣為使用的透明導電電極,其具有相當好的導電性和在可見光區的高穿透率,但由於ITO的功函數(work function)相較於其它金屬氧化物仍屬偏低導致高能障(energy barrier)存在於ITO電極和有機層中,此一能障會阻礙電洞(hole)注入於元件之中。我們發展介電阻抗式(dielectric barrier discharge-DBD)大氣電漿處理ITO電極表面可以改善雙層元件的電流-電壓-輝度(I-V-L)特性,降低電流起始電壓,N,N'-Bis(3-methylphenyl)-N,N'- bis(phenyl)benzidine(TPD)/Tris-(8-Hydroxyquinolinol) Aluminum (Alq3) 雙層元件最大亮度從無電漿處理的6645 cd/m2 (12 V)提高到14238 cd/m2 (10.2 V),1cd/m2的亮度起始電壓從6.7 V降到4.5 V,流明效率(lm/W)比傳統的O2電漿提升40 %,以XPS光譜分析其Sn+4的濃度,我們提出了其可能的功函數增加機制。
    我們另外提出使用CF4/O2混合型電漿源來處理ITO電極表面將會比單純使用O2電漿得到更好的元件特性。 元件亮度到達1 cd/m2時為元件亮度起始電壓可以降到3.25 V,比O2的4.6 V更低,x-ray光電子分析儀(XPS)分析F 1s的鍵結能在685 eV表示F鍵結在ITO表面的銦(In)或是錫(Sn)上,導致一負電荷在外的偶極(dipole),進而增加表面的功函數。
    另一個改善方法是在ITO表面利用反應濺鍍製程鍍上一層約數奈米(nm)的高功函數薄膜,氧化鎳(NiO),如此一來可以讓此一複合式陽極同時具備高功函數和高穿透率。藉由此一方法元件的1 cd/m2亮度起始電壓可以進一步降至3 V以下,藉由單一電洞載子元件(hole-onlydevice)和選擇性在ITO上濺鍍NiO條狀圖案的元件製作,驗證了NiO的確對電洞的注入有大幅的幫助。
    元件使用雙層結構一般來說電洞會過多,如何有效的將電洞侷限在發光層中是一個高效能元件結構設計的首要重點。我們利用4,7-diphenyl-1, 10-phenanthroline (BPhen)相當低的最高已鍵結軌域能階(HOMO energy level-6.2 eV)可以有效的將電洞阻擋在發光層Alq3中,且其同時具備電子傳輸能力和不會對電子從陰極注入形成能障的優點,使用TPD/Alq3/BPhen三層簡單結構我們可以將元件起始電壓降到3 V左右並達到~60000 cd/m2 (11 V)的高亮度和5 cd/A的高效率。針對此一結構我們使用介電質火炬式(barrier-torch discharge plasma-BDP)大氣電漿系統進行ITO電極表面處理,最後我們可以得到2.5~3 V的低起始電壓和86100 cd/m2 (9.5 V)的超高亮度和平均>6 cd/A的高效率,這些結果都是目前非摻雜系統並單純使用Alq3當發光材料中的最高紀錄。
    BPhen雖然是一個相當好的電洞阻擋材料但是因為其具相當程度的平面結構,因此會有分子自我聚集現象產生(self-aggregation),材料Tg點相當低,影響元件效能。 利用甲基(methyl-group)對BPhen進行修飾可以得到另一個相當常用的電洞阻擋材料2,9-dimethyl-4,7 diphenyl-1,10- phenanthroline (BCP)。使用由TPD/Alq3/BCP三層所構成的元件,其效能不如使用BPhen來得突出,所以針對此一材料我們設計了多重量子井結構來侷限激發子和載子,最後可以得到2.5 V的低起始電壓,62800 cd/m2的高亮度平均超過6 cd/A的高效率,載子侷限效應被提出來解釋此一現象。
    具良好平面結構和相似的HOMO或LUMO能階的電洞傳輸材料和電子傳輸材料會形成異核複合分子(exciplex),一般被認為對元件有不良的影響,我們發現使用TPD和BPhen即會形成此一現象,我們利用模糊界面(fuzzy-junction)的結構設計大幅增加異核複合分子的產生,發展出利用此一現象發光的OLED元件,成功得到~480 nm波長的藍綠光,並非TPD或是BPhen約400 nm的紫外光,令人感到興趣的是此一元件的效能相當不錯,低亮度起始電壓約2.5~3 V,5440 cd/m2 (8.5 V)的高亮度和高效率(1.8 cd/A 或 1.4 lm/W在4 V),藉由光致激發光譜(PL)和吸收光譜(UV-Visible)的驗證的確是由異核複合分子發光,我們在EL的實驗另外發現了相當強且少見的電致異核複合分子(electroplex)現象,波長在~515 nm的綠光範圍,因為此一現象和外加電場有關,因此元件的發光波長會隨電壓的增加而從原先的藍綠光飄移到綠光,若是使用TPD和BCP系統則因為TPD*在此一系統較容易生成,尤其是高操作電壓,導致元件的發光波長會隨電壓的增加而從原先的藍光飄移到TPD*的藍紫光,顏色飄移現象相當明顯以致於可以直接由肉眼看見,相關機制亦被提出解釋此一特殊元件的電致發光行為。

    Three subjects on the organic light-emitting diodes (OLEDs) have been studied. The first is the modification of indium tin oxide (ITO) which was used as the anode of OLED device. By employing the following methods including the atmospheric pressure plasma treatment, the surface modification of ITO with nickel oxide (NiO) layer and the CF4/O2 mixture plasma treatment, the OLED device performance can be improved over conventional low pressure O2 plasma treatment. Besides, the bilayer OLED devices can be improved by adding a hole block layer (also as an electron transport layer) and further employing the multiple exciton confinement structure. Finally, the interesting interaction between TPD and BPhen or BCP molecules forming the exciplex and electroplex are studied. By using the fuzzy-junction structure design, a novel high performance OLED is developed based on the exciplex and electroplex emission.
    ITO has been the most common electrode material used in display application due to its high transparency and high conductivity. The work function of ITO was about 4.7 eV and sill not high enough as the OLED anode. The slightly lower work function of the ITO surface than TPD introduces a hole injection barrier between the electrode and the organic hole transport layer. By using the dielectric-barrier discharge (DBD) atmospheric plasma to treat the ITO surface, the I-V-L characteristic of the bilayer OLED device is improved. The turn-on voltage (1 cd/m2) is decreased to 4.5 V for the atmospheric plasma treatment and the maximum luminance is enhanced from 6645 to 14238 cd/m2. Meanwhile, the atmospheric plasma treatment exhibits a 40% increase of luminous efficiency and the mechanism of the increase of work function was proposed base on the reduction of Sn+4 concentration.
    The CF4/O2 mixture plasma treatment of the ITO surface was proposed to replace the traditional O2 plasma method. The device turn-on voltage was reduced to 3.3 V, lower than the conventional O2 plasma treatment (4.6 V). The bonding energy of fluorine (F 1s) is measured by XPS revealing that F was bounded to indium or tin and thus introducing surface dipole to increase work function.
    Another method of ITO surface treatment is the deposition of a very thin (1~2 nm) high work function inorganic layer, i.e. nickel oxide (NiO), on the ITO surface. By using the ITO/NiO composite anode, a high work function and high transparency anode can be simultaneously obtained and the device turn-on voltage is further reduced to <3V. The enhancement of the hole injection by NiO is further testified by the hole-only device and the device with the patterned NiO on the anode.
    With a pretty low HOMO (~6.2 eV) and a suitable LUMO energy levels, BPhen is employed as a hole-blocking layer as well as an electron-injection layer for the development of high performance trilayer OLEDs. A low turn-on voltage of 2.5 V, high luminance of about 60000 cd/m2 and high efficiency of more than 5.0 cd/A can be obtained by using the simple trilayer device configuration consisting of TPD/Alq3/BPhen. The performance of the trilayer device can be further improved by barrier-torch atmospheric plasma (BDP), including the reduction of the turn-on voltage down to 2.5 V to 3 V and the enhancement of maximum luminance to 86100 cd/m2. A very high average efficiency larger than 6 cd/A can be obtained from the trilayer device by using BDP in the ITO treatment. The values reported above are the highest values reported for the pure Alq3 emitter.
    Although BPhen is a suitable material for hole blocking, its thin film morphology is unstable due to planar molecular structure causing the aggregation of molecules. By adding methyl groups in 2, 9 position to modify BPhen, we can get another hole-blocking material, i.e. BCP. The methyl group will hinder BCP molecules from aggregation and result in stable layer morphology. However, the performance of trilayer device consisting of TPD/Alq3/BCP is not as good as that consisting of TPD/Alq3/BPhen. The multiple exciton confinement structure was further developed. Finally, a low turn-on voltage of 2.5 V, the high luminance of 63000 cd/m2 and the high average efficiency of more than 6 cd/A can be obtained by using the multiple exciton confinement structure. The carrier and exciton confinement mechanism was further proposed to explain I-V-L characteristics of the devices.
    A hole transport and an electron transport materials with good planar geometric structure and similar HOMO or LUMO levels will form exciplex, and are considered infavorable for OLEDs. However, by employing the fuzzy-junction structure, a novel OLED based on exciplex and electroplex emission was developed with broad emission ranging from 400 nm to 520 nm. The device owns a low turn-on voltage of 2.5~3 V, high luminance of 5440 cd/m2(8.5 V) and high efficiency (1.8 cd/A or 1.4 lm/W at 4 V). The photoluminescence (PL) and UV-Visible absorption spectra were used to show that the new emission peak was attributed to exciplex. Besides the TPD* emission (400 nm) and the TPD*-BPhen exciplex emission (480 nm), a strong electroplex emission of 515 nm was discovered in the fuzzy-junction device. A voltage-dependent electroluminescence (EL) spectrum was obtained with the greenish blue emission at a low voltage and the green emission at a high voltage. By using BCP in place of BPhen, the emission turns into blue color at a low voltage and purplish blue color at a high voltage. The variation of emission color is induced by the variation of the concentrations of excited monomolecules, exciplex and electroplex. The color variation visible by the naked eyes is observed for the first time.

    目錄 中文摘要 I 英文摘要 IV 致謝 VII 目錄 IX 表目錄 XIII 圖目錄 XIV 第一章 緒論 1 1-1前言 1 1-1-1 有機發光二極體的歷史簡介 1 1-1-2 有機發光二極體顯示器的最新發展 2 1-2研究動機與目的 4 1-3各章提要 5 1-4 參考文獻 13 第二章 理論基礎與文獻回顧 15 2-1 有機材料理論 15 2-1-1 軌域的形成 15 2-1-2 光化學理論背景 18 2-2 有機發光二極體元件理論 21 2-2-1 有機發光元件結構 21 2-2-2 有機電致發光元件常用的材料 24 2-2-2~1 電洞傳輸與電洞注入材料 24 2-2-2~2 電子傳輸材料 25 2-2-2~3 主體發光材料與摻雜發光材料 26 2-2-2~4 磷光發光材料與發光機制 28 2-2-3 載子的注入、傳導與複合 31 2-2-3~1 載子的注入 31 2-2-3~2 載子的傳導 32 2-2-3~3載子的複合 34 2-3-1有機發光二極體顯示器中的元件結構配置 36 2-3-2 有機發光二極體顯示器全彩化技術 37 2-3-3 有機發光二極體顯示器的驅動與封裝技術 37 2-4 參考文獻 60 第三章 實驗方法與步驟 67 3-1 實驗流程 67 3-2 實驗系統設計 68 3-2-1 高真空熱蒸鍍系統 (Thermal evaporation system) 68 3-2-1~1 抽氣系統 68 3-2-1~2 壓力監控系統 68 3-2-1~3 薄膜厚度監控系統 68 3-2-1~4 系統加熱裝置 69 3-2-2 反應磁控濺鍍系統 (Reaction magnetron sputter system) 69 3-2-2~1 抽氣系統 69 3-2-2~2 壓力監控系統 69 3-2-2~3 系統加熱裝置 70 3-2-2~4 流量控制系統 70 3-2-2~5 濺鍍槍電源供應與電漿產生電源供應 70 3-2-3 大氣壓電漿處理系統 (Atmospheric pressure plasma system) 70 3-2-4 有機發光二極體元件量測系統 (OLEDs measurement system) 71 3-3 實驗材料 71 3-3-1 基板材料 71 3-3-2 有機材料 71 3-3-3 無機材料 72 3-3-4 金屬材料 72 3-3-5 濺鍍靶材材料 72 3-3-6 基板清洗溶劑及實驗氣體 72 3-4 實驗步驟 73 3-4-1 ITO陽極圖案定義 73 3-4-2 ITO基板濕式前處理之實驗步驟 73 3-4-3 ITO基板低壓氧電漿處理實驗步驟 73 3-4-4 ITO基板沈積氧化鎳(NiO)薄膜膜實驗步驟 74 3-4-5 真空蒸鍍之實驗步驟 74 3-5 表面分析與材料鑑定 75 3-5-1 鍍膜膜厚的測定 75 3-5-2 薄膜結構鑑定 75 3-5-3 薄膜光電性質量測 75 3-5-4 有機薄膜螢光性質量測 76 3-5-5 薄膜組成及表面鍵結型態分析 76 3-5-6 薄膜表面型態分析 76 3-6 元件特性量測與數據計算 76 第四章 氧化銦錫(ITO)表面改質對元件效能之影響 82 4-1 前言 82 4-2 介電阻抗式大氣電漿(dielectric barrier discharge-DBD)處理ITO電極表面 84 4-2-1 不同電漿形式處理ITO電極表面對OLED元件特性的影響 84 4-2-2 x-ray光電子光譜儀(XPS)分析與機制探討 86 4-3 四氟化碳/氧(CF4/O2)混合型電漿處理ITO電極表面 87 4-3-1 不同氣體電漿源處理ITO表面 87 4-3-2 不同CF4/O2濃度及不同壓力下處理ITO表面 88 4-3-3 x-ray光電子光譜儀(XPS)分析與機制探討 89 4-4 氧化鎳(NiO)薄膜改質ITO電極表面 91 4-4-1 氧化鎳(NiO)的製備與結構組成分析 91 4-4-2 氧化鎳(NiO)改質層對雙層元件特性的影響 93 4-4-3 氧化鎳(NiO)改質層對單層元件特性的影響 95 4-4-4 加入電子傳輸層(電洞阻擋層)對元件特性的影響 96 4-5 參考文獻 116 第五章 高效能三層元件結構設計與製作 120 5-1 前言 120 5-2 BPhen電洞阻擋層對元件的影響 121 5-2-1 發光層厚度對三層元件特性的影響 121 5-2-2三層元件與雙層元件的特性比較 123 5-3 BCP電洞阻擋層對元件的影響與多層激發子侷限結構 125 5-3-1 BCP層厚度對三層元件特性的影響 125 5-3-2 多層激發子侷限結構對元件特性的影響 126 5-4 介電質火炬式大氣電漿(barrier-torch discharge plasma-BDP)處理ITO電極表面 129 5-4-1 BDP改質ITO表面對三層結構元件之影響 129 5-4-2 結果討論與文獻上高效能元件比較 131 5-5 高效率異核複合分子(exciplex)與電致異核複合分子(electroplex)有機發光元件 134 5-5-1 有機薄膜吸收光譜與光致激發光譜 134 5-5-2 單一接面exciplex元件 136 5-5-3 模糊接面exciplex元件與electroplex的產生 137 5-5-4 TPD/BCP雙層元件接面的光電現象 139 5-6 參考文獻 178 第六章 總結論 181 自述 187 著作 187

    第一章
    [1] J. R. Sheats, H. Antoniadis, M. Hueschen, W. Leonard, J. Miller, R. Moon, D. Roitman, and A. Stocking, Science, 273, 884 (1996).
    [2] P. Pope, H. P. Kallmann ,and P. J. Magnante, J. Chem. Phys., 38, 2042 (1963).
    [3] W. Helfrich, and W. G. Schneider, Phys.Rev. Lett., 14, 229 (1965).
    [4] D. F. Williams, and M. Schadt, Proc. IEEE, 58, 476 (1970).
    [5] C. W. Tang, and S. A. VanSlyke, Appl. Phys. Lett., 51, 913 (1987).
    [6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, and A. B. Holmes, Nature, 347, 539 (1990).
    [7] M. J. Flynn, J. Kanicki, A. Badano, and W. R. Eyler, Imaging & Therapeutic Technology, 19, 1653 (1999).
    [8] G. Mueller, Electroluminescence I-Semiconductor and Semimetals Vol. 64, Academic Press, San Diego, CA USA, 209 (2000).
    [9] H. Aziz, Z. D. Popovic, and N. X. Hu, Appl. Phys. Lett., 81, 370 (2002).
    [10] H. Vestweber, and W. Rie, Synth. Met., 91, 181 (1997).
    [11] Z. L. Zhang, X. Y. Jiang, S. H. Xu, T. Nagatomo, and O. Omoto, Synth. Met., 91, 131 (1997).
    [12] C. Hosokawa, M. Eida, M. Matsuura, K. Fukuoka, H. Nakamura, T. Kusumoto, Synth. Met., 91, 3 (1997).
    [13] H. Kobayashi, S. Kanbe, S. Seki, H. Kigchi, M. Kimura, I. Yudasaka, S. Miyashita, T. Shimoda, C. R. Towns, J. H. Burroughes, and R. H. Friend, Synth. Met., 111-112, 125 (2000).
    [14] C. D. Müller, A. Falcou, N. Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, and K. Meerholz, Nature, 421, 829 (2003).
    [15] Y. H. Taka, C. N. Kima, M. S. Kima, K. B. Kima, M. H. Leeb, and S. T. Kima, Synth. Met., 138, 497 (2003).
    [16] H. Kubota, S. Miyaguchi, S. Ishizuka, T. Wakimoto, J. Funaki, Y. Fukuda, T. Watanabe, H. Ochi, T. Sakamoto, T. Miyake, M. Tsuchida, I. Ohshita, and T. Tohma, J. Luminescence, 87-89, 56 (2000).
    [17] P. E Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, L. Michalski, M. Weaver, J. J. Brown, D. Fogarty, and L.S. Sapochak, SPIE Annual Meeting, 1 (8/30/2000).
    [18] M. S. Weaver, L. A. Michalski, K. Rajan, M. A. Rothman, J. A. Silvernail, J. J. Brown, P. E. Burrows, G. L. Graff, M. E. Gross, P. M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, and M. Zumhoff, Appl. Phys. Lett., 81, 2929 (2002).
    [19] http://china.nikkeibp.co.jp

    第二章
    [1] L. G. Wade, Jr., Organic Chemistry, Prentice-Hall, Inc., New Jersey, USA, 3 (1995).
    [2] http://chemweb.calpoly.edu
    [3] http://www.ipfw.edu/
    [4] http://www.chem.qmul.ac.uk/software/download/mo/
    [5] N. J. Turro, Modern Molecular Photochemistry, University science books, Mill Valley, California, USA, 18 (1991).
    [6] http://www.hut.fi/English/
    [7] R. G. Kepler, P. M. Beeson, S. J. Jacobs, R. A. Anderson, M. B. Sinclair, V. S. Valencia, and P. A. Cahill, Appl. Phys. Lett., 66, 3618 (1995).
    [8] P. W. M. Blom, M. J. M. de Jong, and M. G. van Munster, Phys. Rev. B, 55, R656 (1997).
    [9] P. R. L. Malenfant, C. D. Dimitrakopoulos, J. D. Gelorme, L. L. Kosbar, and T. O. Graham, Appl. Phys. Lett., 80, 2517 (2002).
    [10] H. Murata1, G. G. Malliaras, M. Uchida, Y. Shen, and Z. H. Kafafi1, Mat. Res. Soc. Symp. Proc., 665, C6.3.1 (2001).
    [11] M. Matsumura, T. Akai, and M. Saito, Jpn. J. Appl. Phys., 35, 3468 (1996).
    [12] D. Troadec, G. Veriot, R. Antony, and A. Moliton, Synth. Met., 124, 49 (2001).
    [13] D. Ammermann, A. Böhler, and W. Kowalsky, Annual report, Institut für Hochfrequenztechnik, TU Braunschweig, 48 (1995).
    [14] A. L. Burin, and M. A. Ratner, J. Phys. Chem. A, 4704 (2000).
    [15] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. Part 2, 27, L269 (1988).
    [16] C. Adachi, S. Tokito, T. Tsutsui, and S. Saito, Jpn. J. Appl. Phys. Part 2, 27, L713 (1988).
    [17] W. B. Im, H. K. Hwang, J. G. Lee, K. Han, and Y. Kim, Appl. Phys. Lett., 79, 1387 (2001).
    [18] M. Fujihira, L. M. Do, A. Koike, and E. M. Han, Appl. Phys. Lett., 68, 1787 (1996).
    [19] Y. Sato, S. Ichinosawa, and H. Kanai, IEEE J. Sel. Top. Quant., 4, 40 (1998).
    [20] W. Rieß, H. Riel, P. F. Seidler, and H. Vestweber, Synth. Met., 99, 213 (1999).
    [21] Y. Shirota, M. Kinoshita, and K. Okumoto, Proc. SPIE, 4464, 203 (2002).
    [22] M. Ikaia, S. Tokitob, Y. Sakamoto, T. Suzuki, and Y. Taga, Appl. Phys. Lett., 79, 156 (2001).
    [23] M. Pfeiffer, A. Beyer, T. Fritz, and K. Leo, Appl. Phys. Lett., 73, 3202 (1998).
    [24] J. Blochwitz, M. Pfeiffer, T. Fritz, and K. Leo, Appl. Phys. Lett., 73, 729 (1998).
    [25] X. Zhou, M. Pfeiffer, J. Blochwitz, A. Werner, A. Nollau, T. Fritz, and K. Leo, Appl. Phys. Lett., 78, 410 (2001).
    [26] A. Nollau, M. Pfeiffer, T. Fritz, and K. Leo, J. Appl. Phys., 87, 4340 (2000).
    [27] A. G. Werner, F. Li, K. Harada, M. Pfeiffer, T. Fritz, and K. Leo, Appl. Phys. Lett., 82, 4495 (2003).
    [28] J. Kido, and T. Matsumoto, Appl. Phys. Lett., 73, 2866 (1998).
    [29] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, S. Liu, Appl. Phys. Lett., 80, 139 (2002).
    [30] X. Zhou, M. Pfeiffer, J. S. Huang, J. B. Nimoth, D. S. Qin, A. Werner, J. Drechsel, B. Maennig, and K. Leo, Appl. Phys. Lett., 81, 922 (2002).
    [31] E. M Han, L. M. Do, N. Yamamoto, M. Fujihira, Thin Solid Films, 273, 202 (1996).
    [32] M. Carrarda, S. G. Contoa, L. S. Ahmeda, D. Adés, and A. Siove, Thin Solid Films, 352, 189 (1999).
    [33] J. Cui, Q. Huang, J. C. G. Veinot, H. Yan, Q. Wang, G. R. Hutchison, A. G. Richter, G. Evmenenko, P. Dutta, and T. J. Marks, Langmuir, 18, 9958, (2002).
    [34] J. E. Malinsky, J. G. C. Veinot, G. E. Jabbour, S. E. Shaheen, J. D. Anderson, P. Lee, A. G. Richter, A. L. Burin, M. A. Ratner, T. J. Marks, N. R. Armstrong, B. Kippelen, P. Dutta, and N. Peyghambarian, Chem. Mater., 14, 3054 (2002).
    [35] J. Cui, Q. Huang, Q. Wang, and T. J. Marks, Langmuir, 17, 2051, (2001).
    [36] J. Cui, Q. Huang, J. C. G. Veinot, H. Yan, and T. J. Marks, Adv. Mater., 14, 565 (2002).
    [37] Q. Huang, J. Cui, J. G. C. Veinot, H. Yan, and T. J. Marks, Appl. Phys. Lett., 82, 331 (2003).
    [38] Q. Huang, J. Cui, H. Yan, J. G. C. Veinot, and T. J. Marks, Appl. Phys. Lett., 81, 3528 (2002).
    [39] C. W. Tang, S. A. VanSlyke, and C. H. Chen, J. Appl. Phys., 65, 3610 (1989).
    [40] A. A. Shoustikov, Y. You, and M. E. Thompson, IEEE J. Sel. Top. Quant., 4, 3 (1998).
    [41] T. Sano, Y. Hamada, and K. Shibata, IEEE J. Sel. Top. Quant., 4, 34 (1998).
    [42] M. A. Baldo, D. F. O'Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151 (1998).
    [43] 黃春輝, 李富友, 黃岩誼, 光電功能超薄膜, 北京大學出版社, 北京, 中國, 258 (2001).
    [44] K. Yamashita, T. Mori, T. Mizutani, H. Miyazaki, and T. Takeda, Thin Solid Films, 33, 363 (2000).
    [45] C. Adachi, K. Nagai, and N. Tamoto, Appl. Phys. Lett., 66, 2679 (1995).
    [46] Y. Shirata, Y. Kuwabara, D. Okuda, R. Okuda, H. Ogawa, H. Inada, T. Wakimoto, H. Nakada, Y. Yonemoto, S. Kawami, and K. Imai, J. Lumine,. 72-74, 985 (1997).
    [47] Y. Shirota, K. Okumoto, H. Inada, Synth. Met., 111-112, 387 (2000).
    [48] J. Kido and Y. Iizumi, Chem. Lett., 26, 963 (1997).
    [49] H. Murata, Z. H. Kafafi, and M. Uchida, Appl. Phys. Lett., 80, 189 (2002).
    [50] C.H. Chen, C.W. Tang, J. Shi, and K.P. Klubek, Thin Solid Films, 363, 327 (2000).
    [51] Y. Hamada, H. Kanno, T. Tsujioka, H. Takahashi, and T. Usuki, Appl. Phys. Lett., 75, 1682 (1999).
    [52] X. H. Zhang, B. J. Chen, X. Q. Lin, O. Y. Wong, C. S. Lee, H. L. Kwong, S. T. Lee, and S. K. Wu, Chem. Mater., 13, 1565 (2001).
    [53] K. R. J. Thomas, J. T. Lin, Y. T. Tao, C. H. Chuen, Adv. Mater., 14, 822 (2002).
    [54] C. H. Chen, J. Shi, Coord. Chem. Rev., 171, 161 (19989).
    [55] C. H. Chen, C. W. Tang, Appl. Phys. Lett., 79, 3711 (2001).
    [56] Y. Kijima, N. Asai, and S. I. Tamura, Jpn. J. Appl. Phys., 38, 5274 (1999).
    [57] C. Hosokawa, H. Higashi, H. Nakamura, and T. Kusumoto, Appl. Phys. Lett., 67, 3853 (1995).
    [58] Y. Li, M. K. Fung, Z. Xie, S. T. Lee, L. S. Hung, and J. Shi, Adv. Mater., 14, 1317 (2002).
    [59] X. Y. Jiang, Z. L. Zhang, X. Y. Zheng, Y. Z. Wu, and S. H. Xu, Thin Solid Films, 401, 251 (2001).
    [60] L. M. Leung, W. Y. Lo, S. K. So, K. M. Lee, and W. K. Choi, J. Am. Chem. Soc., 122, 5640 (2000).
    [61] Y. Liu, J. Guo, J. Feng, H. Zhang, Y. Li, and Y. Wang, Appl. Phys. Lett., 78, 1200 (2001).
    [62] Y. Kim, J. G. Lee, and S. Kim, Adv. Mater., 11, 1463 (1999).
    [63] Z. Gao, C. S. Lee, I. Bello, S. T. Lee, R. M. Chen, T. Y. Luh, J. Shi and C. W. Tang, Appl. Phys. Lett., 74, 865 (1999).
    [64] H. T. Shih, C. H. Lin, H. H. Shih, and C. H. Cheng, Adv. Mater., 14, 1409 (2002).
    [65] C. C. Wu, Y. T. Lin, H. H. Chiang, T. Y. Cho, C. W. Chen, K. T. Wong, Y. L. Liao, G. H. Lee, and S. M. Peng, Appl. Phys. Lett., 81, 577 (2002).
    [66] P. K. H. HO, J. S. Kim, J. H. Burroughes, H. Becker, S. F. Y. Li, T. M. Brown, F. Cacialli, and R. H. Friend, Nature, 404, 481 (2000).
    [67] Y. Cao, I. D. Parker, G. Yu, C. Zhang, and A. J. Heeger, Nature, 397, 414 (1999).
    [68] R. Farchioni, G. Grosso, Organic Electronic Materials: Conjugated Polymers and Low molecular Weight Organic Solids, Springer-Verlag Berlin Heidelberg, Germany, 404 (2001).
    [69] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, and S. R. Forrest, Nature, 395, 151 (1998).
    [70] D. F. O’Brien, M. A. Baldo, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 74, 442 (1999).
    [71] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, and S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
    [72] C. Adachi, M. A. Baldo, M. E. Thompson, and S. R. Forrest, J. Appl. Phys., 90, 5048 (2001).
    [73] M. A. Baldo, M. E. Thompson, and S. R. Forrest, Nature, 403, 750 (2000).
    [74] M. A. Baldo, C. Adachi, and S. R. Forrest, Phys. Rev. B, 62, 10967 (2000).
    [75] http://www.cam.ac.uk
    [76] J. Kalinowski, J. Phys. D: Appl. Phys., 32, R179 (1999).
    [77] U. Wolf, V. I. Arkhipov, and H. Bässler, Phys. Rev. B, 59, 7507 (1999).
    [78] S. Barth, P. Müller, H. Riel, P.F. Seidler, W. Rieß, H. Vestweber, U. Wolf , and H. Bässler, Synth. Met., 111-112, 327 (2000).
    [79] M. Pope, and C. E. Swenberg, Electronic Processes in Organic Crystals and Polymers, Oxford University Press, New York, 379 (1999).
    [80] S. Miyata, and H. S. Nalwa, Organic Electroluminescence Materials and Devices, Golden and Breach Science Publishers, Netherlands, 415 (1997)
    [81] P. E. Burrows, Z. Shen, V. Bulovic, D. M. McCarty, and S. R. Forrest, J. Appl. Phys., 79, 7991 (1996).
    [82] http://hackman.mit.edu
    [83] G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, and M. E. Thompson, Opt. Lett., 22, 396 (1997).
    [84] N. K. Patel, S. Cinà, and J. H. Burroughes, IEEE J. Sel. Top. Quant., 8, 346 (2002).
    [85] T. Tsutsui, M. Yahiro, H. Yokogawa, K. Kawano, and M. Yokoyama, Adv. Mater., 13, 1149 (2001).
    [86] H. Yokogawa, K. Kawano, M. Yokoyama1, T. Tsutsui, M. Yahiro, and Y. Shigesato, Mat. Res. Soc. Symp. Proc., 660, JJ5.19.1 (2001).
    [87] S. Möller and S. R. Forrest, J. Appl. Phys., 91, 3324 (2002).
    [88] Y. J. Lee, S. H. Kim, J. Huh, G. H. Kim, Y. H. Lee, S. Hwan Cho, Y. C. Kim, and Y. R. Do, Appl. Phys. Lett., 82, 3779 (2003).
    [89] Y. R. Do, Y. C. Kim, Y. W. Song, C. O. Cho, H. Jeon, Y. J. Lee, S. H. Kim, and Y. H. Lee, Adv. Mater., 15, 1214 (2003).
    [90] I. Schnitzer, E. Yablonovitch, C. Caneau, T. J. Gmitter, and Scherer, Appl. Phys. Lett., 63, 2174 (1993).
    [91] A. Köhler, J. S. Wilson, and R. H. Friend, Adv. Mater., 14, 701 (2002).
    [92] P. Servati, S. Prakash, A. Nathan, and C. Py, J. Vac. Sci. Technol. A, 20, 1347 (2002).
    [93] V. Bulović, P. Tian,,M. R. Gokhale, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 70, 2954 (1997).
    [94] G. Gu, V. Bulović, P. E. Burrows, S. R. Forrest, and M. E. Thompson, Appl. Phys. Lett., 68, 2606 (1996).
    [95] A. Yamamori, S. Hayashi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett., 78, 3343 (2001).
    [96] H. Riel, S. Karg, T. Beierlein, W. Rieß, and K. Neyts, J. Appl. Phys., 94, 5290 (2003).
    [97] http://www.sony.com
    [98] Z. Shen, P. E. Burrows, V. Bulović , S. R. Forrest, and M. E. Thompson, Science, 276, 2009 (1997).
    [99] http://www.cdtltd.co.uk
    [100] H. Huiberts, P. v. d. Weijer, M. Büchel, M. d. Kok, S. Vulto, and, Eric, Mat. Res. Soc. Symp. Proc., 708, BB6.10.1 (2002).
    [101] L. Berthelot, J. Tardy, M. Garrigues, P. Cremillieu, J. Joseph, and, B. Masenelli, Opt. Mater., 12, 261 (1999)
    [102] H. Kubota, S. Miyaguchi, S. Ishizuka, T. Wakimoto, J. Funaki, Y. Fukuda, T. Watanabe, H. Ochi, T. Sakamoto, T. Miyake, M. Tsuchida, I. Ohshita, and T. Tohma, J. Lumine., 87-89, 56 (2000).
    [103] S. Kho, D. Cho, and D. Jung, . Jpn. J. Appl. Phys., 41, L1336 (2002).
    [104] S. H. Kwon, S. Y. Paik, O. J. Kwon, and J. S. Yoo, Appl. Phys. Lett., 79, 4450 (2001).
    [105] K Yamashita, T Mori, and T Mizutani, J. Phys. D: Appl. Phys., 34, 740 (2001).
    [106] P. E Burrows, G. L. Graff , M. E. Gross, P.M. Martin, M. Hall, E. Mast, C. Bonham, W. Bennett, L. Michalski, M. Weaver, J.J. Brown, D. Fogarty, L.S. Sapochak, SPIE Annual Meeting (2000).

    第四章
    [1] F. Niino, H. Hirasawa, and K. Kondo, Thin Solid Films, 411, 28 (2002).
    [2] T.C. Gorjanc, D. Leong , C. Py , and D. Roth, Thin Solid Films, 413, 181 (2002).
    [3] P. F. Carcia, R. S. McLean, M. H. Reilly, and Z. G. Li, Appl. Phys. Lett., 81, 1800 (2002).
    [4] M. A. Morales-Paliza, R. F. Haglund, Jr., and L. C. Feldman, Appl. Phys. Lett., 80, 3757 (2002).
    [5] Y. Park, V. Choong, Y. Gao, B. R. Hsieh, and C. W. Tang, Appl. Phys. Lett., 68, 2699 (1996).
    [6] K. Sugiyama, H. Ishii, Yukio Ouchi, and K. Seki, J. Appl. Phys., 87, 295 (2000).
    [7] X. M. Ding, L. M. Hung, L. F. Cheng, Z. B. Deng, X. Y. Hou, C. S. Lee, and S. T. Lee, Appl. Phys. Lett., 76, 2704 (2000).
    [8] R. G. Gordon, MRS bulletin, august, 52 (2000).
    [9] T. Minami, MRS bulletin, august, 38 (2000).
    [10] Y. Yang, E. Westerweele, C. Zhang, P. Smith, and A. J. Heeger, J. Appl. Phys., 77, 694 (1995).
    [11] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. J. Merks, Adv. Mater., 13, 1476 (2001).
    [12] J. Zhao, S. Xie, S. Han, Z. Yang, L. Ye, and T. Yang, Synth. Met., 114, 251 (2000).
    [13] H. Kim, J. S. Horwitz, G. P. Kushto, S. B. Qadri, Z. H. Kafafi, and D. B. Chrisey, Appl. Phys. Lett., 78, 1050 (2001).
    [14] A. Andersson, N. Johansson, P. Bröms, N. Yu, D. Lupo, and R. Salaneck, Adv. Mater., 10, 859 (1998).
    [15] A. Yamamori, S. Hayashi, T. Koyama, and Y. Taniguchi, Appl. Phys. Lett., 78 3343 (2001).
    [16] H. Kawazoe, M. Yasukawa, H. Hyodo, M. Kurita, H. Yanagi, and H. Hosono, Nature, 389, 939 (1997).
    [17] C. C. Wu, C. I. Wu, J. C. Sturm, and A. Kahn, Appl. Phys. Lett., 70, 1348 (2001).
    [18] B. Low, F. Zhu, K. Zhang, and S. Chua, Appl. Phys. Lett., 80, 4659 (2002).
    [19] J. S. Kim, M. Granström, R. H. Friend, N. Johansson, W. R. Salaneck, R. Daik, W. J. Feast, and F. Cacialli, J. Appl. Phys., 84, 6859 (1998).
    [20] D. J. Milliron I. G. Hill, C. Shen, A. Kahn, and J. Schwartz, J. Appl. Phys., 87, 572 (2000).
    [21] I. H. Campbell, S. Rubin, T. A. Zawodzinski, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov and J. P. Ferraris, Phys. Rev. B, 54, R14321 (1996).
    [22] F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, Appl. Phys. Lett., 70, 2741 (1997).
    [23] S. K. So, W. K. Choi, C. H. Cheng, L. M. Leung, and C. F. Kwong, Appl. Phys. A: Mater. Sci. Process., A68, 447 (1999).
    [24] S. F. J. Appleyard, and M. R. Willis, Opt. Mater,. 9, 120 (1998).
    [25] I. H. Campbell, J. D. Kress, R. L. Martin, D. L. Smith, N. N. Barashkov and J. P. Ferraris, Appl. Phys. Lett., 71, 3528 (1997).
    [26] B. Choi, H. Yoon, and H. H. Lee, Appl. Phys. Lett., 76, 412 (2000).
    [27] S. A. Van Slyke, C. H. Chen, and C. W. Tang, Appl. Phys. Lett., 69, 2160 (1996).
    [28] S. Karg, J. C. Scot, J. R. Salem, and M. Angelopoulos, Synth. Met., 80, 111 (1996).
    [29] S. A Carter, M. Angelopoulos, S. Karg, P. J. Brock, and J. C. Scot, Appl. Phys. Lett, 70, 2067 (1997).
    [30] L. S. Hung, L. R. Zheng, and M. G. Mason, Appl. Phys. Lett., 78, 673 (2001).
    [31] H. Conrads, and M. Schmidt, Plasma Sources Sci. Technol., 9, 441 (2000).
    [32] A. Schütze, J. Y. Jeong, S. E. Babayan, J. Park, G. S. Selwyn, and R. F. Hicks, IEEE Trans. Plasma Sci., 26, 1685 (1998).
    [33] B. Eliasson, and U. Kogelschatz, IEEE Trans. Plasma Sci., 19, 1063 (1991).
    [34] B. Eliasson, M. Hirth, and U. Kogelschatz, J. Phys. D: Appl. Phys., 20, 1421 (1987).
    [35] H. Y. Yu, X. D. Feng, D. Grozea, Z. H. Lua, R. N. S. Sodhi, A-M. Hor and H. Aziz, Appl. Phys. Lett., 78, 2595 (2001).
    [36] M. Ishii, T. Mori, H. Fujikawa, S. Tokito, and Y. Taga, J. Lumin., 87, 1165 (2000).
    [37] K. Furukawa, Y. Terasaka, H. Heda, and M. Matsumura, Synth. Met., 91, 99 (1997).
    [38] T. Osada, Th. Kugler, P. Bröms, and W. R. Salaneck, Synth. Met., 96, 77 (1998).
    [39] I. D. Parker, J. Appl. Phys., 75, 1656 (1994).
    [40] B. Choi, H. Yoon, and H. H. Lee, Appl. Phys. Lett., 76, 412 (2000).
    [41] M. G. Mason, L. S. Hung, C. W. Tang, S. T. Lee, K. W. Wong, and M. Wang, J. Appl. Phys., 86, 1688 (1999).
    [42] X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W. R. Salaneck, and J. L. Brédas, J. Am. Chem. Soc., 124, 8131 (2002).
    [43] P. Sigaud, J. N. Chazalviel, and F. Ozanam, J. Appl. Phys.,92, 992 (2002).
    [44] C. Ganzorig, K. J. Kwak, K. Y. , and M. Fujihira, Appl. Phys. Lett., 79, 272 (2001).
    [45] Y. Kurosaka, N. Tada, Y. Ohmori, and K. Yoshino, Synth. Met., 102, 1101 (1999).
    [46] Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, Appl. Phys. Lett., 74, 2227 (1999).
    [47] H. Sato, T. Minami, S. Takata, and T. Yamada, Thin Solid Films, 236, 27 (1993).
    [48] R. H. Horng, D. S. Wuu, Y. C. Lien, and W. H. Lan, Appl. Phys. Lett., 79, 2925 (2001).
    [49] J. Olivier, B. Servet, M. Vergnolle, M. Mosca, and G. Garry, Synth. Met., 122, 87 (2001).
    [50] G. Wakefield, P. J. Dobson, J. L. Hutchison, and Y. Y. Foo, Mater. Sci. Eng., B51, 141 (1998).
    [51] I. Hotový, J. Huran, J. Janík, and A. P. Kobzev, Vacuum, 51, 157 (1998).
    [52] S. R. Jiang, B. X. Feng, P. X. Yan, X. M. Cai, and S. Y. Lu, Appl. Surf. Sci., 174, 125 (2001).
    [53] P. W. M. Blom, M. J. M. de Jong, and J. J. M. Vleggaar, Appl. Phys. Lett., 68, 3308 (1996).
    [54] C. J. Lee, D. G. Moon, J. I. Han, N. H. Park, S. H. Baik and S. S. Ju, SID 03 digest, 533 (2003).
    [55] W. Hu, K. Manabe, T. Furukawa, and M. Matsumura, Appl. Phys. Lett., 80, 2640 (2002).
    [56] W. Hu, and M. Matsumura, Appl. Phys. Lett., 81, 806 (2002).
    [57] H. Nakada, S. Kawami, K. Nagayama, Y. Yonemoto, R. Murayama, J. Funaki, T. Wakimoto, and K. Imai, Polym. Prepr. Jpn., 43, 2450 (1994).
    [58] Q. Huang, J. Cui, H. Yan, J. G. C. Veinot, and T. J. Marks, Appl. Phys. Lett., 81, 3528 (2002).
    [59] C. Qiu, H. Chen, M. Wong, and H. S. Kwok, IEEE Trans. Electron Devices, 49, 1540 (2002).

    第五章
    [1] H. Antoniadis, J. N. Miller, D. B. Roitman, and I. H. Cambell, IEEE Trans. Electron Devices, 44, 1289 (1997).
    [2] S. Barth , P. Müller, H. Riel, P.F. Seidler, W. Rieß, H. Vestweber, U. Wolf, H. Bässler, Synth. Met., 111-112, 327 (2000).
    [3] M. Matsumura and Y. Jinde, IEEE Trans. Electron Devices, 44, 1229 (1997).
    [4] M. Matsumura and Y. Jinde, Synth. Met., 91, 197 (1997).
    [5] E. Aminaka, T. Tsutsui, and S. Saito, J. Appl. Phys.,79, 8808 (1996).
    [6] Y. Matsuda, C. Ganzorig, and M. Fujihira, Asia Disaply/IDW’01, Nagoya, Japan, 1475 (2001).
    [7] M. S. Liu, X. Jiang, S. Liu, P. Herguth, and A. K.-Y. Jen, Macromolecules, 35, 3532 (2002).
    [8] B. W. D’Andrade and S. R. Forrest, J. Appl. Phys., 94, 3101 (2003).
    [9] V. Adamovich, J. Brooks, A. Tamayo, A. M. Alexander, P. I. Djurovich, B. W. D’Andrade, C. Adachi, S. R. Forrest and M. E. Thompson, New J. Chem., 26, 1171 (2002).
    [10] L. B. Lin, S. A. Jenekhe, R. H. Young, and P. M. Borsenberger, Appl. Phys. Lett., 70, 2052 (1997).
    [11] D. Z. Garbuzov, V. Bulović, P. E. Burrows, and P. E. Forest, Chem. Phys. Lett., 249, 433 (1996).
    [12] Q. Xu, J. Ouyang, Y.Yang, T. Ito and J. Kido, Appl. Phys. Lett., 83, 4695 (2003).
    [13] Y. Kijima, N. Asai, and S. I. Tamura, Jpn. J. Appl. Phys., 38, 5274 (1999).
    [14] V. Kapička, M. Šícha, M. Klíma, Z. Hubička, J. Touŝ, A. Brablec, P. Slavíček, J. F. Behnke, M. Tichý and R. Vaculík, Plasma Sources Sci. Technol., 8, 15 (1999).
    [15] Z. Hubička, M. Čada, M. Šícha, A. Churpita, P Pokorný, L. Soukup, and L. Jastrabík, Plasma Sources Sci. Technol., 11, 195 (2002).
    [16] A. Churpita, Z. Hubička, M. Čada, D. Chvostová, L. Soukup, L. Jastrabík, P. Ptáček, Surf. Coat. Technol., 174-175, 1059 (2003).
    [17] C. Ganzorig ,and M. Fujihira, Appl. Phys. Lett., 81, 3137 (2002).
    [18] J. Kido ,and T. Matsumoto, Appl. Phys. Lett., 73, 2866 (1998).
    [19] B. W. D’Andrade, S. R. Forrest ,and A. B. Chwang, Appl. Phys. Lett., 83, 3858 (2003).
    [20] J. Kido, and Y. Iizumi, Appl. Phys. Lett., 73, 2721 (1998).
    [21] J. Huang, M. Pfeiffer, A. Werner, J. Blochwitz, K. Leo, and S. Liu, Appl. Phys. Lett., 80, 139 (2002).
    [22] Q. Huang, J. Cui, J. G. C. Veinot, H. Yan, and T. J. Marks, Appl. Phys. Lett., 82, 331 (2003).
    [23] D. Heithecker, A. Kammoun, T. Dobbertin, T. Riedl, E. Becker, D. Metzdorf, D. Schneider, H. H. Johannes, and W. Kowalsky, Appl. Phys. Lett., 82, 4178 (2003).
    [24] www.cdtltd.co.uk
    [25] R.B. Fletcher, D.G. Lidzey, D.D.C. Bradley, S. Walker, M. Inbasekaran, E. P. Woo, Synth. Met., 111-112, 151 (2000).
    [26] M. A. Baldo, S. Lamansky, P. E. Burrows, M. E. Thompson, S. R. Forrest, Appl. Phys. Lett., 75, 4 (1999).
    [27] H. N. Lin, S. H. Chen, G. Y. Perng ,and Show-An Chen, J. Appl. Phys., 89, 3976 (2001).
    [28] N. J. Turro, Modern Molecular Photochemistry, University Science Books, California, USA, 1991.
    [29] P. Suppan, Chemistry and Light, The Royal Society of Chemistry, Cambridge, UK, 1994.
    [30] L. C. Palilis, A. J. Mäkinen, M. Uchida, Z. H. Kafafi, Appl. Phys. Lett., 82, 2209 (2003).
    [31] B. Chen, X. H. Zhang, X. Q. Lin, H. L. Kwong, N. B. Wong, C. S. Lee, W. A. Gambling, S. T. Lee, Synth. Met., 118, 193 (2001).
    [32] J. F. Wang, Y. Kawabe, S. E. Shaheen, M. M. Morrel, G. E. Jabbour, P. A. Lee, J. Anderson, N. R. Armstrong, B. Kippelen, E. A. Mash, N. Peyghambarian, Adv. Mater., 10, 230 (1998).
    [33] T. Granlund, L. A. A. Pettersson, M. R. Anderson, O. Inganäs, J. Appl. Phys., 81, 8097 (1997).
    [34] G. Giro, M. Cocchi, J. Kalinowski, P. D. Marco, V. Fattori, Chem. Phys. Lett., 318, 137 (2000).
    [35] J. Kalinowski, M. Cocchi, P. D. Marco, W. Stampor, G. Giro, V. Fattori, J. Phys. D, 33, 2379 (2000).
    [36] B. W. D’Andrade, J. Brooks, V. Adamovich, M. E. Thompson, S. R. Forrest, Adv. Mater., 14, 1032 (2002).
    [37] J. Feng, F. Li, W. Gao, S. Liu, Y. Liu, Y. Wang, Appl. Phys. Lett., 78, 3947 (2001).
    [38] C. I. Chao, S. A. Chen, Appl. Phys. Lett., 73, 426 (1998).
    [39] M. Mazzeo, D. Pisignano, F. D. Sala, J. Thompson, R. I. R. Blyth, G. Gigli, G. Sotgiu, G. Barbarella, Appl. Phys. Lett., 82, 334 (2003).
    [40] H. Ogawa, R. Okuda, Y. Shirota, Appl. Phys. A, 67, 599 (1998).
    [41] K. Itano, H. Ogawa, Y. Shirota, Appl. Phys. Lett., 72, 636 (1998).
    [42] C.-W. Chen, T.-Y. Cho, C.-C. Wu, H.-L. ,and Yu, T.-Y. Luh, Appl. Phys. Lett., 81, 1570 (2002).
    [43] K. Okumoto, and Y. Shirota, J. Lumine., 87-89, 1171 (2000).

    下載圖示 校內:立即公開
    校外:2004-02-06公開
    QR CODE