| 研究生: |
許鴻川 Hsu, Hung-chuan |
|---|---|
| 論文名稱: |
以實驗計畫法探討燒結型熱管之性能 Performance Study of Sintered-Type Heat Pipe by Using Design of Experiments |
| 指導教授: |
趙隆山
Chao, Long-Sun |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 121 |
| 中文關鍵詞: | 品質因子 、品質因子 、熱管 |
| 外文關鍵詞: | heat pipe, quality characteristic, quality factor |
| 相關次數: | 點閱:69 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是以實驗計畫法規劃在不同品質因子下熱管的性能表現,同時以統計軟體Design-Expert快速的驗證品質因子對品質特性是否有顯著的影響,以建立最佳化模型並找出顯著因子。
實驗設計是以反應曲面法中的最佳化設計D-Optimality當作品質問題的方法,而實驗設計、模型建構、參數優化則為解決品質問題的步驟,並由變異分析得知實驗模型的價值,確保實驗的準確性,並運用統計原理對數據分析與探討,在得到不同顯著因子對最大熱傳量的影響後,可找出最佳化參數以提升熱管品質的良率。
在本實驗中,綜合不同因子對熱管性能之影響,可知熱管長度對熱傳量(Q’max) 影響最大、其次分別為管徑大小、燒結層厚度與粉末粒徑。因此,管長的效應對模型影響的區間最大,管長從18增加到25cm,Q’max就會產生31.91 ~ 49.48 Watts的變動;管徑的影響區間次之,當管徑從6增加到8mm,Q’max就會產生34.18 ~ 47.20Watts的變動;再來是燒結層厚度從0.5增加到0.7mm,使Q’max產生36.49 ~ 44.90Watts的變動;而粉末粒徑所能影響模型的區間最小,當粒徑從45mesh增加到100mesh,Q’max僅產生39.49 ~ 41.90Watts的變動。
最後,依照最佳化之數據,可預測參數變動下之模型,在管長18cm、直徑8mm、燒結層厚度0.5mm、粉末粒徑45mesh之調控下,可得最大熱傳量之期望值為69.34Watts,而實際實驗中可得72Watts,其誤差值為3.69%。因此,以實驗計畫法規劃在不同品質因子下熱管的性能表現,確實為一有效之方法。
I n this thesis, design of experiments is used to plan the experimental evaluations of heat-pipe performance under different quality factors. The statistical software Design-Expert is utilized to validate the influences of quality factors. From these evaluations, the experiment model can be built to find out the quality factors of significant influence.
In this research, the D-Optimality of response surface methodology is used as the design method of quality problem and then the experimental regression formula can be obtained from the construction model. Afterwards, the experimental model is evaluated by the analysis of variance (ANOVA). From this analysis, the significant factors on the maximum heat transfer rate (Q’max) and then the optimal parameters can be obtained, which can promote the yield and quality of heat pipe.
From the analysis of the experimental data, the effects of different quality factors on heat-pipe performance can be evaluated. The pipe length has the highest influence on Q’max. As the length is increased from 18 to 25cm, the Q’max can be changed from 31.85 to 49.75 Watts. The pipe diameter has the second highest influence. As the diameter is increased from 6 to 8mm, the Q'max can be changed from 34.09 to 47.51Watts. The next important factor is the sintered-layer thickness. As the thickness is increased from 0.5 mm to 0.7 mm, the Q'max can be changed from 36.90 to 44.70Watts. The final factor is powder size. The Q'max only changes from 39.73 to 41.87 Watts when the powder size is increased from 45 to 100 mesh.
Finally, according to the prediction by using the construction model, the optimization conditions are the pipe length of 18 cm, diameter of 8 mm, sintered-layer thickness of 0.5 mm and powder size of 45 mesh. Under these conditions, the predicted value of Q'max is 72 Watts, the experimental one is 69.34 Watts and their relative error is 3.69%. From the results described above, it can be concluded that design of experiments is an effective way to plan the heat-pipe experiment, which can help to find the significant factors and give the working parameters of the optimal performance.
﹝1﹞Ronald A. Fisher.,“Statistical methods for research
workers”, New York, 1970
﹝2﹞柏永信,“應用馬示距離於田口動態系統中等級類別資
料最佳化問題”,國立交通大學,2000
﹝3﹞葉怡成,“實驗計劃法-製程與產品最佳化”,五南出版
社,臺北,2001,pp.9-2
﹝4﹞George Box, Søren Bisgaard, Conrad Fung,“An explanation and critique of taguchi's contributions to quality engineering”, Quality and Reliability Engineering International, Volume 4, Issue 2 , pp.123-131
﹝5﹞G.P. Peterson,“An Introduction To Heat Pipes:Modeling, Testing and Applications”, John wiley and Sons , Texas , U.S.A., pp.1-2, September
﹝6﹞侯增琪,“熱管”,智慧藏百科全書網(http://www.wordpedia.com/search/Content.asp?ID=35546&Query=8),臺北,2005
﹝7﹞I.C. Finlay, Loy, B.Cree and D. G. Source: Advances in Environmental Science and Technology, Vol.1, pp. 93-101, 1976
﹝8﹞柏永信,“應用馬示距離於田口動態系統中等級類別資
料最佳化問題”,國立交通大學,2000
﹝9﹞葉怡成,“實驗計劃法-製程與產品最佳化”,五南出版
社,臺北,pp.1-25,2001,pp.-23
﹝10﹞葉怡成,“實驗計劃法-製程與產品最佳化”,五南出版
社,臺北,pp.1-2,2001
﹝11﹞葉怡成,“實驗計劃法-製程與產品最佳化”,五南出版
社,臺北,pp.1-3,2001
﹝12﹞葉怡成,“實驗計劃法-製程與產品最佳化”,五南出版
社,臺北,pp.1-3,2001
﹝13﹞葉怡成,“實驗計劃法-製程與產品最佳化”,五南出版
社,臺北,pp.2-2,2001
﹝14﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.248,2002
﹝15﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.219,2002
﹝16﹞葉怡成,“實驗計劃法-製程與產品最佳化”,五南出版
社,臺北,pp.2-9,2001
﹝17﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.379,2002
﹝18﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.336,2002
﹝19﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.258-261,2002
﹝20﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.339,2002
﹝21﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.401-404,2002
﹝22﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.443,2002
﹝23﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.442-443,2002
﹝24﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.479,2002
﹝25﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅
希爾,臺北,pp.480,2002
﹝26﹞汪建民,“粉末冶金技術手冊”中華民國粉末冶金
協會,新竹,pp.249,1994
﹝27﹞卓世傑,“銅粉燒結型微熱管之研究”,國立台北科技大學,1999
﹝28﹞葉怡成,“實驗計劃法-製程與產品最佳化”,五南出版
社,臺北,pp.6-12,2001
﹝29﹞沈永年,“不銹鋼廠集塵灰製成瓷磚之性質研
究”,國立高雄應用科技大學,2004
﹝30﹞松山芳治,“粉末冶金學概論”,復漢出版社,臺南,pp.110,1986
﹝31﹞李炳仁,“熱管製作與熱沉鑄造之實驗研究與數值分析”,國立成功大學,2004
﹝32﹞Amir D. Aczel,“Complete Business Statistics”,麥格羅希爾,臺北,pp.445,2002