| 研究生: |
陳禎康 Chen, Zhen-Kang |
|---|---|
| 論文名稱: |
微分再生核近似法於二維彈力之應用 |
| 指導教授: |
王永明
Wang, Yung-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 49 |
| 中文關鍵詞: | 微分再生核近似法 、置點法 、無元素法 |
| 外文關鍵詞: | DRKM, meshless |
| 相關次數: | 點閱:75 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要應用無元素法(Meshfree method)家族中一員,微分再生核近似法(Differential Reproducing Kernel Approximation, DRKM )來分析二維彈力的問題,藉以驗證此法之適用性與可行性。本法以微分再生核近似配合適點法(Point collocation method)來分析微分方程,以簡便的微分法則大大簡化了繁雜的求導數過程,最大的特點為完全使用離散點來建構數值模型,排除使用積分網格,真正作到無元素法的精神。在本文中,將使用DRKM來分析彈性樑承受外力時的變形、含圓孔無限平板應力集中以及裂縫之應力強度因子。分析時以離散再生核近似的法則求出再生核形狀函數(Reproducing Kernel shape function) 及其各階導數。再由各問題之控制方程式,建立分析問題所需聯立代數方程組求解。
數值算例顯示,求解懸臂樑問題時,幾乎可達到解析解的精度。在求解含圓孔之無限板,裂縫等有局部應力集中問題時,只需在局部節點加密即可達到良好的精度。
none
參考文獻
[1] Lucy, L. B.: Anumerical approach to the testing of the fission hypothesis, The Astron. J.8 (12), 1013-1024 (1977).
[2] Nayroles, B., Touzot, G. and Villon, P.: Generalizing the finite element method diffuse approximation and diffuse elements, Comput. Mech. 10, 307-318 (1992).
[3] Belytschko, T., Gu, L. and Lu, Y. Y.: Fracture and crack growth by element-free Galerkin methods, Model. Simul. Mater. Sci. Engrg. 2, 519-534 (1994).
[4] 盛若磐,”元素釋放法積分法則與權函數之改良”,近代工程計算論壇(2000)論文集,國立中央大學土木系,2000.
[5] Liu, W. K., Jun, S. and Zhang, Y. F.: Reproducing kernel particle methods, Int. J. Number. Methods Engrg.20, 1081-1106 (1995).
[6] Chen, J. S., Wu, C. T. and Liu, W. K.: Reproducing Kernel Particle Methods for Large Deformation Analysis of non-linear structures, Computer Methods in Applied Mechanics And Engineering. 139, 195-227. (1996).
[7] Li, s., Hao, W., Liu, W. K.: Numerical simulation of large deformation of thin shell structures using meshfree methods. Computational Mechanics 25, 102-116 (2000).
[8] Oñate, E., Idelsohn, S., Zienkiewicz, O. C., Taylor, R. L. and Sacco, C.: A Stabilized finite point method for analysis of fluid mechanics problems, Computer Methods in Applied Mechanics & Engineering,139,
315-346 (1996).
[9] Zhu, T. and Atluri, S. N.: A Meshless Numberical Method Based on the Local Boundary Integral Equation (LBIE) to Solve Linear and Non-linear Boundary Value Problems, Engineering Analysis with Boundary Elements, 23, 357-389. (1999).
[10] Belytschko, T., Krongauz, Y., Orang, D., Fleming, N.: Meshless methods:An Overview and Recent Developments, ComputerMethods in Applied Mechanics & Engineering, 139, 3-47(1996).
[11] Krysl, P. and Belytschko, ESFLIB: A Library to Compute The Element Free Galerkin Shape Functions,Computer Methods in Applied Mechanics & Engineering, 190, 2181-2205(2001).
[12] Tada, H., Paris, P. C. and Irwin, G. R.: The Stress Analysis of Cracks Handbook, Third Edition (2000).
[13] JU, S. H.: Simulating stress intensity factors for anisotropic materials by the least-squares method, International Journal of Fracture, 81, 283-297 (1996).
[14] Fleming, M., Chu, Y. A., Moran B, Bleytschko T., Lu, Y. Y., Gu L.,: Enriched element-free Galerkin methods for creak-tip fields. Int. J. Numer. Meth. Engng , 40, 1483-1504 (1997).