簡易檢索 / 詳目顯示

研究生: 阮氏欣
Han, Nguyen Thi
論文名稱: 三元氧化物的多樣 特性: Li2SiO3
Diversified properties in 3D ternary oxide compound: Li2SiO3
指導教授: 林明發
Lin, Ming-Fa
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 55
外文關鍵詞: First-principles calculation, density-functional theory, solid-state electrolyte, lithium battery, Lithium metasilicate
相關次數: 點閱:114下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The ternary three-dimension Li2SiO3 compound, which could serve as the electrolyte material of Lithium ion-based batteries, displays the unique lattice symmetry (an orthorhombic crystal), valence and conduction bands, charge density distribution, and van Hove singularities. Their delicate analyses, being based on the reliable first-principles calculations, are utilized to identify the critical multi-orbital hybridizations in Li-O and Si-O bonds 2s-(2s, 2px, 2py, 2pz) and (3s, 3px, 3py, 3pz) - (2s, 2px, 2py, 2pz), respectively. This system shows a quite huge indirect- gap semiconductor of Eg = 5.077 eV. Therefore, there exist many strong covalent bonding, with the obvious anisotropy and non-uniformity. On the other hand, the spin-dependent magnetic configurations are thoroughly absent. The theoretical framework could be generalized to explore the essential properties of cathode and anode materials of oxide compounds.
    Keywords: First-principles calculation, density-functional theory, solid-state electrolyte, lithium battery, Lithium metasilicate.

    Chapter 1. Introduction 1. Introduction to Lithium metasilicate………………………………………………...........................1 References .........................................................................................................................................11 Chapter 2. Electronic properties of Lithium silicate Li2SiO3 2.1 Introduction .................................................................................................................................14 2.2 Computational method ................................................................................................................18 2.3 Results and discussions…………………………………………………………………………19 2.3.1 Geometric structure of Li2SiO3 ……………………………………………………………....19 2.3.2 Electronic Properties of Li2SiO3 ..............................................................................................24 2.3.3 Comparisons, measurements and applications……………………………………………….35 2.4 Concluding remarks ....................................................................................................................36 2.5 Works in the future………………………………………………………………………….......38 References .........................................................................................................................................39 List of publications…………………………………………………………………………….47

    Reference for chapter 1
    [1] TaoTang, PihengChen, WenhuaLuo, DeliLuo, YuWang. Journal of Nuclear Materials, 420, 31-38, (2012)
    [2] Abdolali Alemi, Shahin Khademinia, Sang Woo Joo, Mahboubeh Dolatyari and Akbar Bakhtiari. International Nano Letters, 3, 14, (2013).
    [3] N.Kuganathan, L.H.Tsoukalas, A.Chroneos. Solid State Ionics, 335, 61-66, (2019)
    [4] Xiang-quanLI, Hua-junGUO, Li-mingLI, Xin-haiLI, Zhi-xing, WANG, HuiOU, Kai-xiong XIANG. Transactions of Nonferrous Metals Society of China, 21, 529-534, (2011)
    [5] Xue Bai , Tao Li, Zhiya Dang, Yong-Xin Qi, Ning Lun, Yu-Jun Bai. ACS Appl. Mater. Interfaces, 9, 1426-1436, (2017)
    [6] Enyue Zhao, Xiangfeng Liu, Hu Zhao, Xiaoling Xiao and Zhongbo Hu. Chem. Commun, 51, 9093-9096, (2015).
    [7] M. E. Garcia, E. Webb Ill, and S. H. Garofalini. J. Electrochem. Soc., 145, 6, (1998)
    [8] Jingyu Bai, Zhengliang Gong, Dongping Lv, Yixiao Li, Huan Zou and Yong Yang. J. Mater. Chem., 22, 12128-12132, (2012)
    [9] Abhijit Prasad, Amitabha Basu. Materials Letters, 66, 1-3, (2012)
    [10] Junko Habasaki. Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 70, 513-528, (2006)
    [11] Amitabha Basu and Manoj Kumar. 8,505 -510, (2011)
    [12] Junko Habasaki and Isao Okada. Molecular Simulation, 8, (1992).
    [13] Qiufen Wang, Mengwei Lu & Juan Miao. Materials Technology Advanced Performance Materials, 31, 471-476, (2016)
    [14] Jong Tae Kim, Sung HoLee, Yoon SooHan. Applied Surface Science, 333, 134-140, (2015)
    [15] M Arifin, F Iskandar, A H Aimon, M M Munir and B W Nuryadin¬. J. Phys.: Conf. Ser. 739, 012087, (2015).
    [16] Sheng-Gui Ma, Yan-HongShen, Xiang-GangKong, TaoGao, Xiao-JunChen, Cheng-JianXiao, Tie-ChengLu. Materials and Design, 118, 218-225, (2017).
    [17] Jin Seo Park and Yong Joon Park. J. Electrochem. Sci. Technol, 8, 101-106, (2017).
    [18] W. Y. Ching and Y. P. Li. Physical review B, 32,1203, (1985).
    [19] Nichola J. COLEMAN, Andrew P. HURT, Atiya RAZA. Physicochem. Probl. Miner. Process. 51, 685−694, (2015).
    [20] QiufenWang, ShuaiYang, JuanMiao, YanleiZhang, DafengZhang, YumeiChen, ZhiLi. Applied Surface Science, 469, 253-261, (2019)
    [21] M.S.Pathak, N.O.Gopal, N.Singh, M.Mohapatra, J.L.Rao, Jung-KulLee, VijaySingh. Journal of Non-Crystalline Solids, 500, 266-271, (2018).
    [22] Yong MokKwon, Ho JinChae, Min SunCho, Yong KiPark, Hwi MinSeo, Soo ChoolLee, Jae ChangKim. Separation and Purification Technology, 214, 104-110, (2019)
    [23] Xiao yu Li and Hua ming Yang. Cryst Eng Comm, 16,4501-4507, (2014).
    [24] Yohandys A. Zulueta, Minh Tho Nguyen, James A. Dawson. J. Phys. Chem. C, 124, 4982-4988, (2020)
    [25] S. Ahmadpour, A. A. Alemi, SH. Khademinia. 21, No. 2, Summer 1392/201.
    [26] J.Ortiz-Landeros, R.López-Juárez, I.C.Romero-Ibarra, H.Pfeiffer, H.Balmori-Ramírez, C.Gómez-Yáñez. Particuology 24, 129-137, (2016).
    [27] Mi Zhang, Hanlin Chen and Hairong Wang. Journal of The Electrochemical Society, Volume 165, Number 5.

    Reference for chapter 2
    [1] Nan Chen, Haiqin Zhang, Li, Renjie Chen, and Shaojun Guo. Adv. Energy Mater, 8, 1702675, (2018)
    [2] N.J. Dudney, B.J. Neudecker. Solid-State and Materials Science, 4, 479–482, (2019).
    [3] Rotem Marom, S. Francis Amalraj, Nicole Leifer, David Jacob and Doron Aurbach. J. Mater. Chem, 21, 9938-9954, (2011).
    [4] A. Manuel Stephan. European Polymer Journal, 42, 21-42, (2006).
    [5] Bruno Scrosati, Jürgen Garche. Journal of Power Sources, 195, 2419–2430, (2010).
    [6] Reng Zhenga, Masashi Kotobukia, Shufeng Songa, Man on Lai, Li Lu: Journal of power sourses, 389, 198-213, (2018).
    [7] Nair, J. R.et al. 199, 172-179, (2016)
    [8] J.J. Kim, K. Yoon, I. Park, K. Kang. Small Methods, 1, 1700219, (2017)
    [9] Sheng Shui Zhang. Journal of Power Sources, 162, 1379–1394, (2006)
    [9] Navaratnarajah Kuganathan, Apostolos Kordatos & Alexander Chronos. Scientific reports, 8, (2018).
    [10] Md Mokhlesur Rahman, Irin Sultana, Tianyu Yang, Zhiqiang Chen, Neeraj Sharma, Alexey M.Glushenkov, and Ying Chen. Angew. Chem. Int. Ed. 55, 16059 –16063, (2016)
    [11] N.Sulaiman, M.A.Hannan, A.Mohamed, E.H.Mjlan, W.R.Wan Daud. Renewable and Sustainable Energy Reviews, 52, 802-814, (2015)
    [12] Luis Oliveira, Maarten Message, Surendraprabu Rangaraju, Javier Sanfelix, Maria Hernandez Rivas, JoeriVan Mierlo. Journal of Cleaner Production, 108, 354-362, (2015).
    [13] Jung- HoWee. Journal of Power Sources, 173, 424-436, 2007
    [14] Michael Jones Ph.D., Kevin Grogg MS, John Anschutz BS &Ruth Fierman OTR/L. The Official Journal of RESNA, 20, 107-110, (2008).
    [15] TabbiWilberforce, ZakiEl-Hassan, F.N.Khatib, AhmedAl Makky, AhmadBaroutaji, James G.Carton, Abdul G.Olabi. International Journal of Hydrogen Energy, 42, 5695-25734, (2017)
    [16] ZhonghuiCui, XiangxinGuo, HongLi. Journal of Power Sources, 244, 731-735, (2013).
    [17] Candace K. Chan, Hailin Peng, Gao Liu, Kevin McIlwrath, Xiao Feng Zhang, Robert A. Nature Nanotechnology, 3, 31–35, (2008)
    [18] Kyu-JinLee, KandlerSmith, AhmadPesaran, Gi-HeonKim. 241, 20-32, (2013).
    [19] Rotem Marom, S.Francis Amalraj, Nicole Leifer, David Jacob and Doron Aurbach. J. Mater. Chem, 21, 9938-9954, (2011).
    [20] LiLi , JingGe, RenjieChen, FengWu, ShiChen, XiaoxiaoZhang. Waste Management, 30, 2615-2621, (2010)
    [21] J.Hafner. Computer Physics Communications. 177, 6-13, (2007).
    [22] Zen-Ichiro Takahara. Journal of Power Sources. 85, 29-37, (2000).
    [23] Nicholas A. Kotov. Chem. Mater, 26, 134-152, (2014).
    [24] Hongkang Wang, He Huang , Chunming Niu, 11, 1364-1383, (2015).
    [25] Yuchen Ma. Physical Review B, 76, 075419, (2007).
    [26] Kyoungmin Min, Seung-Woo Seo, Byungjin Choi, Kwangjin Park, Eunseog Cho. ACS Appl. Mater. Interfaces, 9, 17822-17834, (2017).
    [27] I. D. Raistrick, Chun Ho and R. A. Huggins. Journal of The Electrochemical Society, 123, 10, (1976)
    [28 MinatoEgashiraa, HirotakaTodob, NobukoYoshimotoa, MasayukiMoritaa, Jun-IchiYamaki. Journal of Power Sources, 174, 560-564, (2007).
    [29] BrunoScrosati, JürgenGarche. Journal of Power Sources, 9, 2419-2430, (2010).
    [30] Hu, J., Ma, A., and Dinner, A. R. J. Comput. Chem. 27, 203–216, (2006)
    [31] Henk Eshuis, Jefferson E. Bates & Filipp Furche. Theoretical Chemistry Accounts, 131, 1084 (2012).
    [32] Shih-YangLin, Shen-LinChang, Feng-LinShyu, Jian- MingLu, Ming-FaLin. Carbon, 207-216, (2015).
    [33] Raffaele Resta. Rev. Mod. Phys, 66, 899, (1994)
    [34] W. Kohn, A. D. Becke, R. G. Parr. J. Phys. Chem. 100, 12974-12980, (1996).
    [35] Diandra L.Leslie-Pelecky, Reuben D. Rieke. Chem. Mater, 8, 1770-1783, (1996).
    [36] Mark Fox, and George F. Bertsch. American Journal of Physics, 70, 1269, (2002)
    [37] Maciej M. Maśka. Phys. Rev. B, 66, 054533.
    [38] ByChiun-Yan Lin, Ching-Hong Ho, Jhao-Ying Wu, Thi-Nga Do, Po-Hsin Shih, Shih-Yang Lin, Ming-Fa Lin. Engineering & Technology, 1-345, (2019).
    [39] Johan Nilsson, A. H. Castro Neto, F. Guinea, and N. M. R. Peres. Phys. Rev. Lett. 97, 26680.
    [40] Yafei Li, Zhen Zhou, Panwen Shen, Zhongfang Chen. J. Phys. Chem. C,113, 15043-1504, (2009).
    [41] Abdolali Alemi, Shahin Khademinia1, Sang Woo Joo, Mahboubeh Dolatyari and Akbar Bakhtiari. International Nano Letters, 3, 14, (2013).
    [42] Jürgen Hafner. Computational Solid- State Chemistry, 29, 2039-2310 (2008).
    [43] Vatsal Dwivedi and Victor Chua. Phys. Phys. Rev. B, 93, 134304, (2016).
    [44] Thi-Nga Do, Po-Hsin Shih, Godfrey Gumbs, Danhong Huang, Chih-Wei Chiu, and Ming-Fa Lin. Phys. Rev. B 97, 125416, 2018.
    [45] A. Guinier. Courier Corporation, Dover Books on Physics, 378, 2013
    [46] Palczewski, Ari Deibert. United States: N. p., 1037977, (2010).
    [47] G.BinnigH.Rohrer. Surface Science, 126, 236-244, (1983).
    [48] TomasHansson, ChrisOostenbrink, WilfredFvan Gunsteren. Current Opinion in Structural Biology, 12, 190-196, (2002).
    [49] Hans Persson, Ingvar Lindgren and Sten Salomonson. Physica Scripta, 46, (1993).
    [50] Erich Runge and E. K. U. Gross. Phys. Rev. Lett. 52, 997(1984).
    [51] P.Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett, 77, 3865-3868, (1996).
    [52] P. E. Blöchl. Phys. Rev. B, 50, 17953, (1994).
    [53] H.J. Monkhorst, J.D. Pack. Phys. Rev. B, 13, p. 5188, (1976).
    [54] Hamid Oughaddou, Hanna Enriquez, Mohammed RachidTchalala, Handan Yildirim, Andrew J.Mayne, Azzedine Bendounan, Gérald Dujardin, Mustapha AitAli, AbdelkaderKara. Progress in Surface Science, 90, 46-83, (2015).
    [55] Fields J. Zak and W. Zawadzki. Phys. Rev. 145, 536, (1966)
    [56] Thi-Nga Do, Po-Hsin Shih, Cheng-Peng Chang, Chiun-Yan Lin and Ming-Fa Lin. Phys. Chem. Chem. Phys.18, 17597-17605, (2016).
    [57] GuorongHu, ManfangZhang, LiliWu, ZhongdongPeng, KeDu, YanbingCao. Journal of Alloys and Compounds, 690, 589-597, (2017)
    [58] Fanyao Qu and Pawel Hawrylak. Phys. Rev. Lett. 95, 217206 (2005)
    [59] Wahyu Setyawan, Stefano Curtarolo. Computational Materials Science, 49, 299–312, (2010).
    [60] Jing Wang, Biao Lian, Xiao-Liang Qi, and Shou-Cheng Zhang. Phys. Rev. B, 92, 081107, (2015).
    [61] Xiaoyu Li and Huaming Yang. CrystEngComm, 16, 4501-4507, (2014)
    [62] Ziying Wang and Ying Shirley Meng. Handbook of Solid- State Batteries, 109-131 (2015)
    [63] Bertrand Philippe, Rémi Dedryvère, Joachim Allouche, Fredrik Lindgren, Mihaela Gorgoi, HåkanRensmo, DanielleGonbeau, Kristina Edström. Chem. Mater. 24, 1107-1115, (2012).
    [64] Abhijit Prasad, Amitabha Basu and ManoJ Kumar Mahata. Chalcogenide Letters, 8, 505 -510, (2011).
    [65] RJ Wilson, S Chiang and DD Chambliss. Australian Journal of Physics, 43, 393 – 400, (1990)
    [66] R. Unwin, Aleix G. Güell, Guohui Zhang. Acc. Chem. Res, 49, 2041-2048, (2016).
    [67] Du J, Corrales LR. J. Phys. Chem, 110, 22346, (2006).
    [68] Fazel Shojaei, Hong Seok Kang. J. Phys. Chem. 120, 23842-23850, (2016)
    [69] Leong, Wei Sun; Nurudin, Muhammad Afiq; Anwar, Sohail; Ahmadi, Mohammad Taghi; Ismail, Razali. Journal of Computational and Theoretical Nanoscience, 9, 2082-2085, (2012).
    [70] Eduardo V. Castro, N. M. R. Peres, J. M. B. Lopes dos Santos, A. H. Castro Neto, and F. Guinea. Phys. Rev. Lett. 100, 026802, (2008).
    [71] HanjunSun, LiWu, WeiliWei, XiaogangQu, 16, 433-442, (2013).
    [72] P. E. Kornilovitch and A. S. Alexandrov. Phys. Rev.70, 224511, (2004).
    [73] Enyue Zhao, Xiangfeng Liu, Hu Zhao, Xiaoling Xiao and Zhongbo Hu. Chem. Commun, 51, 9093-9096, (2015).
    [74] Igor Yadroitsev, Ina Yadroitsava, and Stephan G. Le Roux. 3D Printing and Additive Manufacturing. 5, 227-247, (2018).
    [75] Kordyuk, A.A., Zabolotnyy, V.B., Evtushinsky, D.V., et al. Electronic Band Structure of Ferro-Pnictide Superconductors from ARPES Experiment. J Supercond Nov Magn, 26, 2837–2841, (2013)
    [76] P.Richet, B.O.Mysen, D. Andrault. Phys Chem Minerals, 23, 157-172, (1996).
    [77] Abhijit Prasad, Amitabha Basu. Materials Letters, 66, 1–3, (2012).
    [78] Xiangwei, WuZhaoyin, WenXiaogang, XuXiuyan, WangJiuLi. Journal of Nuclear Materials, 392, 471-475, (2009)
    [79] Zhiyong Zhou, Michael Steigerwald, Mark Hybertsen, Louis Brusm, Richard A. Friesner. J. Am. Chem. Soc. 126, 3597-3607, (2004).
    [80] Ching-Hong Ho, Yen-Hung Ho, Ying-Yen Liao, Yu-Huang Chiu, Cheng-Peng Chang, and Ming-Fa Lin. J. Phys. Soc. Jpn. 81, 024701, (2012).
    [81] Christian Müller, Egbert Zienicke, Stefan Adams, Junko Habasaki, and Philipp Maass. Phys. Rev. B, 75, 014203, (2007).
    [82] Li, Xiaobo. LSU Master's Theses, 866, (2004).
    [83] Balázs Dóra, Janik Kailasvuori, and R. Moessner. Phys. Rev. B, 84, 195422 (2011).
    [84] Shuai Yang, Qiufen Wang, Juan Miao, Jingyang Zhang, Dafeng Zhang, Yumei Chen, Hong Yang. Applied Surface Science, 444, 522–529, (2018).
    [85] Pease and W.C.Nixon. R.F.W. Si.E. Strum., 42, (1965).
    [86] J. Garnaes. Journal of Vacuum Science & Technology A, 8, 441 (1990)
    [87] Paul K. Hansma. Applied Physics Reviews 61, (1987).
    [88] Mikito Koshino and Edward McCann. Phys. Rev. B, 87, 045420, (2013).
    [89] Kosynkin, D. V.; Higginbotham, A. L.; Sinitskii, A.; Lomeda, J. R.; Dimiev, A.; Price, B. K.; Tour, J. M. Nature, 458, 872-876, 2009.
    [90] Liu, Z.; Suenaga, K.; Harris, P. J.; Iijima, S. Open and closed edges of graphene layers. Physical review letters, 102, 015501, (2009).
    [91] Viculis, L. M.; Mack, J. J.; Kaner, R. B. A chemical route to carbon nanoscrolls. 299, 1361, (2003).
    [92] Georgina Mondragon-Guti ´ errez, Daniel Cruz, Heriberto Pfeiffer, and Silvia Bulbulian. Advances in Materials Science and Engineering, 908654, (2008).
    [93] Lu, Y.; Jiang, Y.; Wei, W.; Wu, H.; Liu, M.; Niu, L.; Chen, W. Chem. 22, 2929-2934, (2012).
    [94] Xu, Y. F.; Yang, M. Z.; Chen, B. X.; Wang, X. D.; Chen, H. Y.; Kuang, D. B.; Su, C. Y. Reduction. J. Am. Chem. Soc. 139, 5660-5663, (2017)
    [95] Alemi, A., Joo, S.W., Khademinia, S. et al. Hydrothermal synthesis and characterization of straw bundle-like lithium sodium disilicate (silinaite) micro-rods. Int Nano Lett, 3, 2228-5326, (2013).
    [96] Duckhwan Lee and A. C. Albrecht. J. Chem. Phys. 78, 3382 (1983).
    [97] H. Wadati, T. Yoshida,A. Chikamatsu,H. Kumigashira,M. Oshima,H. Eisaki,Z.-X. Shen,T. Mizokawa &A. Fujimori. A Multinational Journal, 79, 617-635, (2007)
    [98] Cuk, T.; Lu, D.; Zhou, X.; Shen, Z.-X.; Devereaux, T.; Nagaosa, N. Physica status solidi,11, 242, (2005).
    [99] Huang, H.; Wei, D.; Sun, J.; Wong, S. L.; Feng, Y. P.; Neto, A. C.; Wee, A. T. S. Scientific reports, 2, 983, (2012).
    [100] Li, G.; Luican, A.; Dos Santos, J. L.; Neto, A. C.; Reina, A.; Kong, J.; Andrei, E. Nature Physics, 6, 109, (2010)
    [101] Cherkez, V.; de Laissardi`ere, G. T.; Mallet, P.; Veuillen, J.-Y. Physical Review B, 91,155428, (2015).
    [102] Li, G.; Luican, A.; Andrei, E. Y. Physical Review Letters, 102, 176804, 2009.
    [103] W. Y. Ching, Y. P. Li, B. W. Veal, and D. J. Lam. Phys. Rev. B, 32, 1203, (1985).
    [104] Xue Bai, Tao Li, Zhiya Dang, Yong-Xin Qi, Ning Lun, and Yu-Jun Bai. ACS Appl. Mater. Interfaces, 9, 1426-1436, (2017).
    [105] A. C. T. North, D. C. Phillips and F. S. Mathews. Acta Cryst. 24, 351-359, (1968).
    [106] ShuaiYang, JingyangZhang, QiufenWang, JuanMiao, ChenliZhang, LinZhao, YanleiZhang. 234, 375-378, (2019).
    [107] LongXia, YananYang, XinyuZhang, JianZhang, BoZhong, TaoZhang, HuataoWang. Ceramics International. 44, 14896-14900, (2018).
    [108] N. KuganathanL.H. TsoukalasA. Chroneos. 335, 61-66, (2019)
    [109] H. Völlenkle. Zeitschrift fur Kristallographie, 154, 77-81, (1981).
    [110] Tao Tang, Piheng Chen, Wenhua Luo, Deli Luo, Yu Wang. Journal of Nuclear Materials, 420, 31–38, (2012).
    [111] Shenggui Ma, Shichang Li, Tao Gao, Yanhong Shenm, Xiaojun Chen, Chengjian Xiao, Tiecheng Lu. Ceramics International, 44, 3381-3387, (2018).

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE