| 研究生: |
吳璨廷 Wu, Tsan-Ting |
|---|---|
| 論文名稱: |
透地雷達探測應用於地下遺構及地工構造物安全之研究 The Application of Ground Penetration Radar Detection on Subsurface Ruins and Geotechnical Structures Safety |
| 指導教授: |
吳建宏
Wu, Jian-Hong |
| 共同指導教授: |
李德河
Lee, Der-Her |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 182 |
| 中文關鍵詞: | 透地雷達 、地下遺構 、差異沉陷 、地層掏空 、彰濱崙尾海堤 、地層擾動 |
| 外文關鍵詞: | Ground Penetrating Radar, Subsurface Ruins, Differential Settlement, Eroded Caves, Lunwei Coastal Embankment, Stratum Disturbance |
| 相關次數: | 點閱:158 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
臺南自1624年的荷蘭人殖民開始,至今歷經了明鄭、清領、日治及二戰後的治理,也留下眾多文化資產,隨著時代推進,台南市作為歷史悠久的城市,在文化資產的傳承與保存更是具有指標性,但面臨當今都市地區的開發,地表上之結構物大多被移除甚至破壞,僅剩下部分基礎遺構埋藏於地表下。本研究利用透地雷達進行安平古堡北側殘牆周邊地下遺構的調查,研究流程先以透地雷達進行探測,按圖徵判釋出不同的地下埋藏物之狀況,再推測地下遺構的可能位置,同時也藉由考古開挖試掘來驗證透地雷達在遺構初步探測之適用性,結合開挖區內已出土之遺構與透地雷達剖面圖徵來推測周遭未開挖區之地下遺構位置。
其次,在2022年台南市安平區鎮海宮廟前廣場的金爐疑似出現傾斜現象。為了釐清傾斜原因是否與差異沉陷、地層掏空等因素,需要進行調查和研究。本研究運用透地雷達探測技術對該區域進行檢測,發現了差異沉陷的跡象。除了使用透地雷達,還對周遭土木結構物的變化情況進行調查,如土地覆蓋的變遷與擋土設施現況。旨在釐清金爐傾斜可能的原因,調查結果也可為後續改善工程提供重要參考。
最後,離岸風力發電是近年來國家重大的能源轉型計畫,以海底纜線聯結離岸風場的發電機與台灣本島的電廠,而纜線在海堤底下的穿越會造成鄰近地層受擾動。本研究在纜線穿越施工前後均對彰濱崙尾海堤段以及鄰近道路下的地層進行透地雷達檢測,擬由檢測結果的前後異同觀察海堤周邊下方地層的變動。
Since the Dutch colonization in 1624, Tainan has undergone governance by numerous regimes up to the present day. As time has progressed, Tainan City, being an ancient city with a rich history, has stood as a hallmark for the preservation and inheritance of cultural heritage. However, many structures have been removed or even destroyed, leaving only some remnants buried beneath the ground. This study utilized ground penetrating radar (GPR) for investigating the subsurface ruins around the northern ruins wall of Anping Old Fort. The GPR detection revealed different conditions of buried objects based on the reflector patterns on the radar images. Subsequently, the possible locations of underground ruins were inferred, and archaeological excavation was employed to validate the initial detectability of GPR for these ruins.
In 2022, there appeared to be a tilt phenomenon in the incense burner at the front plaza of Zhenhai Temple in Anping District, Tainan City. We had to clarify whether the tilt was related to factors such as differential settlement or eroded caves. This study employed GPR technology to survey the area and identified signs of differential settlement. In addition to using GPR, an investigation was conducted on the changes in surrounding civil structures, including changes in land cover and the status of retaining facilities.
Lastly, offshore wind power has become a national energy transformation policies in recent years. It involves connecting offshore wind turbines to power plants on the main island of Taiwan through submarine cables. The passage of these cables beneath the sea embankment can cause stratum disturbance in the adjacent area. In this study, both before and after the cable passage construction, GPR was employed to survey the stratum beneath Lunwei coastal embankment section in Changhua County. The objective was to observe changes of the stratum beneath the sea embankment by comparing differences in GPR detection results before and after the cable installation.
(1) 中華大學土木工程學系/結構安全評估與非破壞性檢測實驗室,「http://web.chu.edu.tw/~ccw/」。
(2) 中央研究院人文社會科學研究中心,「台南市百年歷史地圖疊合系統」,「http://gissrv4.sinica.edu.tw/gis/tainan.aspx」。
(3) 王惠濂,「探地雷達目的體物理模擬研究結果」,中國地質大學學報,第18卷,第3期,266-284頁,1993。
(4) 尤仁弘,「應用地電阻影像法於壩體潛在滲漏調查之研究」,國立交通大學土木工程研究所碩士論文,2005。
(5) 全國法規資料庫,「https://law.moj.gov.tw/LawClass/LawSingle.aspx?pcode=H0170001&flno=33」,2019。
(6) 李祐廷,「透地雷達應用於檢測地下水槽及地下遺構之研究」,國立成功大學土木工程研究所碩士論文,台南,2022。
(7) 祁松明,「地質雷達在隧道內的探測」,地球科學-中國地質大學學報,第18卷,第3期,第352-357頁,1993。
(8) 邱君豪,透地雷達在大地工程上之初步研究」,國立成功大學土木工程研究所碩士論文,台南,1997。
(9) 侯州逸,「非破壞檢測法應用於研判土壤液化、地層掏空及地下遺址之研究」,國立成功大學土木工程研究所碩士論文,台南,2020。
(10) 柯永彥,「訊號處理在大地工程上的運用」,授課講義,台南,2022。
(11) 夏語堯,「透地雷達應用於地下古蹟調查及判釋」,國立成功大學土木工程研究所碩士論文,台南,2018。
(12) 黃復為,「透地雷達探測道路下孔洞之研究」,國立台北科技大學土木與防災研究所碩士論文,2015。
(13) 張均仰,「透地雷達於古蹟探測之應用」,國立成功大學土木工程研究所碩士論文,台南,2004。
(14) 許朝景,「透地雷達於大地環境調查之應用」,國立成功大學土木工程研究所碩士論文,台南,2000。
(15) 國立成功大學考古學研究所,「第二期熱蘭遮城與大員市鎮考古發掘調查研究計畫*會勘簡報」,2023
(16) 陳亮宇,「非破壞性檢測法應用在地下遺址及構造物檢傷之研究」,國立成功大學土木工程研究所碩士論文,台南,2019。
(17) 陳澤承,「由波速的量測改善透地雷達應用於古蹟遺址的探測之效益」,國立成功大學土木工程研究所碩士論文,台南,2013。
(18) 楊濬豪,「透地雷達應用於木結構裂損檢測及地下管線判釋之研究」,國立成功大學土木工程研究所碩士論文,台南,2017。
(19) 詹伯望,「半月沉江話府城」,台灣建築與文化資產出版社,2006。
(20) 董彥閔,「地電阻影像法於古蹟遺址探測與大地環境應用之研究」,國立成功大學土木工程研究所碩士論文,台南,2010。
(21) 褚耀龍,「應用透地雷達法於地下管線定位-蘆洲地區案例探討」,中華大學土木與工程資訊研究所碩士論文,2009。
(22) 彰芳暨西島離岸風場,「https://www.cfxd.com.tw/index.php?lang=tw」
(23) 聚珍.台灣,「臺南五期重劃區今昔」,https://www.gjtaiwan.com/new/?p=79555」,2020。
(24) 劉大魁,「GPR與熱影像技術於大地工程之應用研究」,國立成功大學土木研究所碩士論文,台南,2002。
(25) 蔣元樞,「重修臺郡各建築圖說」,國立故宮博物院出版,2007。
(26) 賴新龍,「非破壞檢測技術應用於淺層地工構造物之調查」,國立成功大學土木工程研究所博士論文,台南2013。
(27) 蔡沅晁,「非破壞檢測法應用於檢測壩體地下水位及地下遺址之研究」,國立成功大學土木工程研究所碩士論文,台南,2021。
(28) 蔡宗原,「透地雷達訊號頻譜分析應用於地下構造物材料判釋之研究」,國立成功大學土木工程研究所碩士論文,台南,2016。
(29) 羅經書,「透地雷達應用於管線與地層調查之研究」,國立成功大學土木工程研究所碩士論文,台南,1998。
(30) Al-Shukri H.J. and Mahdi H.H., "Three-Dimensional Imaging of Earthquake induced Liquefaction Features with Ground Penetrating Radar Near Marianna, Arkansas", Seismological Research Letters Volume 77, 2006.
(31) Anchuela, Ó. P., Frongia, P., Gregorio, F. D., Sainz, A.M. C., and Juan, A. P., “Internal characterization of embankment dams using ground penetrating radar (GPR) and thermographic analysis: A case study of the Medau Zirimilis Dam (Sardinia, Italy),” Engineering Geology, Vol.237, 10 April 2018, p.p. 129-139.
(32) Bagaloni, V.N., Perdomo, S., Ainchil, J., “Geoelectric and magnetic surveys at La Libertad archaeological site (San Cayetano County, Buenos Aires Province, Argentina): A transdisciplinary approach”, Quaternary International Volume 245, Issue 1, Pages 13-24, 29 November 2011.
(33) Beben, D., Anigacz, W., and Ukleja, J., “Diagnosis of bedrock course and retaining wall using GPR,” NDT & E International, Vol.59, October 2013, p.p.77-85.
(34) Beres, M. and Haeni, F.P., “Application of Ground Penetrating Radar Methods in Hydrogeologic Studies”, Ground Water, Vol.29, No.3, pp.375-386,1991.
(35) Borgattia, L., Forte, E., Mocnik, A., Zambrini, R., Cervi, F., Martinucci, D., Pellegrini, F., Pillon, S., Prizzon, A., and Zamariolo A., “Detection and characterization of animal burrows within river embankments by means of coupled remote sensing and geophysical techniques: Lessons from River Panaro (northern Italy),” Engineering Geology, Vol.226, 30 August 2017, p.p.277-289.
(36) Burger, H.R., “Exploration Gcophysics of the Shallow Subsurface,” Prentice Hall, New Jersey, USA, 1992.
(37) Busato, L., Boaga, J., Peruzzo, L., Himi, M., Cola, S., Bersan, S., and Cassiani, G., “Combined geophysical surveys for the characterization of a reconstructed river embankment,” Engineering Geology, Vol.211, 23 August 2016, p.p.74-84.
(38) Clarebout, J.F., and Muir, F., “Robust modeling with erratic data,” Geophysics, Vol.38, No.5, pp.826-844, 1973.
(39) Constable, S.C., Parker, R.L., and Constable, C.G., “Occam’s inversion: A practical algorithm for generating smooth models from electromagnetic sounding data,” Geophysics, Vol.52, No.3, pp.289-300, 1987.
(40) Davis, J. L. and Annan, A. P., “Ground‐penetrating radar for high‐resolution mapping of soil and rock stratigraphy”, Geophysical Prospecting, Volume37, Issue5, Pages 531-551, July 1989.
(41) Geophysical Survey Systems Inc., RADAN for Windows Version7 user’s Manual, USA, 1-176, 2014b.
(42) Geophysical Survey System., s Inc SIR System-4000 User's Manual,USA, 2020.
(43) Giles, C.L., and Wild, W.J., "Fresnel reflection and transmission at a planar boundary from media of equal refractive indices, " Vol. 40, No. 3, 210–212, 1982.
(44) Google 地圖,「https://www.google.com.tw/maps/@23.0093991,120.2166406,15z?entry=ttu」,2023。
(45) Groot-Headlin, C., and Constable, S., “Occam’s inversion to generate smooth two-dimensional models from magneto telluric data,” Geophysics, Vol.55, No.12, pp.1613-1624, 1990.
(46) Guha,S., Kruse,S.E., Wright, E.E.and Kruse,U.E., “ Spectral analysis of ground penetrating radar response to thin sedimentary layers” , Geophysical Research Letters, Vol.32, Issue . 23, 2005.
(47) Ho, K.C., Gader, P.D. and Wilson, J.N., “Improving Landmine Detection Using Frequency Domain Features from Ground Penetrating Radar,” Geoscience and Remote Sensing Symposium, Vol.3, pp.1617-1620,2004.
(48) Hubbert, M.K., “The theory of ground-water motion,” Journal of Geology, Vol.48, No.8, pp.785-994, 1940.
(49) Iskander, M.F., “Electromagnetic Fields and Waves”, Prentice Hall, U.S.A., 1992.
(50) Işık, N., Halifeoğlu, F. M., and İpek, S., “Detecting the ground-dependent structural damages in a historic mosque by employing GPR,” Journal of Applied Geophysics, Vol.199, April 2022, 104606.
(51) Jol H. M., "Ground Penetrating Radar Theory and Applications,”2009.
(52) Kearey P. and Brooks M., "An Introduction to Geophysical Exploration”, 1984.
(53) Leopold, M. , Gannaway, E. , Jörg Völkel , Haas, F. ,Becht, M., Heckmann T., Westphal M. and Zimmer G., “ Geophysical prospection of a bronze foundry on the southern slope of the acropolis at Athens, Greece ” , Archaeological Prospection, Volume18, Issue1, Pages 27-41 , January/March 2011.
(54) Lines, L.R., and Treitel, S., “A review of least-squares inversion and its application to geophysical problems,” Geophysical Prospecting, Vol.32, pp.159-186, 1984.
(55) Liu, L. and Li, Y., "Identification of liquefaction and deformation features using ground penetrating radar in the New Madrid seismic zone, USA", Journal of Applied Geophysics 47, P199–215, 2001.
(56) Liu, Z., Gu, X., Wu, W., Zou, X., Dong, Q., and Wang, L., “GPR-based detection of internal cracks in asphalt pavement: A combination method of DeepAugment data and object detection,” Measurement, Vol.197, 30 June 2022, 111281.
(57) Loke, M.H., “Tutorial:2-D and 3-D electrical imaging surveys”, Geotomo Software, Malaysia, pp.11-17, 2003.
(58) Perez-Gracia, V., Gonzalez-Drigo, R. and Sala, R., “Ground-penetrating radar resolution in cultural heritage applications,” Near Surface Geophysics, 10(1), pp.77 – 87, 2015.
(59) Perri, M.T., Boaga, J., Bersan, S., Cassiani, G., Cola, S., Deiana, R., Simonini, P., and Patti, S., “River embankment characterization: The joint use of geophysical and geotechnical techniques,” Journal of Applied Geophysics, Vol.110, November 2014, p.p. 5-22.
(60) Pixnet,「南市安平區安平鎮海宮,系安平討海人早年出海打漁祈求平安返航的心靈依歸」,「https://hsienteh.pixnet.net/blog/post/354952534」,2015。
(61) Ronen, A., Ezersky, M., Beck, A., Gatenio, B., and Simhayov, R.B., “Use of GPR method for prediction of sinkholes formation along the Dead Sea Shores, Israel,” Geomorphology, Vol.328, 1 March 2019, p.p. 28-43.
(62) Skolnik, M.I., “Introduction to Radar Systems” ,1980.
(63) Telford, W.M., Geldart, L.P. and Sheriff, R.E., Applied Geophysics, Cambridge University Press, 1990.
(64) Wang, S., Al-Qadi, I. L., and Cao, Q., “Factors Impacting Monitoring Asphalt Pavement Density by Ground Penetrating Radar,” NDT & E International, Vol.115, October 2020, 102296.
(65) Wikiwand, 「臺南市第五期市地重劃區」,「https://www.wikiwand.com/zh-tw/%E8%87%BA%E5%8D%97%E5%B8%82%E7%AC%AC%E4%BA%94%E6%9C%9F%E5%B8%82%E5%9C%B0%E9%87%8D%E5%8A%83%E5%8D%80」,2023。
(66) Wolke, R., and Schwetlick, H., “Iteratively reweighted least squares algorithms, convergence analysis, and numerical comparisoms,” SIAM journal on scientific and statistical computing, Vol.9, No.5, pp.-907-921, 1988.
(67) Zhang, J., Lu Y., Yang, Z., Zhu, X., Zheng, T., Liu, X., Tian, Y., and Li, W., “Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN,” Automation in Construction, Vol.138, June 2022, 104260.
(68) Zhao, S., and Al-Qadi, I., “Pavement drainage pipe condition assessment by GPR image reconstruction using FDTD modeling,” Construction and Building Materials, Vol.154, 15 November 2017, p.p.1283-1293.
校內:2028-07-17公開