| 研究生: |
吳家興 Wu, Chia-Shing |
|---|---|
| 論文名稱: |
含有不同雙極基團的電激發光高分子:合成、鑑定、光電性質與應用 Electroluminescent Polymers Containing Various Bipolar Groups: Synthesis, Characterization, Optoelectronic Properties and Applications |
| 指導教授: |
陳雲
Chen, Yun |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 雙極 、咔唑 、共軛高分子 、發光二極體 、聚芴 、聚對苯 、三唑 、三苯胺 |
| 外文關鍵詞: | bipolar, carbazole, conjugated polymers, light-emitting diodes, polyfluorene, poly(p-phenylene), triazole, triphenylamine |
| 相關次數: | 點閱:103 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自從1990發現高分子PPV的電激發光,很多的研究著重於高分子發光二極體PLEDs,由於高分子應用在大面積及可撓曲的顯示器具有很大的潛力。然而,大部分的發光共軛高分子如PPV衍生物(MEH-PPV, d6-PPV),電洞的注入與傳送比電子更加容易,導致電子與電洞注入的不平衡而降低元件的發光效率。因此在本文中,一系列含有雙極基團的共聚高分子被合成與鑑定來提升PPV衍生物的電激發光效率。利用1H NMR、FT-IR及elemental analysis來鑑定所有新合成的單體與高分子。經由TGA與DSC來量測這些高分子的熱性質。亦研究與探討這些高分子的光學、電化學及電激發光性質。
提升傳統MEH-PPV的電激發光是值得的由於在高分子發光材料中相當普及。為了提升發光效率,經由Suzuki偶合反應合成主鏈含有3.1~11.2 mol%雙極基團(M1基團)的共聚芴(P1-P3),雙極基團是直接由電洞傳送分子三苯胺與電子傳送分子芳香族1,2,4-三唑連接所組成。雙極基團不僅能夠有效地抑制聚芴的綠光生成,同時還能促進共聚芴的電子與電動親和性。摻混雙極共聚芴與MEH-PPV [ITO/PEDOT:PSS /polymer blend/Ca(50 nm)/Al(100 nm)] 夠有效地改善電激發光元件的效率。元件(約含有0.5 wt%的雙極基團)的最大亮度與最大發光效率分別大幅地提升到19560 cd/m2與1.08 cd/A。
設計並合成出一新穎的雙極單體,用來合成側鏈含有2.1-8.2 mol%雙極基團(M2基團)的共聚芴(P4-P6)。雙極基團是直接由電子傳送分子芳香族1,2,4-三唑直接與電洞傳送分子三苯胺連接所組成。摻混雙極模式化合物Ma與MEH-PPV能提升元件效能,元件的最大亮度與最大發光效率分別大幅地提升到6830 cd/m2與0.50 cd/A。而且,簡單摻混雙極共聚芴與MEH-PPV更加地改善元件效率,元件的最大亮度與最大發光效率分別有效地提升到11090 cd/m2與0.56 cd/A(約含有0.4 wt%的雙極基團)。
再者,合成含有12.8與6.8 mol%雙極基團(M1基團)的共聚對苯(P7及P8)來提升另一種PPV衍生物(d6-PPV)的電激發光效率。雙極基團是直接由電洞傳送分子三苯胺與電子傳送分子芳香族1,2,4-三唑連接所組成。摻混雙極共聚對苯(P7及P8)與PPV衍生物(d6-PPV)為發光層,能夠有效地提升元件的發光效率。元件的最大亮度從310大幅地增加為1450 cd/m2,而最大發光效率也從0.03增加為0.20 cd/A。
最後,將電洞傳送基團咔唑導入於一新穎的雙極單體(M3基團)。雙極基團是直接由電洞傳送分子咔唑與電子傳送分子芳香族1,2,4-三唑連接所組成。經由Suzuki偶合反應合成側鏈含有2.5~7.7 mol%雙極基團(M3基團)的共聚芴(P9-P11)應用於提升傳統MEH-PPV高分子發光二極體的發光效率。摻混雙極共聚芴與MEH-PPV能大幅地提升元件效能。元件的最大亮度與最大發光效率分別提升到15690 cd/m2與0.81 cd/A(約含有0.46 wt%的雙極基團)。
由實驗結果證實雙極共聚芴(P1-P6及P9-P11)以及雙極共聚對苯(P7及P8)的功能是分別能夠提升MEH-PPV及d6-PPV的發光效率。
Since the discovery of the electroluminescence of poly(p-phenylenevinylene) (PPV) in 1990, a lot of studies have been focused on polymeric light-emitting diodes (PLEDs), because of their great potential to be applied in large-area and flexible displays. However, most luminescent conjugated polymers such as PPV derivatives (MEH-PPV, d6-PPV), hole injection and transport are more favorable than electron injection and transport resulting in the imbalance of rates for electron and hole injection and lowering the luminance efficiency of the device. Therefore, in this thesis, to enhance electroluminescence of PPV derivatives a series of copolymers containing various bipolar groups were designed and synthesized. All novel synthesized monomers and polymers were characterized by 1H NMR, FT-IR, and elemental analysis (EA). Thermal properties of these polymers were determined via TGA and DSC. The optical, electrochemical, and electroluminescent properties of these polymers were also investigated.
Enhancing electroluminescence of conventional MEH-PPV {poly[2-methoxy-5-(2 '-ethyl-hexyloxy)-1,4-phenylene vinylene]} is desirable due to its popularity in polymeric emitting materials. In response to this, in chapter 4 three copolyfluorenes (P1-P3) containing bipolar groups (M1 moieties) (3.1~11.2 mol%) in the main chain, directly linked hole-transporting triphenylamine and electron-transporting 1,2,4-triazole, are synthesized by Suzuki coupling reaction. The bipolar groups not only suppress undesirable green emission of polyfluorene under thermal annealing, but also increase hole- and electron-affinity of the resulting copolyfluorenes. Blending the bipolar copolyfluorenes with MEH-PPV effectively improve the emission efficiency of its electroluminescent devices [ITO/PEDOT:PSS/polymer blend/Ca(50 nm)/Al(100 nm)]. The corresponding maximum luminance and maximum luminance efficiency are significantly enhanced to 19560 cd/m2 and 1.08 cd/A (blend device with ca. 0.5 wt% of bipolar groups), respectively.
In chapter 5, a novel bipolar monomer was designed and synthesized to prepare three copolyfluorenes (P4-P6) containing 2.1-8.2 mol% pendant bipolar groups (M2 moieties). The bipolar unit also consists of electron-transporting aromatic 1,2,4-triazole directly linked with hole-transporting triphenylamine. Blending bipolar model compound Ma with MEH-PPV results in enhancement of device performance. Maximum luminance and luminance efficiency were increased to 6830 cd/m2 and 0.50 cd/A. Moreover, simple blending the bipolar copolyfluorenes with MEH-PPV further improves their corresponding device efficiency, with the maximum luminance and luminance efficiency being effectively enhanced up to 11090 cd/m2 and 0.56 cd/A (ca. 0.4 wt% of bipolar residue), respectively.
Furthermore, to enhance electroluminescence of another PPV derivative (d6-PPV) two novel copoly(p-phenylene)s (P7 and P8) containing bipolar groups (M1 moieties) (12.8 mol% and 6.8 mol%, respectively), also directly linked hole-transporting triphenylamine and electron-transporting aromatic 1,2,4-triazole, were synthesized. Blending the bipolar copoly(p-phenylene)s (P7 and P8) with PPV derivatives (d6-PPV) as an emitting layer effectively improve the emission efficiency of its corresponding electroluminescent devices. Maximum luminance and maximum luminance efficiency were significantly enhanced from 310 cd/m2 and 0.03 cd/A (d6-PPV-based device) to 1450 cd/m2 and 0.20 cd/A (blend device with d6-PPV/P7=96/4 containing ca. 0.5 wt% of bipolar groups), respectively.
Finally, a hole-transporting carbazole moiety was introduced into a novel bipolar monomer (M3 moieties). Three novel copolyfluorenes (P9-P11) containing pendant bipolar groups (2.5~7.7 mol%), directly linked hole-transporting carbazole and electron-transporting aromatic 1,2,4-triazole, were synthesized by the Suzuki coupling reaction and applied to enhance emission efficiency of polymer light-emitting diodes based on conventional MEH-PPV. Blending bipolar copolyfluorenes with MEH-PPV results in significant enhancement of device performance. The maximum luminance and luminance efficiency were enhanced to 15690 cd/m2 and 0.81 cd/A (blend device with MEH-PPV/P11=94/6 containing ca. 0.46 wt% of pendant bipolar moieties), respectively.
Our results demonstrate the efficacy of the bipolar copolyfluorenes (P1-P6 and P9-P11) and bipolar copoly(p-phenylene)s (P7 and P8) in enhancing emission efficiency of MEH-PPV and d6-PPV, respectively.
1.Destriau, G. J. Chem. Phys. 1936, 33, 587.
2.Ohnishi, H. Ann. Rev. Mater. Res. 1989, 19, 101.
3.In Electronic display devices, Matsumoto, S., Ed. Wiley: New York, 1990; Chapter 5, p 180.
4.Pope, M.; Kallmann, H.; Magnante, P. J. Chem. Phys. 1963, 38, 2042.
5.Gurnee, E.; Fernandez, R. US Patnet 3 172 862, 1965.
6.Redecker, M.; Bradley, D. D. C.; Inbasekaran, M.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 1565.
7.Vincett, P. S.; Barlow, W. A.; Hann, R. A.; Roberts, G. G. Thin Solid Films 1982, 94, 476.
8.Partridge, R. H. Polymer 1983, 24, 733.
9.Tang, C. W.; Van Slyke, S. A. Appl. Phys. Lett. 1987, 51, 913.
10.Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature 1990, 347, 539.
11.(a) Takiguchi, T.; Park, D. H.; Ueno, H.; Yoshino, K.; Sugimoto, R. Synth. Met. 1987, 17, 657. (b) Braun,D.; Heeger, A. Appl. Phys. Lett. 1991, 58, 1982.
12.(a) Grem, G.; Leditzky, G.; Ullrich, B.; Leising, G. Adv. Mater. 1992, 4, 36. (b) Pei, Q.; Yang, Y. J. Am. Chem. Soc. 1996, 118, 7416. (c) Andersson, M. R.; Thomas, O.; Mammo, W.; Svensson, M.; Theander, M.; Inganäs, O. J. Mater. Chem. 1999, 9, 1933.
13.(a) Aguiar, M.; Karasz, F. E.; Akcelrud, L. Macromolecules 1995, 28, 4598. (b) Kolb, E. S.; Gaudiana, R. A.; Mehta, P. G. Macromolecules 1996, 29, 2359. (c) Kraft, A.; Grimsdale, A. C.; Holmes, A. B. Angew. Chem. Int. Ed. 1998, 37, 402.
14.(a) Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Brédas, J. L.; Lögdlund, M.; Salaneck, W. R. Nature 1999, 397, 121. (b) Bernius, M. T.; Inbasekaran, M.; O’Brien, J.; Wu, W. Adv. Mater. 2000, 12, 1737. (c)Akcelrud, L. Prog. Polym. Sci. 2003, 28, 875.
15.Gilch, H. G.; Wheelright, W. L. J. Polym. Sci., Part A: Polym. Chem. 1996, 4, 1337.
16.Wudl, F.; Höger, S.; Zhang, C.; Pakbaz, K.; Heeger, A. J. Polym. Prepr. 1993, 34, 197.
17.Andersson, M. R.; Yu, G.; Heeger, A. J. Synth. Met. 1997, 85, 1275.
18.Salbeck, J.; Bunsenges, B. J. Phys. Chem. 1996, 100, 1666.
19.Klaerner, G.; Miller, R. D. Macromolecules 1998, 31, 2007.
20.Kreyenschimdt, M.; Klaerner, G.; Fuhrer, T.; Ashenhurst, J.; Karg, S.; Chen, W.; Lee, V. Y.; Scott, J. C.; Miller, R. D. Macromolecules 1998, 31, 1099.
21.Yang, Y.; Pei, Q. Appl. Phys. Lett. 1997, 81, 3294.
22.Ohmori, Y.; Uchida, M.; Muro, K.; Yoshino, K. Jpn. J. Appl. Phys. 1991, 30, 1941.
23.Lee, J.-I.; Klärner, G.; Miller, R. D. Chem. Mater. 1999, 11, 1083.
24.Pschirer, N. G.; Byrd, K.; Bunz, U. H. F. Macromolecules 2001, 34, 8590.
25.Miyashita, K.; Kaneko, M. Synth. Met. 1995, 68, 161.
26.Gin, D. L.; Conticello, V. P. Trends Polym. Sci. 1996, 4, 217.
27.Hamaguchi, M.; Sawada, H.; Kyokane, J.; Yoshino, K. Chem. Lett. 1996, 527.
28.Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Rothberg, L. J. Science 1995, 267, 1969.
29.Peng, Z.; Bao, Z.; Galvin, M. E. Chem. Mater. 1998, 10, 2086.
30.Zhou, X.; He, J.; Liao, L. S.; Lu, M.; Ding, X. M.; Hou, X. Y.; Zhang, X. M.; He, X. Q.; Lee, S. T. Adv. Mater. 2000, 12, 265.
31.Jiang, X.; Register, R. A.; Killeen, K. A.; Thompson, M. E.; Pschenitzka, F.; Sturm, J. C. Chem. Mater. 2000, 12, 2542.
32.Ego, C.; Marsitzky, D.; Becker, S; Zhang, J.; Grimsdale, A. C.; Mullen, K.; MacKenzie, J. D.; Silva, C.; Friend, R. H. J. Am. Chem. Soc. 2003, 125, 437.
33.Liu, J; Guo, X.; Bu, L. J.; Xie, Z. Y.; Cheng, Y. X.; Geng, Y. H.; Wang, L. X.; Jing, X. B.; Wang, F. S. Adv. Funct. Mater. 2007, 17, 1917.
34.Peng, Q.; Peng, J. B.; Kang, E. T.; Neoh, K. G.; Cao, Y. Macromolecules 2005, 38, 7292.
35.Yang, R. Q.; Tian, R. Y.; Yan, J. G.; Zhang, Y.; Tang, J.; Hou, Q.; Yang, W.; Zhang, C.; Cao, Y. Macromolecules 2005, 38, 244.
36.Coakley, K. M.; McGehee, M. D. Chem. Mater. 2004, 16, 4533.
37.Campos, L. M.; Tontcheva, A.; Gunes, S.; Sonmez, G.; Neugebauer, H.; Sariciftci, N. S.; Wudl, F. Chem. Mater. 2005, 17, 4031.
38.Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Walfauf, C.; Heeger, A. J; Brabec, C. J. Adv. Mater. 2007, 18, 794.
39.Gadisa, A.; Mammo, W.; Andersson, L. M.; Admassive, S.; Zhang, F.; Andersson, M. R.; Inganäs, O. Adv. Funct. Mater. 2007, 17, 3836.
40.Soci, C.; Hwang, I. W.; Moses, D.; Zhu, Z.; Waller, D.; Gaudiana, R.; Brabec, C. J.; Heeger, A. J. Adv. Funct. Mater. 2007, 17, 632.
41.Dennler, G.; Scharber, M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C. J. Adv. Mater. 2008, 20, 579.
42.Li, Y.; Zou, Y. Adv. Mater. 2008, 20, 2952.
43.Moulé, A. J.; Tsami, A.; Bünnagel, T. W.; Forster, M.; Kronenberg, N. M.; Scharber, M.; Koppe, M.; Morana, M.; Brabec, C. J.; Meerholz, K.; Scherf, U. Chem. Mater. 2008, 20, 4045.
44.Chen, C. P.; Chan, S. H.; Chao, T. C.; Ting, C.; Ko, B. T. J. Am. Chem. Soc. 2008, 130, 12828.
45.Yamamoto, T.; Kukubo, H.; Kobashi, M.; Sakai, Y. Chem. Mater. 2004, 16, 4616.
46.Chua, L. L.; Zaumseil, J.; Chang, J. F.; Ou, E. C.; Ho, P. K. H.; Sirringhaus, H.; Friend, R. H. Nature 2005, 434, 194.
47.Champion, R. D.; Cheng, K. F.; Pai, C. L.; Chen, W. C.; Jenekhe, S. A. Macromol. Rapid Commun. 2005, 26, 1835.
48.Chen, M. X.; Crispin, X.; Perzon, E.; Andersson, M. R.; Pullerits, T.; Andersson, M.; Inganäs, O.; Berggren, M. Appl. Phys. Lett. 2005, 87, 252105.
49.Zhu, Y.; Champion, R. D.; Jenekhe, S. A. Macromolecules 2006, 39, 8712.
50.Gadisa, A.; Perzon, E.; Andersson, M. R.; Inganäs, O. Appl. Phys. Lett. 2007, 90, 113510.
51.Zhou, E. J.; Tan, Z.; Yang, Y.; Hou, L. J.; Zou, Y. P.; Yang, C. H.; Li, Y. F. Macromolecules 2007, 40, 1831.
52.Liu, C. L.; Tsai, J. H.; Lee, W. Y.; Chen, W. C.; Jenekhe, S. A. Macromolecules 2008, 41, 6952.
53.Sonmez, G. ; Shen, C. K. F.; Rubin, Y.; Wudl, F. Angew. Chem., Int. Ed. 2004, 43, 1498.
54.Sonmez, G. ; Sonmez, H. B.; Shen, C. K. F.; Jost, R. W.; Rubin, Y.; Wudl, F. Macromolecules 2005, 38, 669.
55.Durmus, A.; Gunbas, G. E.; Toppare, L. Chem. Mater. 2007, 19, 6247.
56.Chu, C. W.; Ouyang, J.; Tseng, J. H.; Yang, Y. Adv. Mater. 2005, 17, 1440.
57.Lin, Q. D.; Chang, F. C.; Song, Y.; Zhu, C. X.; Liaw, D. J.; Chan, D. S. H.; Kang, E. T.; Neoh, K. G. J. Am. Chem. Soc. 2006, 128, 8732.
58.Tsai,J.-H.; Chueh, C.-C.; Lai, M.-H.; Wang, C.-F.; Chen, W.-C.; Ko, B.-T.; Ting, C. Macromolecules 2009, 42, 61897.
59.Zhuang, X.-D.; Chen, Y.; Li, B.-X.; Ma, D.-G.; Zhang, B.; Li, Y. Chem. Mater. 2010, 22, 4455.
60.Liu, Y.; Ma, H.; Jen, Alex K.-Y. Chem. Commun. 1998, 2747.
61.Zhan, X.; Liu,Y.; Zhu, D.; Jiang, X.; Jen, Alex K.-Y. Macromol. Chem. Phys. 2001, 202, 2341.
62.Liu, Z.; Zhang,Y.; Hu,Y.; Su,G.; Ma,D.; Wang, L.; Jing, X.; Wang, F. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1122.
63.Wang,G.; Zhang, J. P.; Wang, L. X.; Jing, X. B.; Wang, F. S. J. Appl. Polym. Sci. 2003, 88, 50.
64.Zhang,Y.; Hu,Y.; Li, H.; Wang, L.; Jing, X.; Wang, F.; Ma, D. J. Mater. Chem. 2003, 13, 773.
65.Shu, C.-F.; Dodda, R.; Wu, F.-I.; Liu, M. S.; Jen, A. K.-Y. Macromolecules 2003, 36, 6698.
66. Wu, F.-I.; Shih, P.-I.; Shu, C.-F.; Tung, Y.-L.; Chi, Y. Macromolecules 2005, 38, 9028.
67.Barberis, V. P.; Mikroyannidis, J. A. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 3556.
68.Chien, C.-H.; Shih, P.-I.; Wu, F.-I.; Shu, C.-F.; Chi, Y. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2073.
69.Yuan, M.-C.; Shih, P.-I.; Chien, C.-H.; Shu, C.-F. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2925.
70.Ma, B.; Kim, B. J.; Deng, L.; Poulsen, D. A.; Thompson, M. E.; Fréchet, J. M. J. Macromolecules 2007, 40, 8156.
71.Yeh, K.-M.; Lee, C.-C.; Chen, Y. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 5180.
72.Skoog, D. A.; Holler, F. J.; Nieman, T. A., Principles of Instrumental Analysis. In Saunders Golden Sunburst Series, 5th ed.; 1998; chapter 15.
73.Segal,M.; Baldo, M. A.; Holmes, R. J.; Forrest, S. R.; Soos, Z. G. Phys. Rev. B 2003, 68, 075211.
74.Cornil, J.; Beljonne, D.; Santos, D. A.; Bredas, J. L. Synth. Met. 1996, 76, 101.
75.Woo, H. S.; Lhost, O.; Graham, S. C.; Bre´das, J. L.; Schenk, R.; Mullen, K. Synth. Met. 1993, 59, 13.
76.Tian, B.; Zerbi, G.; Schenk, R.; Mullen, K. J. Chem. Phys. 1991, 95, 3191.
77.Lee, Y. Z.; Chen, X.; Chen, M.-C.; Chen, S.-A.; Hsu, J.-H.; Fann, W. Appl. Phys. Lett. 2001, 79, 308.
78.May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. Wiley-VCH: 2003.
79.Pope, M.; Swenberg, C. E., Electronic Processes in Organic Crystals. Clarendon Press: Oxford, 1982.
80.Knox, R. S. J. Phys. Chem. 1994, 98, 7270.
81.Yassar, A.; Horowitz, G.; Valat, P.; Wintgens, V.; Hymene, M.; Deloffre, F.; Srivastava, P.; Lang, P.; Garnier, F. J. Phys. Chem. 1995, 99, 9155.
82.Dresselhaus, M. S.; Dresselhaus, G. Adv. Phys 1981, 30, 139.
83.Conwell, E. M.; Perlstein, J.; Shaik, S. Phys. Rev. B 1996, 54, 2308.
84.Zeng, G.; Yu, W.-L.; Chua, S.-J.; Huang, W. Macromolecules 2002, 35, 6907.
85.Paik, K. L.; Baek, N. S.; Kim, H. K.; Lee, J.-H.; Lee, L. Macromolecules 2002, 35, 6782.
86.Kafafi, Z. H., Organic Electroluminescence. US Naval Research Lab: Washington, DC, USA, 2005.
87.May, V.; Kuhn, O., Charge and Energy Transfer Dynamics in Molecular Systems. 2nd Ed.; Wiley-VCH: 2003; chapter 8.
88.Kocacic, P.; Kyriakis, A. J. Am. Chem. Soc. 1963, 85, 454.
89.Mccullough, R. D. Adv. Mater. 1998, 10, 93.
90.Scherf, U. Top. Curr. Chem. 1999, 201, 164.
91.Hadziioannou, G.; Hutten, v. P. F., Semiconducting Polmers. Wiely: Germany, 2000; chapter 16.
92.Suzuki, A. Pure Appl. Chem. 1991, 63, 419.
93.Chen, S.-H.; Chen, Y. Macromolecules 2005, 38, 53.
94.Lögdlund, M.; Salaneck, W. R.; Meyers, F.; Brédas, J. L.; Arbuckle, G. A.; Friend, R. H.; Holmes, A. B.; Froyer, G. Macromolecules 1993, 26, 3815.
95.Stille, J. K. Amgew. Chem. Int. Ed. 1986, 25, 508.
96.Lawrence, N. J., The Wittig Reactions and Related Methods in Preparation of Alkenes: A Practical Approach. Oxford University: New York, 1996.
97.Laue, T.; Plagens, A., Named Organic Reactions. 2nd Ed.; John Wiley& Sons: New York, 1999.
98.Conticello, V. P.; Gin, D. L.; Grubbs, R. H. J. Am. Chem. Soc. 1992, 114, 9708.
99.Gilch, H. G.; Wheelwright, W. L. J. Polym. Sci. 1966 A-1, 1337.
100.Hsieh, B. R.; Yu, Y.; Lee, H. K.; Vanlaeken, A. C. Macromolecules 1997, 30, 8094.
101.Scherf, U.; List, E. J. W. Adv. Mater. 2002, 14, 477.
102.Yamamoto, T.; Morita, A.; Muyazaki, Y.; Maruyama, T.; Wakayama, H.; Zhou, Z.-H.; Nakamura, Y.; Kanbara, T.; Sasaki, S.; Kubota, K. Macromolecules 1992, 25, 1214.
103.Strukelj, M.; Papadimitrakopoulos, F.; Miller, T. M.; Rothberg, L. J.; Chandross, E. A. Science 1995, 117, 11976.
104.Schubert, E. F., Light-Emitting Diodes, 1st ed., Cambridge University Press, 2003, chapter 11.
105.Roger, D. W., Computational Chemistry Using the PC, 3rd ed., Wiley-Interscience, 2003, chapter 3.
106.(a) http://en.wikipedia.org/wiki/Computational_chemistry (b) http://www.ym. edu.tw/~sysheu/summer/5-ST-MMFF-2005.pdf.
107.(a) Kraft, A.; Burn, P. L.; Holmes, A. B.; Bradley, D. D. C.; Friend, R. H.; Martens, J. H. F. Synth. Met. 1993, 57, 4163. (b) Antomiadis, H.; Abkowitz, M. A.; Hsieh, B. R. Appl. Phys. Lett. 1994, 65, 2030.
108.(a) Meyer, H.; Haarer, D.; Naarmann, H.; Hörhold, H. H. Phys. Rev. B 1995, 52, 2587. (b) Blom, P. W. M.; de John, M. J. M.; Vleggaar, J. J. M. Appl. Phys. Lett. 1996, 68, 3308.
109.(a) Yang, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934. (b) Wang, Y. Z.; Gebler, D. D.; Spry, D. J.; Fu, D. K.; Swager, T. M.; MacDiarmid, A. G.; Epstein, A. J. IEEE Trans. Electron Devices 1997, 44, 1263.
110.(a) Li, X.-C.; Grimsdale, A. C.; Cervini, R.; Holmes, A. B.; Moratti, S. C.; Yong, T. M.; Grüner, J.; Friend, R. H. ACS Symp. Ser. 1997, 672, 322. (b) Meng, H.; Yu, W. L.; Huang, W. Macromolecules 1999, 32, 8841. (c) Martens, H. C. F.; Huiberts, J. N.; Blom, P. W. M. Appl. Phys. Lett. 2000, 77, 1852.
111.(a) Greenham, N. C.; Moratti, S. C.; Bradley, D. D. C.; Friend, R. H.; Holmes, A. B. Nature 1993, 365, 628. (b) Garten, F.; Hilberer, A.; Cacialli, F.; Esselink, E.; van Dam, Y.; Schlatmann, B.; Friend, R. H.; Klapwijk, T. M.; Hadziioannou, G. Adv. Mater. 1997, 9, 127. (c) Adachi, C.; Tsutsui, T.; Saito, S. Appl. Phys. Lett. 1989, 55, 1489.
112.Brown, A. R.; Bradley, D. D. C.; Burn, P. L. J.; Burroughes, H.; Friend, R. H.; Greenham, N.; Kraft, A. Appl. Phys. Lett. 1992, 61, 2793.
113.(a) Parker, I. D.; Pei, Q.; Marrocco, M. Appl. Phys. Lett. 1994, 65, 1272. (b) Son, S.; Dodabalapur, A.; Lovinger, A. J.; Galvin, M. E. Science 1995, 269, 376.
114.Son, S.; Dodabalapur, A.; Lovinger, A. J.; Galvin, M. E. Science 1995, 269, 376.
115.(a) Buchwald, E.; Meier, M.; Karg, S.; Posch, P.; Schmidt, H.-W.; Strohriegl, P.; Rieβ, W.; Schwoerer, M. Adv. Mater. 1995, 7, 839. (b)Greczmiel, M.; Strohriegl, P.; Meier, M.; Brütting, W. Macromolecules 1997, 30, 6042. (c) Hwang, M.-Y.; Hua, M.-Y.; Chen, S.-A. Polymer, 1999, 40, 3233. (d) Xun, S.; Zhou, Q.; Li, H.; Ma, D.; Wang, L.; Jing, X.; Wang, F. J. Polym. Sci. Part A Polym. Chem. 2008, 46, 1566. (e) Karastatiris, P.; Mikroyannidis, J. A.; Spiliopoulos, I. K. J. Polym. Sci. Part A Polym. Chem.2008, 46, 2367.
116.(a) Liu, S.; Jiang, X.; Ma, H.; Liu, M. S.; Jen, K.-Y. Macromolecules 2000, 33, 3514. (b) Jung, B.-J.; Lee, J.-I.; Chu, H. Y.; Do, L.-M.; Shim, H.-K. Macromolecules 2002, 35, 2282.
117.Bellmann, E.; Shaheen, S. E.; Grubbs, R. H.; Marder, S. R.; Kippelen, B.; Peyghambarian, N. Chem. Mater. 1999, 11, 399.
118.(a) Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2002, 14, 4775. (b) Alam, M. M.; Tonzola, C. J.; Jenekhe, S. A. Macromolecules 2003, 36, 6577. (c) Kwon, T. W.; Alam, M. M.; Jenekhe, S. A. Chem. Mater. 2004, 16, 4657. (d) Cui, Y.; Zhang, X.; Jenekhe, S. A. Macromolecules 1999, 32, 3824. (e) Zhang, X.; Jenekhe, S. A. Macromolecules 2000, 33, 2069. (f) Tonzola, C. J.; Alam, M. M.; Bean, B. A.; Jenekhe, S. A. Macromolecules 2004, 37, 3554.
119.(a) Yeh, K.-M.; Chen, Y. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 5362. (b)Yeh, K.-M.; Chen, Y. J. Polym. Sci. Part A Polym. Chem. 2007, 45, 2259. (c) Wang, X.; Guan, S.; Xu, H.; Su, X.; Zhu, X.; Li, C. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 1406. (d) Li, H.; Wang, L.; Zhao, B.; Shen, P.; Tan, S. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 3296. (e) Jiang, Z.; Zhang, W.; Yao, H.; Yang, C.; Cao, Y.; Qin, J.; Yu, G.; Liu, Y. J. Polym. Sci. Part A Polym. Chem. 2009, 47, 3651.
120.Grice, A. W.; Bradley, D. D. C.; Bernius, M. T.; Inbasekaran, M.; Wu, W. W.; Woo, E. P. Appl. Phys. Lett. 1998, 73, 629.
121.Becker, S.; Ego, C.; Grimsdale, A. C.; List, E. J. W.; Marsitzky, D.; Pogantsch, A.; Setayesh, S.; Leising, G.; Müllen, K. Synth. Met. 2002, 125, 73.
122.(a) Babel, A.; Jenekhe, S. A. Macromolecules 2003, 36, 7759. (b) Cho, N. S.; Hwang, D.-H.; Jung, B.-J.; Lim, E.; Lee, J.; Shim, H.-K. Macromolecules 2004, 37, 5265.
123.Grice, A. W.; Tajbakhsh, A.; Burn, P. L.; Bradley, D. D. C. Adv. Mater. 1997, 9, 1174.
124.(a) Adachi, C.; Baldo, M. A.; Forrest, S. R.; Thompson, M. E. Appl. Phys. Lett. 2000, 77, 904. (b) Yasuda, T.; Imase, T.; Nakamura, Y.; Yamamoto, T. Macromolecules 2005, 38, 4687.
125.(a) Yamamor, A.; Adachi, C.; Koyama, T.; Taniguchi, Y. Appl. Phys. Lett. 1998, 72, 2147. (b) Mitschke, U.; Bäuerle, P. J. Mater. Chem. 2000, 10, 1471. (c) Ego, C.; Grimsdale, A. C.; Uckert, F.; Yu, G.; Srdanov, G.; Müllen, K. Adv. Mater. 2002, 14, 809.
126.Coulson, D. R.; Satek, L. C.; Grim, S. O. Inorg. Synth. 1972, 13, 121.
127.(a) Oishi, Y.; Ishida, M.-A.; Kakimoto, M.; Imai, Y.; Kurosaki, T. J. Polym. Sci. Part A: Polym. Chem. 1992, 30, 1027. (b) Park, K. H.; Kakimoto, M.-A; Imai, Y. J. Polym. Sci. Part A Polym. Chem. 1998, 36, 1987. (c) Hsiao, S.-H.; Chen, C.-W.; Liou G.-S. J. Polym. Sci. Part A Polym. Chem. 2004, 42, 3302.
128.Oelkrug, D.; Tompert, A.; Gierschner, J.; Egelhaaf, H.-J.; Hanack, M.; Hohloch, M.; Steinhuber, E. J. Phys. Chem. B 1998, 102, 1902.
129.Teetsov, J.; Fox, M. A. J. Mater. Chem. 1999, 9, 2117.
130.Becker, K.; Lupton, J. M.; Feldmann, J.; Nehls, B. S.; Galbrecht, F.; Gao, D. Q.; Scherf, U. Adv. Funct. Mater. 2006, 16, 364.
131.Gong, X.; Ostrowski, J. C.; Moses, D.; Bazan, G. C.; Heeger, A. J. Adv. Funct. Mater. 2003, 13, 439.
132.Uchida, M.; Adachi, C.; Koyama, T.; Taniguchi, Y. J. Appl. Phys. 1999, 86, 1680.
133.Lee, Y.-Z.; Chen, X.; Chen, S.-A.; Wei, P.-K.; Fann, W.-S. J. Am. Chem. Soc. 2001, 123, 2296.
134.Kim, J. L.; Kim, J. K.; Cho, H. N.; Kim, D. Y.; Kim, C. Y.; Hong, S. Macromolecules 2000, 33, 5880.
135.Zheng, M.; Ding, L.; Gürel, E. E.; Lahti, P. M. Karasz, F. E. Macromolecules 2001, 34, 4124.
136.(a) Huang, F.; Wu, H.; Wang, D.; Yang, W. Cao, Y. Chem. Mater. 2004, 16, 708. (b) Zhang, K.; Tao, Y.; Yang, C.; You, H.; Zou, Y.; Qin, J.; Ma, D. Chem. Mater. 2008, 20, 7324.
137.Kulkarni, A. P.; Jenekhe, S. A. Macromolecules 2003, 36, 5285.
138.(a) Wu, C.-S.; Chen, Y. Macromolecules 2009, 42, 3729. (b) Wu, C.-S.; Chen, Y. J. Mater. Chem. 2010, 20, 7700. (c) Wu, C.-S.; Chen, Y. J. Polym. Sci. Part A Polym. Chem. 2010, 48, 5727.(d) Wu, C.-S.; Lee, S.-L.; Chen, Y. J. Polym. Sci. Part A Polym. Chem. 2011, 49, 3099. (e) Wu, C.-S.; Chen, Y. J. Polym. Sci. Part A Polym. Chem. 2011, (DOI: 10.1002/pola.24831).
139.MNDO semi-empirical calculations were performed with Gaussian R 98W and Gauss View 3.09 by Gaussian, Inc.
140.Van Slyke, S. A.; Chen, C. H. Tang, C. W. Appl. Phys. Lett. 1996, 69, 2160.
141.Lee, M.-T.; Chen, H.-H.; Liao, C.-H.; Tsai, C.-H.; Chen, C. H. Appl. Phys. Lett. 2004, 85, 3301.
142.Jing, W.-X.; Kraft, A.; Moratti, S. C.; Grüner, J.; Cacialli, F.; Hamer, P. J.; Holmes, A. B.; Friend, R. H. Synth. Met. 1994, 67, 161.
143.Yang, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 75, 934.
144.Cimrová, V.; Remmers, M.; Neher, D.; Wegner, G. Adv. Mater. 1996, 8, 146.
145.Yang, Y.; Pei, Q.; Heeger, A. J. Synth. Met. 1996, 78, 263.
146.Chen, S.-A.; Chao, C.-I. Synth. Met. 1996, 79, 93.
147.Chen, S.-H.; Chen, Y. J. Polym. Sci. Part A Polym. Chem. 2006, 44, 4514.
148.Liou, G.-S.; Hsiao, S.-H.; Huang, N.-K.; Yang, Y.-L. Macromolecules 2006, 39, 5337.