簡易檢索 / 詳目顯示

研究生: 吳璨廷
Wu, Tsan-Ting
論文名稱: 透地雷達探測應用於地下遺構及地工構造物安全之研究
The Application of Ground Penetration Radar Detection on Subsurface Ruins and Geotechnical Structures Safety
指導教授: 吳建宏
Wu, Jian-Hong
共同指導教授: 李德河
Lee, Der-Her
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 182
中文關鍵詞: 透地雷達地下遺構差異沉陷地層掏空彰濱崙尾海堤地層擾動
外文關鍵詞: Ground Penetrating Radar, Subsurface Ruins, Differential Settlement, Eroded Caves, Lunwei Coastal Embankment, Stratum Disturbance
相關次數: 點閱:158下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 臺南自1624年的荷蘭人殖民開始,至今歷經了明鄭、清領、日治及二戰後的治理,也留下眾多文化資產,隨著時代推進,台南市作為歷史悠久的城市,在文化資產的傳承與保存更是具有指標性,但面臨當今都市地區的開發,地表上之結構物大多被移除甚至破壞,僅剩下部分基礎遺構埋藏於地表下。本研究利用透地雷達進行安平古堡北側殘牆周邊地下遺構的調查,研究流程先以透地雷達進行探測,按圖徵判釋出不同的地下埋藏物之狀況,再推測地下遺構的可能位置,同時也藉由考古開挖試掘來驗證透地雷達在遺構初步探測之適用性,結合開挖區內已出土之遺構與透地雷達剖面圖徵來推測周遭未開挖區之地下遺構位置。
    其次,在2022年台南市安平區鎮海宮廟前廣場的金爐疑似出現傾斜現象。為了釐清傾斜原因是否與差異沉陷、地層掏空等因素,需要進行調查和研究。本研究運用透地雷達探測技術對該區域進行檢測,發現了差異沉陷的跡象。除了使用透地雷達,還對周遭土木結構物的變化情況進行調查,如土地覆蓋的變遷與擋土設施現況。旨在釐清金爐傾斜可能的原因,調查結果也可為後續改善工程提供重要參考。
    最後,離岸風力發電是近年來國家重大的能源轉型計畫,以海底纜線聯結離岸風場的發電機與台灣本島的電廠,而纜線在海堤底下的穿越會造成鄰近地層受擾動。本研究在纜線穿越施工前後均對彰濱崙尾海堤段以及鄰近道路下的地層進行透地雷達檢測,擬由檢測結果的前後異同觀察海堤周邊下方地層的變動。

    Since the Dutch colonization in 1624, Tainan has undergone governance by numerous regimes up to the present day. As time has progressed, Tainan City, being an ancient city with a rich history, has stood as a hallmark for the preservation and inheritance of cultural heritage. However, many structures have been removed or even destroyed, leaving only some remnants buried beneath the ground. This study utilized ground penetrating radar (GPR) for investigating the subsurface ruins around the northern ruins wall of Anping Old Fort. The GPR detection revealed different conditions of buried objects based on the reflector patterns on the radar images. Subsequently, the possible locations of underground ruins were inferred, and archaeological excavation was employed to validate the initial detectability of GPR for these ruins.
    In 2022, there appeared to be a tilt phenomenon in the incense burner at the front plaza of Zhenhai Temple in Anping District, Tainan City. We had to clarify whether the tilt was related to factors such as differential settlement or eroded caves. This study employed GPR technology to survey the area and identified signs of differential settlement. In addition to using GPR, an investigation was conducted on the changes in surrounding civil structures, including changes in land cover and the status of retaining facilities.
    Lastly, offshore wind power has become a national energy transformation policies in recent years. It involves connecting offshore wind turbines to power plants on the main island of Taiwan through submarine cables. The passage of these cables beneath the sea embankment can cause stratum disturbance in the adjacent area. In this study, both before and after the cable passage construction, GPR was employed to survey the stratum beneath Lunwei coastal embankment section in Changhua County. The objective was to observe changes of the stratum beneath the sea embankment by comparing differences in GPR detection results before and after the cable installation.

    摘要 I Extended Abstract II 致謝 XII 目錄 XIV 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1-1 研究背景 1 1-2 研究動機及方法 3 1-3 研究流程 4 1-4 研究大綱 6 第二章 文獻回顧 7 2-1 透地雷達之應用範圍 7 2-2 透地雷達之文獻回顧 9 2-2-1 地下遺構調查 9 2-2-2 地工構造物的檢測 17 第三章 透地雷達檢測之基本理論與儀器介紹 23 3-1 透地雷達儀器及原理介紹 23 3-1-1 透地雷達儀器介紹: 23 3-1-2 透地雷達探測流程 26 3-1-3 透地雷達基本理論 31 3-1-4 介質之電磁特性 33 3-1-5 透地雷達探測深度概算法 37 3-1-6 解析度 39 3-1-7 資料處理 41 3-1-8 透地雷達圖徵判讀 45 第四章 資料分析與研究方法 48 4-1 透地雷達訊號分析方法 48 4-1-1 RADAN 7軟體之圖徵處理 48 第五章 現地探測規劃與結果 50 5-1 台南市安平古堡北側殘牆遺構 50 5-1-1 研究區域介紹 52 5-1-2 透地雷達之測線規劃與施作 53 5-1-3 透地雷達探測結果分析與比對 58 5-1-4 透地雷達探測結果分析(考古開挖區域外) 67 5-1-5 綜合討論 70 5-2 台南市安平區鎮海宮廟前廣場地層擾動檢測 74 5-2-1 研究區域介紹 75 5-2-2 透地雷達之測線規劃與施作 76 5-2-3 透地雷達探測之成果與歸納 80 5-2-4 安平鎮海宮周圍土木構造物變動之觀察 90 5-2-5 安平鎮海宮廟前廣場探測成果之綜合分析 96 5-3 彰濱工業區崙尾海堤段之地層變動監測 98 5-3-1 研究區域介紹 99 5-3-2 透地雷達監測之測線規劃與施作 102 5-3-3 透地雷達的檢測成果整理與展示 107 5-3-4 彰濱崙尾海堤監測成果之綜合討論 119 第六章 結論與建議 128 6-1 結論 128 6-2 建議 130 參考文獻 132 附錄一 透地雷達現地探測資料 141 附錄(A)-台南市安平古堡北側殘牆完整測線圖 141 附錄(B)-台南市安平區鎮海宮廟前廣場完整測線圖 152 附錄(C)-彰濱工業區崙尾海堤完整測線圖 161 附錄二 口試委員建議 182

    (1) 中華大學土木工程學系/結構安全評估與非破壞性檢測實驗室,「http://web.chu.edu.tw/~ccw/」。
    (2) 中央研究院人文社會科學研究中心,「台南市百年歷史地圖疊合系統」,「http://gissrv4.sinica.edu.tw/gis/tainan.aspx」。
    (3) 王惠濂,「探地雷達目的體物理模擬研究結果」,中國地質大學學報,第18卷,第3期,266-284頁,1993。
    (4) 尤仁弘,「應用地電阻影像法於壩體潛在滲漏調查之研究」,國立交通大學土木工程研究所碩士論文,2005。
    (5) 全國法規資料庫,「https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=H0170001&flno=33」,2019。
    (6) 李祐廷,「透地雷達應用於檢測地下水槽及地下遺構之研究」,國立成功大學土木工程研究所碩士論文,台南,2022。
    (7) 祁松明,「地質雷達在隧道內的探測」,地球科學-中國地質大學學報,第18卷,第3期,第352-357頁,1993。
    (8) 邱君豪,透地雷達在大地工程上之初步研究」,國立成功大學土木工程研究所碩士論文,台南,1997。
    (9) 侯州逸,「非破壞檢測法應用於研判土壤液化、地層掏空及地下遺址之研究」,國立成功大學土木工程研究所碩士論文,台南,2020。
    (10) 柯永彥,「訊號處理在大地工程上的運用」,授課講義,台南,2022。
    (11) 夏語堯,「透地雷達應用於地下古蹟調查及判釋」,國立成功大學土木工程研究所碩士論文,台南,2018。
    (12) 黃復為,「透地雷達探測道路下孔洞之研究」,國立台北科技大學土木與防災研究所碩士論文,2015。
    (13) 張均仰,「透地雷達於古蹟探測之應用」,國立成功大學土木工程研究所碩士論文,台南,2004。
    (14) 許朝景,「透地雷達於大地環境調查之應用」,國立成功大學土木工程研究所碩士論文,台南,2000。
    (15) 國立成功大學考古學研究所,「第二期熱蘭遮城與大員市鎮考古發掘調查研究計畫*會勘簡報」,2023
    (16) 陳亮宇,「非破壞性檢測法應用在地下遺址及構造物檢傷之研究」,國立成功大學土木工程研究所碩士論文,台南,2019。
    (17) 陳澤承,「由波速的量測改善透地雷達應用於古蹟遺址的探測之效益」,國立成功大學土木工程研究所碩士論文,台南,2013。
    (18) 楊濬豪,「透地雷達應用於木結構裂損檢測及地下管線判釋之研究」,國立成功大學土木工程研究所碩士論文,台南,2017。
    (19) 詹伯望,「半月沉江話府城」,台灣建築與文化資產出版社,2006。
    (20) 董彥閔,「地電阻影像法於古蹟遺址探測與大地環境應用之研究」,國立成功大學土木工程研究所碩士論文,台南,2010。
    (21) 褚耀龍,「應用透地雷達法於地下管線定位-蘆洲地區案例探討」,中華大學土木與工程資訊研究所碩士論文,2009。
    (22) 彰芳暨西島離岸風場,「https://www.cfxd.com.tw/index.php?lang=tw」
    (23) 聚珍.台灣,「臺南五期重劃區今昔」,https://www.gjtaiwan.com/new/?p=79555」,2020。
    (24) 劉大魁,「GPR與熱影像技術於大地工程之應用研究」,國立成功大學土木研究所碩士論文,台南,2002。
    (25) 蔣元樞,「重修臺郡各建築圖說」,國立故宮博物院出版,2007。
    (26) 賴新龍,「非破壞檢測技術應用於淺層地工構造物之調查」,國立成功大學土木工程研究所博士論文,台南2013。
    (27) 蔡沅晁,「非破壞檢測法應用於檢測壩體地下水位及地下遺址之研究」,國立成功大學土木工程研究所碩士論文,台南,2021。
    (28) 蔡宗原,「透地雷達訊號頻譜分析應用於地下構造物材料判釋之研究」,國立成功大學土木工程研究所碩士論文,台南,2016。
    (29) 羅經書,「透地雷達應用於管線與地層調查之研究」,國立成功大學土木工程研究所碩士論文,台南,1998。
    (30) Al-Shukri H.J. and Mahdi H.H., "Three-Dimensional Imaging of Earthquake induced Liquefaction Features with Ground Penetrating Radar Near Marianna, Arkansas", Seismological Research Letters Volume 77, 2006.
    (31) Anchuela, Ó. P., Frongia, P., Gregorio, F. D., Sainz, A.M. C., and Juan, A. P., “Internal characterization of embankment dams using ground penetrating radar (GPR) and thermographic analysis: A case study of the Medau Zirimilis Dam (Sardinia, Italy),” Engineering Geology, Vol.237, 10 April 2018, p.p. 129-139.
    (32) Bagaloni, V.N., Perdomo, S., Ainchil, J., “Geoelectric and magnetic surveys at La Libertad archaeological site (San Cayetano County, Buenos Aires Province, Argentina): A transdisciplinary approach”, Quaternary International Volume 245, Issue 1, Pages 13-24, 29 November 2011.
    (33) Beben, D., Anigacz, W., and Ukleja, J., “Diagnosis of bedrock course and retaining wall using GPR,” NDT & E International, Vol.59, October 2013, p.p.77-85.
    (34) Beres, M. and Haeni, F.P., “Application of Ground Penetrating Radar Methods in Hydrogeologic Studies”, Ground Water, Vol.29, No.3, pp.375-386,1991.
    (35) Borgattia, L., Forte, E., Mocnik, A., Zambrini, R., Cervi, F., Martinucci, D., Pellegrini, F., Pillon, S., Prizzon, A., and Zamariolo A., “Detection and characterization of animal burrows within river embankments by means of coupled remote sensing and geophysical techniques: Lessons from River Panaro (northern Italy),” Engineering Geology, Vol.226, 30 August 2017, p.p.277-289.
    (36) Burger, H.R., “Exploration Gcophysics of the Shallow Subsurface,” Prentice Hall, New Jersey, USA, 1992.
    (37) Busato, L., Boaga, J., Peruzzo, L., Himi, M., Cola, S., Bersan, S., and Cassiani, G., “Combined geophysical surveys for the characterization of a reconstructed river embankment,” Engineering Geology, Vol.211, 23 August 2016, p.p.74-84.
    (38) Clarebout, J.F., and Muir, F., “Robust modeling with erratic data,” Geophysics, Vol.38, No.5, pp.826-844, 1973.
    (39) Constable, S.C., Parker, R.L., and Constable, C.G., “Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data,” Geophysics, Vol.52, No.3, pp.289-300, 1987.
    (40) Davis, J. L. and Annan, A. P., “Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy”, Geophysical Prospecting, Volume37, Issue5, Pages 531-551, July 1989.
    (41) Geophysical Survey Systems Inc., RADAN for Windows Version7 user’s Manual, USA, 1-176, 2014b.
    (42) Geophysical Survey System., s Inc SIR System-4000 User's Manual,USA, 2020.
    (43) Giles, C.L., and Wild, W.J., "Fresnel reflection and transmission at a planar boundary from media of equal refractive indices, " Vol. 40, No. 3, 210–212, 1982.
    (44) Google 地圖,「https://www.google.com.tw/maps/@23.0093991,120.2166406,15z?entry=ttu」,2023。
    (45) Groot-Headlin, C., and Constable, S., “Occam’s inversion to generate smooth two-dimensional models from magneto telluric data,” Geophysics, Vol.55, No.12, pp.1613-1624, 1990.
    (46) Guha,S., Kruse,S.E., Wright, E.E.and Kruse,U.E., “ Spectral analysis of ground penetrating radar response to thin sedimentary layers” , Geophysical Research Letters, Vol.32, Issue . 23, 2005.
    (47) Ho, K.C., Gader, P.D. and Wilson, J.N., “Improving Landmine Detection Using Frequency Domain Features from Ground Penetrating Radar,” Geoscience and Remote Sensing Symposium, Vol.3, pp.1617-1620,2004.
    (48) Hubbert, M.K., “The theory of ground-water motion,” Journal of Geology, Vol.48, No.8, pp.785-994, 1940.
    (49) Iskander, M.F., “Electromagnetic Fields and Waves”, Prentice Hall, U.S.A., 1992.
    (50) Işık, N., Halifeoğlu, F. M., and İpek, S., “Detecting the ground-dependent structural damages in a historic mosque by employing GPR,” Journal of Applied Geophysics, Vol.199, April 2022, 104606.
    (51) Jol H. M., "Ground Penetrating Radar Theory and Applications,”2009.
    (52) Kearey P. and Brooks M., "An Introduction to Geophysical Exploration”, 1984.
    (53) Leopold, M. , Gannaway, E. , Jörg Völkel , Haas, F. ,Becht, M., Heckmann T., Westphal M. and Zimmer G., “ Geophysical prospection of a bronze foundry on the southern slope of the acropolis at Athens, Greece ” , Archaeological Prospection, Volume18, Issue1, Pages 27-41 , January/March 2011.
    (54) Lines, L.R., and Treitel, S., “A review of least-squares inversion and its application to geophysical problems,” Geophysical Prospecting, Vol.32, pp.159-186, 1984.
    (55) Liu, L. and Li, Y., "Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, USA", Journal of Applied Geophysics 47, P199–215, 2001.
    (56) Liu, Z., Gu, X., Wu, W., Zou, X., Dong, Q., and Wang, L., “GPR-based detection of internal cracks in asphalt pavement: A combination method of DeepAugment data and object detection,” Measurement, Vol.197, 30 June 2022, 111281.
    (57) Loke, M.H., “Tutorial:2-D and 3-D electrical imaging surveys”, Geotomo Software, Malaysia, pp.11-17, 2003.
    (58) Perez-Gracia, V., Gonzalez-Drigo, R. and Sala, R., “Ground-penetrating radar resolution in cultural heritage applications,” Near Surface Geophysics, 10(1), pp.77 – 87, 2015.
    (59) Perri, M.T., Boaga, J., Bersan, S., Cassiani, G., Cola, S., Deiana, R., Simonini, P., and Patti, S., “River embankment characterization: The joint use of geophysical and geotechnical techniques,” Journal of Applied Geophysics, Vol.110, November 2014, p.p. 5-22.
    (60) Pixnet,「南市安平區安平鎮海宮,系安平討海人早年出海打漁祈求平安返航的心靈依歸」,「https://hsienteh.pixnet.net/blog/post/354952534」,2015。
    (61) Ronen, A., Ezersky, M., Beck, A., Gatenio, B., and Simhayov, R.B., “Use of GPR method for prediction of sinkholes formation along the Dead Sea Shores, Israel,” Geomorphology, Vol.328, 1 March 2019, p.p. 28-43.
    (62) Skolnik, M.I., “Introduction to Radar Systems” ,1980.
    (63) Telford, W.M., Geldart, L.P. and Sheriff, R.E., Applied Geophysics, Cambridge University Press, 1990.
    (64) Wang, S., Al-Qadi, I. L., and Cao, Q., “Factors Impacting Monitoring Asphalt Pavement Density by Ground Penetrating Radar,” NDT & E International, Vol.115, October 2020, 102296.
    (65) Wikiwand, 「臺南市第五期市地重劃區」,「https://www.wikiwand.com/zh-tw/%E8%87%BA%E5%8D%97%E5%B8%82%E7%AC%AC%E4%BA%94%E6%9C%9F%E5%B8%82%E5%9C%B0%E9%87%8D%E5%8A%83%E5%8D%80」,2023。
    (66) Wolke, R., and Schwetlick, H., “Iteratively reweighted least squares algorithms, convergence analysis, and numerical comparisoms,” SIAM journal on scientific and statistical computing, Vol.9, No.5, pp.-907-921, 1988.
    (67) Zhang, J., Lu Y., Yang, Z., Zhu, X., Zheng, T., Liu, X., Tian, Y., and Li, W., “Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN,” Automation in Construction, Vol.138, June 2022, 104260.
    (68) Zhao, S., and Al-Qadi, I., “Pavement drainage pipe condition assessment by GPR image reconstruction using FDTD modeling,” Construction and Building Materials, Vol.154, 15 November 2017, p.p.1283-1293.

    無法下載圖示 校內:2028-07-17公開
    校外:2028-07-17公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE