簡易檢索 / 詳目顯示

研究生: 廖昌郁
Liao, Chang-Yu
論文名稱: 新型奈米TiO2應用於光催化及太陽能電池
Applications of Novel Nanostructured TiO2 for Photocatalysis and Photovoltaics
指導教授: 王鴻博
Wang, H. Paul
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 136
中文關鍵詞: 二氧化鈦奈米管中孔洞二氧化鈦空心球二氧化鈦奈米球光催化光伏太陽能電池染料敏化太陽能電池X光吸收近邊緣光譜結構X光吸收延伸光譜精細結構
外文關鍵詞: TiO2 nanotube, mesoporous TiO2 hollow spheres, nano TiO2, photocatalysis, photovoltaics, dye-sensitized solar cells, XANES, EXAFS
相關次數: 點閱:151下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二氧化鈦(TO2)被廣泛使用於光催化(photocatalysis)及光伏太陽能電池中光電極(photovoltaics (photoanode))等太陽光相關之化學反應及應用,因此,合成新穎奈米結構之二氧化鈦並探討其中之光活性基對光催化及光伏太陽能電池之應用至關重要。本研究中,合成擔載銅或鐵之二氧化鈦奈米管(TiO2 nanotubes (TNTs) (promoted by copper (Cu-TNT) and iron (Fe-TNT))、中孔洞二氧化鈦空心球(mesoporous TiO2 hollow spheres (MHS-TiO2))及8-80 nm之二氧化鈦奈米球(nano TiO2 spheres)並應用於光催化反應之觸媒及染料敏化太陽能電池(dye-sensitized solar cell (DSSC))之光電極。另外,也將中心銅核為7 nm及20 nm之Cu@C核殼奈米粒子(Cu@C core-shell nanoparticles)添加於染料敏化太陽能電池之電解質中,形成複合式電解質以提升染敏電池之光電轉換效率。X光吸收近邊緣光譜結構(X-ray absorption near edge structure (XANES))可用於分析並瞭解新穎奈米結構二氧化鈦中之光活性基,另外,X光吸收延伸光譜精細結構(extended X-ray absorption fine structure (EXAFS))則可提供X光吸收原子之氧化價態、與相鄰原子之鍵距及配位數。
    XANES光譜圖顯示,Cu-TNT及Fe-TNT之光活性基(A2 ((Ti=O)O4))可提升亞甲基藍(methylene blue (MB))之光催化降效率,EXAFS光譜顯示中心鈦原子距第一層氧原子及第一層鈦原子增加0.01-0.02 Å及0.04-0.05 Å,在可見光的反應條件下,Cu-TNT及Fe-TNT中Ti-O鍵結能的降低可能提升光激發電子的傳遞,而MB的光催化降解也可獲得提升。
    MHS-TiO2具有400-600 nm之中孔洞可供N3染料吸附,XANES光譜圖顯示,MHS-TiO2的表面含有A2 ((Ti=O)O4)之光活性基可縮短N3染料70%的所需吸附時間。
    將nano TiO2 spheres之粒徑由80 nm縮小至8 nm後,可將DSSC之光電轉換效率由0.6%提升至6.6%,實驗結果顯示,nano TiO2 spheres之化學結構、比表面積、孔洞體積以及能隙對DSSC之光電轉換效率並不表現顯著之相關性。XANES光譜圖顯示,將nano TiO2 spheres之粒徑由80 nm縮小至8 nm後,其表面之A2 ((Ti=O)O4)光活性基含量由20%提升至33%,A2 ((Ti=O)O4)光活性基之增加可提升N3染料之吸附,也可促進DSSC之光電轉換效率。
    DSSC之光電轉換效率為2.70-4.09%並可獲得5.775-9.910 mA/cm2之短路電流密度,另,添加1%之Cu@C核殼奈米粒子(7 nm)於熔鹽(1,2-dimethyl-3-propylimidazolium iodide (DMPII))複合電解質中可提升DSSC之光電轉換效率(4.06%)達11%,持續增加Cu@C核殼奈米粒子之含量(3-10%)則會劣化DSSC之光電轉換效率及短路電流密度,Cu@C核殼奈米粒子中金屬銅與碘接觸而氧化則可能影響電子在DSSC內之傳輸,也是造成DSSC電池表現劣化之可能原因。
    本論文研究之主要研究成果包括:(1)瞭解新穎奈米結構二氧化鈦(Cu- and Fe-TNT, MHS-TiO2, nano TiO2 (8-80 nm))之光活性基(A2 ((Ti=O)O4))對可見光催化及DSSC光電轉換效率之提升;(2)添加1%之Cu@C核殼奈米粒子(7 nm)於熔鹽(DMPII)複合電解質中可提升DSSC之光電轉換效率。

    TiO2 is widely used in photocatalysis and photovoltaics (photoanode) which are induced by solar energy. Thus it is of great importance and interest to develop new nanostructured TiO2, and photoactive species involved in these two processes. In the present work, TiO2 nanotubes (TNTs) (promoted by copper (Cu-TNT) and iron (Fe-TNT)), mesoporous TiO2 hollow spheres (MHS-TiO2), and nano TiO2 spheres having the size of 8-80 nm in diameter were prepared for photocatalysis and photoanodes in the dye-sensitized solar cell (DSSC). To enhance the efficiency of DSSCs, the Cu@C (Cu size = 7 and 20 nm) core-shell nanoparticles dispersed molten salt conjugated electrolyte was studied. X-ray absorption near edge structure (XANES) was used to characterize the photoactive species in the nanostructured TiO2. Molecule scale data such as oxidation state, bond distance, and coordination number were obtained by extended X-ray absorption fine structure (EXAFS) spectroscopy.
    Experimentally, it is found by XANES that the enhanced photocatalytic degradation of methylene blue (MB) on Cu-TNT and Fe-TNT is associated with the predominant surface photoactive sites A2 ((Ti=O)O4). The refined EXAFS spectra indicate that the dispersed copper and iron also cause increases of the Ti-O and Ti-(O)-Ti bond distances by 0.01-0.02 and 0.04-0.05 Å, respectively. The decreased Ti-O bonding energy may lead to an increase of photoexcited electron transport. The copper or iron promoted TNT can thus enhance photocatalytic degradation of MB under the visible-light radiation.
    The mesopore of the MHS-TiO2 has a pore opening in the range of 400-600 nm which are accessible for N3 dye molecules. Surface active species (A2 ((Ti=O)O4)) on the MHS are also observed by the component fitted XANES spectroscopy. The N3 dye is more accessible to the mesopores of the MHS-TiO2, and the loading time for N3 can be reduced by at least 70%.
    Tuning the nano TiO2 in size from 80 to 8 nm improves the DSSC efficiency from 0.6% to 6.6%. The photovoltaic performances of DSSCs are found dependent neither on chemical structure, specific surface area, pore volume, nor band gap of the nano TiO2 used in the photoanodes. By XANES, the fraction of the photoactive A2 species increases from 20% to 33% with the decrease in crystallite size of nano TiO2 from 80 to 8 nm. The photoactive A2 species in the nano TiO2 are associated with the adsorption of dye molecules and, therefore, improving the DSSC conversion efficiency.
    The efficiencies (η) of the DSSC are in the range of 2.70-4.09% with a short-circuit photocurrent density (JSC) of 5.775-9.910 mA/cm2. Interestingly, it is found that dispersion of 1% of the Cu@C (Cu size = 7 nm) nanoparticles in the molten salt (1,2-dimethyl-3-propylimidazolium iodide (DMPII)) conjugated electrolyte results in an enhancement (about 11%) of the η (4.06%). Greater fractions (3-10%) of the Cu@C nanoparticles dispersed in the molten salt cause a poor performance (lower JSC and η) of the DSSC possibly due to interference of the internal electron transportation routes in the DSSC by oxidation of Cu with I2 originally in the electrolyte.
    Therefore, the main achievements of the present work include: (1) a better understanding of the photoactive sites in nanostructured TiO2 (Cu- and Fe-TNT, MHS-TiO2, and nano TiO2 (8-80 nm)) for visible-light photocatalysis and improved solar energy conversion efficiency of DSSCs and (2) the DSSC efficiency can be improved by Cu@C (Cu = 7 nm) nanoparticles dispersed molten salt (DMPII) electrolyte.

    CONTENT 中文摘要 I ABSTRACT III 謝誌 V CONTENT VII LIST OF TABLES XI LIST OF FIGURES XIII CHAPTER 1 INTRODUCTION 1 CHAPTER 2 LITERATURE SURVEY 5 2.1 Photocatalysts 5 2.2 TiO2 7 2.3 The Photocatalysis by Semiconductors 9 2.3.1 Band Gap 10 2.3.2 Band Position 10 2.3.3 Electron and Hole Pairs Scavenging 13 2.3.4 Competitive Surface Adsorption 13 2.4 Enhancements for the Photoactivity of Semiconductors 13 2.5 The Photovoltaic Effect 14 2.6 Solar Cells 15 2.6.1 Silicon Solar Cells 15 2.6.2 Semiconductor Thin Film Solar Cells 16 2.6.3 Organic Solar Cells 16 2.7 Dye-sensitized Solar Cells 17 2.7.1 The Composition of Dye-sensitized Solar Cells 18 2.7.2 The Working Principle of Dye-sensitized Solar Cells 21 2.8 Synchrotron X-ray Absorption Fine Structure Studies of the Nano TiO2 23 2.9 Environmental Arsenic Pollutions 23 2.10 Ionic Liquids 24 CHAPTER 3 EXPERIMENTAL METHODS 25 3.1 Preparation of Nanomaterials 25 3.1.1 TiO2 Photocatalysts 25 3.1.1.1 TiO2 Nanotubes 25 3.1.1.2 TiO2 Hollow Spheres 25 3.1.1.3 Nano TiO2 25 3.1.2 Cu@C Nanoparticles 26 3.1.3 Room Temperature Ionic Liquids 26 3.1.4 Arsenic-contaminated Soils 26 3.1.5 AsH3 Scrubber Sludges 27 3.2 Chemical Structure Analyses 27 3.2.1 X-ray Diffractometry 27 3.2.2 Micro-Raman Spectroscopy 27 3.2.3 Field-emission Scanning Electron Microscopy 27 3.2.4 Transmission Electron Microscopy 27 3.2.5 High-resolution Transmission Electron Microscopy 27 3.2.6 Small-angle X-ray Scattering 28 3.2.7 Brunauer-Emmett-Teller Analyzer 28 3.2.8 Diffuse Reflectance Ultraviolet Visible Spectroscopy 28 3.2.9 X-ray Fluorescence Spectrometry 28 3.2.10 X-ray Absorption Spectroscopy 28 3.2.11 Solar Simulation 29 3.2.12 Incident Photon-to-current Conversion 29 3.2.13 Toxicity Characteristics Leaching Procedure (TCLP) 29 3.3 Photocatalysis 29 3.4 Preparation of DSSCs 30 3.5 Extraction of Arsenic-contaminated Soils 30 CHAPTER 4 RESULTS AND DISCUSSION 31 4.1 TiO2 Nanotubes and Nanospheres for Photocatalysis 31 4.1a Chemical Structure of TiO2 Nanotube Photocatalysts Promoted by Copper and Iron 32 4.1b Enhanced Photocatalysis with Iron Promoted TiO2 Nanotubes and Nanospheres 43 4.2 TiO2 and Cu@C Core-shell Nanoparticles for Dye-sensitized Solar Cells 62 4.2a Preparation of TiO2 Hollow Spheres for DSSC Photoanodes 64 4.2b Effect of Photoactive Sites of Nano TiO2 on Photovoltaic Efficiencies 74 4.2c Applications of Cu@C Nanoparticles in New Dye-sensitized Solar Cells 94 4.3 Exploratory Research 101 4.3a Extraction of Arsenic from a Soil in the Blackfoot Disease Endemic Area with Ionic Liquids 101 4.3b Tracking of Arsenics during the Thermal Stabilization of an AsH3 Scrubber Sludge 107 CHAPTER 5 CONCLUSIONS 117 REFERENCES 119 APPENDIX 127 Appendix A Photocatalytic degradation of MB effected by Fe-TNT and Fe-TNS with various iron fractions 129 CURRICULUM VITAE 133 LIST OF TABLES Table 4.1a.1 Speciation data of the TNT, Cu-TNT, and Fe-TNT studied by EXAFS 41 Table 4.1b.1 The surface area (S) and pore volume (V) of the Fe-TNT calcined at 573-973 K for 3 h 48 Table 4.1b.2 Speciation data of the Fe-TNT calcined at 573-973 K for 3 h studied by EXAFS 54 Table 4.2a.1 Speciation data of the MHS-TiO2 studied by EXAFS and XANES 71 Table 4.2b.1 The crystallite size, chemical structure, optical absorption property, surface area, and photoactive species of the nanosize TiO2 and the photovoltaic performances of the DSSCs having the photoanode fabricated with the nanosize TiO2 83 Table 4.2b.2 Speciation data of the titanium in the nanosize TiO2 studied by extended X-ray absorption fine structure spectroscopy 88 Table 4.3a.1 Speciation parameters of arsenic in the As-HA/soil and extracted in the [bmim][BF4] and [bmim][PF6] at 298 K 106 Table 4.3b.1 The major and minor elements, and leachable As in the dried and thermally stabilized sludges 109 Table 4.3b.2 Speciation parameters for the first shell of As-O in the thermally stabilized sludge (at 973-1373 K) studied by EXAFS 114 LIST OF FIGURES Figure 1.1 The research scope for applications of novel nanostructured TiO2 for photocatalysis and photovoltaics 3 Figure 2.1 The schematic illustration of the photoexcitation and deexcitation of electron and hole pairs on the surface of a semiconductor 6 Figure 2.2 The configuration of DSSCs 8 Figure 2.3 The band structure in an n-type semiconductor (a) before contact with an electrolyte (flat band situation) and (b) in contact with an electrolyte 11 Figure 2.4 The band position of several semiconductors in contact with the aqueous electrolytes at pH 1 12 Figure 2.5 The configuration of DSSCs 19 Figure 2.6 The working principle of DSSCs 22 Figure 4.1a.1 Transmission electron microscopic images, selected area electron diffraction patterns, and energy dispersive X-ray spectra of the (a) TNT, (b) Cu-TNT, and (c) Fe-TNT 34 Figure 4.1a.2 Diffuse reflectance ultraviolet-visible spectra of the (a) nanosize TiO2, (b) TNT, (c) Cu-TNT, and (d) Fe-TNT 35 Figure 4.1a.3 N2 adsorption/desorption isotherms and the corresponding Barrett-Joyner-Halenda pore size distribution of the (a) nanosize TiO2, (b) TNT, (c) Cu-TNT, and (d) Fe-TNT 36 Figure 4.1a.4 Photocatalytic degradation of methylene blue on the (a) nanosize TiO2, (b) TNT, (c) Cu-TNT, and (d) Fe-TNT under sunlight illumination (AM 1.5 G). The inset shows the spectrum of the sunlight source 38 Figure 4.1a.5 The Ti K-edge XANES and the Gaussian-Lorentzian deconvoluted spectra of the (a) Cu-TNT and (b) Fe-TNT. The dotted and solid lines represent fittings and experimental data, respectively 39 Figure 4.1a.6 The Cu and Fe K-edges XANES spectra of the (a) Cu-TNT and (b) Fe-TNT, respectively. The empty and filled symbols represent the fitting and fractions of standards calculated by the linear combination algorithm. The experimental data are shown in solid lines 40 Figure 4.1b.1 Transmission electron micrographs of the Fe-TNT dried at (a) 373 K for 24 h, and Fe-TNS calcined at (b) 973 K for 3 h 45 Figure 4.1b.2 XRD patterns of the Fe-TNT dried at (a) 373 K for 24 h, and Fe-TNS calcined at (b) 573, (c) 773, and (d) 973 K for 3 h 46 Figure 4.1b.3 (A) Nitrogen adsorption-desorption isotherms and (B) pore size distribution curves of the Fe-TNT dried at (a) 373 K for 24 h, and Fe-TNS calcined at (b) 573, (c) 773, and (d) 973 K for 3 h 47 Figure 4.1b.4 Diffuse reflectance ultraviolet-visible spectra in (A) absorption and (B) Kubelka-Munk modes for the Fe-TNT dried at (a) 373 K for 24 h, and Fe-TNS calcined at (b) 573, (c) 773, and (d) 973 K for 3 h 49 Figure 4.1b.5 (A) Ti K-edge XANES spectra of the Fe-TNT dried at (a) 373 K for 24 h, and Fe-TNS calcined at (b) 573, (c) 773, and (d) 973 K for 3 h. (B) Dependence of the calcination temperature on fractions of the photoactive species (i.e., A1, A2, and A3) in the Fe-TNT and Fe-TNS. The Ti K-edge pre-XANES spectra of the Fe-TNT and Fe-TNS deconvoluted by the Gaussian-Lorentzian calculation are also shown in the corner of (A) 51 Figure 4.1b.6 XANES spectra of iron in the Fe-TNT dried at (a) 373 K for 24 h, and Fe-TNS calcined at (b) 573, (c) 773, and (d) 973 K for 3 h. The solid lines and empty circles denote the experimental data and the best fits, respectively. Filled symbols represent the fractions of the model compounds 52 Figure 4.1b.7 (A) Ti K-edge and (B) Fe K-edge EXAFS spectra of the Fe-TNT dried at (a) 373 K for 24 h, and Fe-TNS calcined at (b) 573, (c) 773, and (d) 973 K for 3 h 53 Figure 4.1b.8 Photocatalytic degradation of MB (20 ppm) under the irradiations of (A) ultraviolet A (6 W), (B) tungsten (20 W), and (C) ultraviolet A + tungsten for 12 h. Photocatalysis of MB (a) without a photocatalyst and is effected by the Fe-TNT dried at (b) 373 K for 24 h, and Fe-TNS calcined at (c) 573, (d) 773, and (e) 973 K for 3 h 56 Figure 4.1b.9 Photocatalytic degradation of MB (20 ppm) under the irradiation of AM 1.5 G (100 mW/cm2) for 4 h (a) without photocatalyst and effected by the Fe-TNT having the iron fraction of 10% and dried at (b) 373 K for 24 h, and Fe-TNS (10% of Fe) calcined at (c) 573, (d) 773, and (e) 973 K for 3 h 57 Figure 4.1b.10 (A) photocatalytic degradation of MB (20 ppm) and (B) the apparent rate constant. Photocatalysis of MB effected by the Fe-TNT and Fe-TNS under the irradiations of (a) ultraviolet A (6 W), (b) tungsten (20 W), and (c) ultraviolet A + tungsten for 12 h and (d) AM 1.5 G for 4 h 58 Figure 4.1b.11 Effect of the illuminated power of AM 1.5 G on the photocatalytic degradation of MB (20 ppm) with the Fe-TNT having the iron fraction of 10% and dried at (a) 373 K for 24 h, and Fe-TNS (10% of Fe) calcined at (b) 573, (c) 773, and (d) 973 K for 3 h 59 Figure 4.1b.12 In situ Fe K-edge XANES spectra of the Fe-TNT dried at (A) 373 K for 24 h, and Fe-TNS calcined at (B) 973 K for 3 h for photocatalytic degradation of MB (20 ppm) for (a) 0, (b) 30, (c) 60, (d) 90, and (e) 120 min. The dash lines denote the Fe K-edge XANES spectra of the Fe-TNT and Fe-TNS prior the photocatalysis of MB 61 Figure 4.2a.1 X-ray diffraction pattern of the MHS-TiO2 66 Figure 4.2a.2 (a) Transmission and (b) high-resolution transmission electron microscopic images of the MHS-TiO2. 67 Figure 4.2a.3 Diffuse reflectance ultraviolet-visible spectrum of the MHS-TiO2. Its Kubelka-Munk spectrum is also inserted in the upper corner 68 Figure 4.2a.4 The (a) XANES (and the component fitting) and (b) EXAFS (and the k3-weighted χ(k) curve) spectra of the MHS-TiO2 70 Figure 4.2a.5 Current-voltage (I-V) curves of the DSSC photoanode containing the MHS-TiO2 (solid line and triangle) and nano TiO2 (dash line and square) under the (a) light illumination and (b) dark condition 72 Figure 4.2b.1 XRD patterns of the nanosize TiO2 having crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm which are calculated using the Scherrer equation 77 Figure 4.2b.2 Raman spectra of the nanosize TiO2 having crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm 78 Figure 4.2b.3 Field-emission scanning (upper) and transmission (bottom) micrographs of the nanosize TiO2 having crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm. The SEM and TEM images shown in the corner represent the side-view of the photoanode thin films and the selected area electron diffraction patterns of the nanosize TiO2 80 Figure 4.2b.4 Schultz distributions of the nanosize TiO2 having crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm 81 Figure 4.2b.5 Nitrogen adsorption-desorption isotherms of the nanosize TiO2 having crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm 82 Figure 4.2b.6 Diffuse reflectance ultraviolet-visible spectra shown in (A) reflection, (B) absorption, and (C) Kubelka-Munk model of the nanosize TiO2 having crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm 85 Figure 4.2b.7 (A) Ti K-edge XANES spectra of the nanosize TiO2 having crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm and (B) dependence of the crystallite size for fractions of the photoactive species (A1, A2, and A3) in the nanosize TiO2. The Ti K-edge pre-XANES spectra of the nanosize TiO2 deconvoluted by the Gaussian-Lorentzian calculation are also shown in the corner of (A) 86 Figure 4.2b.8 k3-weighted χ(k) curves (left column) and their corresponding Fourier transforms (right column) of the nanosize TiO2 having crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm. The solid lines and circles denote to the experimental data and the best fits, respectively 87 Figure 4.2b.9 (A) Current density-voltage (J-V) curves of the DSSC utilizing photoanodes containing the nanosize TiO2 with crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm and (B) the crystallite size dependent photovoltaic performances for () VOC, () JSC, () FF, and () η 90 Figure 4.2b.10 (A) Incident photon-to-current conversion efficiency curves, (B) sunlight absorption spectra, and (C) absorbed photon-to-current conversion efficiency curves of the DSSC utilizing photoanodes containing the nanosize TiO2 with crystallite size of (a) 8, (b) 25, (c) 40, and (d) 80 nm. Inset in (C) shows the dependence of η and APCE on fractions of A2 in the nanosize TiO2 91 Figure 4.2c.1 Photocurrent density (J) of the DSSC containing (a) 0, (b) 1, and (c) 3% of the Cu@C nanoparticles (Cu size = 7 nm) dispersed in the molten salt 96 Figure 4.2c.2 Dependence of Cu sizes in the Cu@C nanoparticles ((a) 1 and (b) 3%) dispersed molten salt in the electrolyte on the short-circuit photocurrent density (JSC) and conversion efficiency (η) of the DSSC 97 Figure 4.2c.3 Dependence of fractions of Cu@C nanoparticles (Cu size = 7 nm) dispersed in the molten salt on the (a) short-circuit photocurrent density (JSC) and (b) conversion efficiency (η) of the DSSC 98 Figure 4.2c.4 The least-square fitted XANES spectra of copper in the Cu@C nanoparticles (Cu size = 7 nm) (fractions of (a) 0, (b) 1, (c) 3, (d) 5, and (e) 10%) dispersed in the molten salt 99 Figure 4.3a.1 XANES spectra of arsenic in the (a) As-HA/soil which was extracted with the RTILs: (b) [bmim][BF4] and (c) [bmim][PF6] at 298 K for 24 hrs. The solid lines and circles denote to the experimental data and the best fits, respectively 104 Figure 4.3a.2 Fourier transformed EXAFS spectra of arsenic in the (a) As-HA/soil which was extracted with the RTILs: (b) [bmim][BF4] and (c) [bmim][PF6] at 298 K for 24 hrs. The solid lines and circles denote to the experimental data and the best fits, respectively 105 Figure 4.3b.1 XRD patterns of the sludge dried at (a) 378 K for 16 hours and thermally stabilized at (b) 973, (c) 1173, and (d) 1373 K for four hours 110 Figure 4.3b.2 Component fitted XANES spectra of arsenics in the sludge thermally stabilized at (a) 973, (b) 1173, and (c) 1373 K 111 Figure 4.3b.3 k3-weighted χ(k) and Fourier transformed EXAFS spectra of arsenics in the sludge thermally stabilized at (a) 973, (b) 1173, and (c) 1373 K 113 Figure 4.3b.4 XANES spectra of calcium in the sludge thermally stabilized at (a) 973, (b) 1173, and (c) 1373 K. The solid and dotted lines represent the spectra of the sludge and model compound (Ca3(PO4)2), respectively 115 Figure 4.3b.5 XANES spectra of phosphorous in the sludge thermally stabilized at (a) 973, (b) 1173, and (c) 1373 K. The solid and dotted lines represent the spectra of the sludge and model compound (Ca3(PO4)2), respectively 116 Figure A1 Effect of the illuminated power of AM 1.5 G on the photocatalytic degradation of MB (20 ppm) effected by the Fe-TNT having the iron fractions of (a) and (d) 2.5%, (b) and (e) 5.0%, and (c) and (f) 10%. The solid and dash lines denote the Fe-TNT dried at (a) 373 K for 24 h, and calcined at (b) 573, (c) 773, and (d) 973 K for 3 h, respectively 130 Figure A2 Diffuse reflectance ultraviolet-visible spectra in (A) absorption and (B) Kubelka-Munk modes of the Fe-TNT (dried at 373 K for 24 h) having the iron fractions of (a) 2.5, (b) 5.0, and (c) 10% 131

    REFERENCES
    Adachi, M., Murata, Y., Okada, I., and Yoshikawa, S., “Formation of titania nanotubes and applications for dye-sensitized solar cells”, Journal of the Electrochemical Society, vol. 150, no. 8, pp. G488-G493, (2003).
    Angelomé, P. C., Andrini, L, Calvo, M. E., Requejo, F. G., Bilmes, S. A., and Soler-Illia, G. J. A. A., “Mesoporous anatase TiO2 films: Use of Ti K XANES for the quantification of the nanocrystalline character and substrate effects in the photocatalysis behavior”, Journal of Physical Chemistry C, vol. 111, no. 29, pp. 10886-10893, (2007).
    Arčon, I., Elteren, J. T. V., Glass, H. J., Kodre, A., and Šlejkovec, Z., “EXAFS and XANES study of arsenic in contaminated soil”, X-Ray Spectrometry, vol. 34, no. 5, pp. 435-438, (2005).
    Atienzar, P., Valencia, S., Corma, A., and Garcia, H., “Titanium-containing zeolites and microporous molecular sieves as photovoltaic solar cells”, ChemPhysChem, vol. 8, no. 7, pp. 1115-1119, (2007).
    Atienzar, P., Navarro, M., Corma, A., and Garcia, H., “Photovoltaic activity of Ti/MCM-41”, ChemPhysChem, vol. 10, no. 1, pp. 252-256, (2009).
    Berginc, M., Hočevar, M., Krašovec, U. O., Hinsch, A., Sastrawan, R., and Topič, M., “Ionic liquid-based electrolyte solidified with SiO2 nanoparticles for dye-sensitized solar cells”, Thin Solid Films, vol. 516, no. 14, pp. 4645-4650, (2008).
    Burke, I. T., Mayes, W. M., Peacock, C. L., Brown, A. P., Jarvis, A. P., and Gruiz, K., “Speciation of arsenic, chromium, and vanadium in red mud samples from the ajka spill site, Hungary”, Environmental Science and Technology, vol. 46, no. 6, pp. 3085-3092, (2012).
    Chang-Chien, C. Y., Hsu, C. H., Lee, T. Y., Liu, C. W., Wu, S. H., Lin, H. P., Tang, C. Y., and Lin, C. Y., “Synthesis of carbon and silica hollow spheres with mesoporous shells using polyethylene oxide/phenol formaldehyde polymer blend”, European Journal of Inorganic Chemistry, no. 24, pp. 3798-3804, (2007).
    Chen, L. X., Rajh, T., Wang, Z., and Thurnauer, M. C., “XAFS studies of surface structures of TiO2 nanoparticles and photocatalytic reduction of metal ions”, Journal of Physical Chemistry B, vol. 101, no. 50, pp. 10688-10697, (1997).
    Chen, L. X., Rajh, T., Jäger, W., Nedeljkovic, J., and Thurnauer, M. C., “X-ray absorption reveals surface structure of titanium dioxide nanoparticles”, Journal of Synchrotron Radiation, vol. 6, pp. 445-447, (1999).
    Chen, X. and Mao, S. S., “Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications”, Chemical Reviews, vol. 107, no. 7, pp. 2891-2959, (2007).
    Chen, C. L., Dong, C. L., and Rao, S. M., “Investigation of the valence states of Fe and Co in Fe1-xCoxOy (0<x<1) thin films by x-ray absorption spectroscopy”, Journal of Physics: Condensed Matter, vol. 20, no. 25, pp. 1-4, (2008).
    Chen, F. L., Sun, I. W., Wang, H. P., and Huang, C. H., “Nanosize copper dispersed ionic liquids as an electrolyte of new dye-sensitized solar cells”, Journal of Nanometerials, Article Number: 472950, pp. 1-4, (2009).
    Chen, F. L., Sun, I. W., Wang, H. P., and Huang, C. H., “A new electrolyte of dye-sensitized solar cells: Nanosize copper dispersed ionic liquids”, Electrochemistry, (submitted).
    Chiu, Y. M., Huang, C. H., Chang, F. C., Kang, H. Y., and Wang, H. P., “Recovery of copper from a wastewater for preparation of Cu@C nanoparticles”, Sustainable Environment Research, vol. 21, no. 4, pp. 279-282, (2011).
    Choong, T. S. Y., Chuah, T. G., Robiah, Y., Koay, F. L. G., and Azni, I., “Arsenic toxicity, health hazards and removal techniques from water: an overview”, Desalination, vol. 217, no. 1-3, pp. 139-166, (2007).
    Chou, T. P., Zhang, Q. F., Russo, B., Fryxell, G. E., and Cao G. Z., “Titania particle size effect on the overall performance of dye-sensitized solar cells”, Journal of Physical Chemistry C, vol. 111, no. 17, pp. 6296-6302, (2007).
    Diebold, U., “The surface science of titanium dioxide”, Surface Science Reports, vol. 48, no. X, 5-8. 53-229, (2003).
    Doong, R. A. and Chiang, L. F., “Coupled removal of organic compounds and heavy metals by titanate/carbon nanotubes composites”, Water Science and Technology, vol. 58, no. 10, pp. 1985-1992, (2008).
    Eveborn, D., Gustafsson, J. P., Hesterberg, D., and Hillier, S., “XANES speciation of P in environmental samples: An assessment of filter media for on-site wastewater treatment”, Environmental Science and Technology, vol. 43, no. 17, pp. 6515-6521, (2009).
    Farges, F., Brown, G. E., and Rehr, J. J., “Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: comparison between theory and experiment”, Physical Review B, vol. 56, no. 4, pp. 1809-1819, (1997).
    Fillinger, A. and Parkinson, B. A., “The adsorption behavior of a ruthenium-based sensitizing dye to nanocrystalline TiO2: Coverage effects on the external and internal sensitization quantum yields”, Journal of the Electrochemical Society, vol. 146, no. 12, pp. 4559-4564, (1999).
    Fujishima, A. and Honda, K., “Electrochemical photolysis of water at a semiconductor electrode”, Nature, vol. 238, no. 5358, pp. 37-38, (1972).
    Grätzel, M., “Photoelectrochemical cells”, Nature, vol. 414, no. 6861, pp. 338-344, (2001).
    Groothaert, M. H., Van Bokhoven, J. A., Battiston, A. A., Meckhuysen, B. M., and Schoonheydt, R. A., “Bis(μ-oxo) dicopper in Cu-ZSM-5 and its role in the decomposition of NO: a combined in situ XAFS, UV-Vis-Near-IR, and kinetic study”, Journal of the American Chemical Society, vol. 125, no. 25, pp. 7629-7640, (2003).
    Guo, C. S., Xu, J., He, Y., Zhang, Y., and Wang, Y. Q., “Photodegradation of rhodamine B and methyl orange over one-dimensional TiO2 catalysts under simulated solar irradiation”, Applied Surface Science, vol. 257, no. 8, pp. 3798-3803, (2011).
    Hagfeldt, A., Boschloo, G., Sun, L. C., Kloo, L., and Pettersson, H., “Dye-sensitized solar cells”, Chemical Reviews, vol. 110, no. 11, pp.6595-6663, (2010).
    He, H., Liu, C., Dubois, K. D., Jin, T., Louis, M. E., and Li, G. H., “Enhanced charge separation in nanostructured TiO2 materials for photocatalytic and photovoltaic applications”, Industrial and Engineering Chemistry Research, vol. 51, no. 37, pp. 11841-11849, (2012).
    Hoffmann, M. R., Martin, S. T., Choi, W. Y., and Bahnemann, D. W., “Environmental applications of semiconductor photocatalysis”, Chemical Reviews, vol. 95, no. 1, pp. 69-96, (1995).
    Hsiung, T. L., Wang, H. P., Lu, Y. M., and Hsiao, M. C., “In situ XANES studies of CuO/TiO2 thin films during photocatalytic degradation of CHCl3”, Radiation Physics and Chemistry, vol. 75, no. 11, pp. 2054-2057, (2006).
    Hsiung, T. L., Wang, H. P., and Lin, H. P., “Chemical structure of photocatalytic active sites in nanosize TiO2”, Journal of Physics and Chemistry of Solids, vol. 69, no. 2-3, pp. 383-385, (2008).
    Hsiung, T. L., Chang, F. C., Wang, H. P., and Liao, C. Y., “TiO2 active sites for photocatalytic degradation of trace CHCl3”, CLEAN-Soil, Air, Water, (Submitted).
    Hsu, H. H., Huang, J. H., Wang, H. P., and Jou, C. J. G., “Speciation of zinc in nano phosphor particulars abstracted in an ionic liquid”, Radiation Physics and Chemistry, vol. 75, no. 11, pp. 1930-1933, (2006).
    Huang, H. L., Wang, H. P., Wei, G. T., Sun, I. W., Huang, J. F., and Yang, Y. W., “Extraction of nanosize copper pollutants with an ionic liquid”, Environmental Science and Technology, vol. 40, no. 15, pp. 4761-4764, (2006).
    Huang, C. P., Pan, J. R., Lee, M. S., and Yen, S. M., “Treatment of high-level arsenic-containing wastewater by fluidized bed crystallization process”, Journal of Chemical Technology and Biotechnology, vol. 82, no. 3, pp. 289-294, (2007).
    Huang, S. C., Chang, F. C., Lo, S. L., Lee, M. Y., Wang, C. F., and Lin, J. D., “Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash”, Journal of Hazardous Materials, vol. 144, no. 1-2, pp. 52-58, (2007).
    Huang, C. H., Wang, H. P., Chang, J. E., and Eyring, E. M., “Synthesis of nanosize-controllable copper and its alloys in carbon shells”, Chemical Communication, no. 31, pp. 4663-4665, (2009).
    Huang, H. L., Wang, H. P., Eyring, E. M., and Chang, J. E., “Recovery of nanosize zinc from phosphor wastes with an ionic liquid”, Environmental Chemistry, vol. 6, no. 3, pp. 268-272, (2009).
    Huang, H. L., Wang, H. P., Eyring, E. M., and Chang, J. E., “Recovery of nanosize zinc from phosphor wastes with an ionic liquid”, Environmental Chemistry, vol. 6, no. 3, pp. 268-272, (2009).
    Jang, J. S., Choi, S. H., Kim, D. H., Jang, J. W., Lee, K. S., and Lee, J. S., “Enhanced photocatalytic hydrogen production from water-methanol solution by nickel intercalated into titanate nanotube”, Journal of Physical Chemistry C, vol. 113, no. 20, pp. 8990-8996, (2009).
    Jang, J. S., Kim, D. H., Choi, S. H., Jang, J. W., Kim, H. G., and Lee, J. S., “In-situ synthesis, local structure, photoelectrochemical property of Fe-intercalated titanate nanotube”, International Journal of Hydrogen Energy, vol. 37, no. 15, pp. 11081-11089, (2012).
    Jiu, J. T., Isoda, S., Adachi, M., and Wang, F. M., “Preparation of TiO2 nanocrystalline with 3-5 nm and application for dye-sensitized solar cell”, Journal of Photochemistry and Photobiology A: Chemistry, vol. 189, no. 2-3, pp. 314-321, (2007).
    Ju, X., Zhang, J., Wu, K. W., Hou, Y. J., Xie, P. H., and Zhang, B. W., “Evidence for charge of the interfacially local structure of titanium oxide/bis[(4,4’-carboxy-2,2’-bipyridine)(thiocyanato)] ruthenium nanocomposite”, Surface and Interface Analysis, vol. 32, no. 1, pp. 95-97, (2001).
    Kubo, T., Takeuchi, M., Matsuoka, M., Anpo, M., and Nakahira, A., “Morphologic control of Pt supported titanate nanotubes and their photocatalytic property”, Catalysis Letters, vol. 130, no. 1-2, pp. 28-36, (2009).
    Kang, H. Y., and Wang, H. P., “Cu@C dispersed TiO2 for dye-sensitized solar cell photoanodes”, Applied Energy, vol. 100, pp. 144-147, (2012).
    Katakabe, T., Kawano, R., and Watanabe, M., “Acceleration of redox diffusion and charge-transfer rates in an ionic liquid with nanoparticle addition”, Electrochemical and Solid State Letters, vol. 10, no. 6, pp. F23-F25, (2007).
    Kato, T., Kado, T., Tanaka, S., Okazaki, A., and Hayase, S., “Quasi-solid dye-sensitized solar cells containing nanoparticles modified with ionic liquid-type molecules”, Journal of the Electrochemical Society, vol. 153, no. 3, pp. A626-A630, (2006).
    Khodadoust, A. P., Chandrasekaran, S., and Dionysiou, D. D., “Preliminary assessment of imidazolium-based room-temperature ionic liquids for extraction of organic contaminants from soils”, Environmental Science and Technology, vol. 40, no. 7, pp. 2339-2345, (2006).
    Korte, N. E. and Fernando, Q., “A review of arsenic(III) in groundwater”, Critical Review in Environmental Control, vol. 21, no. 1, pp. 1-39, (1991).
    Lan, Z., Wu, J. H., Wang, D. B., Hao, S. C., Lin, J. M., and Huang, Y. F., “Quasi-solid-state dye-sensitized solar cells based on a sol-gel organic-inorganic composite electrolyte containing an organic iodide salt”, Solar Energy, vol. 81, no. 1, pp. 117-122, (2007).
    Li, Y. X., Hagen, J., Schaffrath, W., Otschik, P., and Haarer, D., “Titanium dioxide films for photovoltaic cells derived from a sol-gel process”, Solar Energy Materials and Solar Cells, vol. 56, no. 2, pp.167-174, (1999).
    Liao, C. Y., Wang, H. P., Chen, F. L., Huang, C. H., and Fukushima, Y., “Applications of Cu@C nanoparticles in new dye-sensitized solar cells”, Journal of Nanometerials, Article Number: 698501, pp. 1-4, (2009).
    Lin, K. S., Lo, C. C., and Chang, N. B., “Synthesis and characterization of titania nanotubes for dye wastewater treatment”, Nano, vol. 3, no. 4, pp. 257-262, (2008).
    Linsebigler, A. L., Lu, G., and Yates, Jr, J. T., “Photocatalysis on TiO2 surfaces: Principle, mechanisms, and selected results”, Chemical Reviews, vol. 95, no. 3, pp. 735-758, (1995).
    Liu, S. H. and Wang, H. P., “Photocatalytic generation of hydrogen on Zr-MCM-41”, International Journal of Hydrogen Energy, vol. 27, no. 9, pp. 859-862, (2002).
    Liu, S. H., Wang, H. P., Huang, C. H., and Hsiung, T. L., “In situ X-ray absorption spectroscopic studies of copper in a copper-rich sludge during electrokinetic treatments”, Journal of Synchrotron Radiation, vol. 17, pp. 202-206, (2010).
    Luca, V., Djajanti, S., and Howe, R. F., “Structural and electronic properties of sol-gel titanium oxides studied by X-ray absorption spectroscopy”, Journal Physical Chemistry B, vol. 102, no. 52, pp. 10650-10657, (1998).
    Luca, V., “Comparison of size-dependent structural and electronic properties of anatase and rutile nanoparticles”, Journal of Physical Chemistry C, vol. 113, no. 16, pp. 6367-6380, (2009).
    Mor, G. K., Shankar, K., Paulose, M., Varghese, O. K., and Grimes, C. A., “Enhanced photocleavage of water using titania nanotube arrays”, Nano Letters, vol. 5, no. 1, pp. 191-195, (2005).
    Murakoshi, K., Kano, G., Wada, Y., Yanagida, S., Miyazaki, H., Matsumoto, M., and Murasawa, S., “Importance of binding states between photosensitizing molecules and the TiO2 surface for efficiency in a dye-sensitized solar cell”, Journal of Electroanalytical Chemistry, vol. 396, no. 1-2, pp. 27-34, (1995).
    Ndiba, P., Axe, L., and Boonfueng, T., “Heavy metal immobilization through phosphate and thermal treatment of dredged sediments”, Environmental Science and Technology, vol. 42, no. 3, pp. 920-926, (2008).
    Nian, J. N., Chen, S. A., Tsai, C. C., and Teng, H. S., “Structural feature and catalytic performance of Cu species distributed over TiO2 nanotubes”, Journal of Physical Chemistry B, vol. 110, no. 51, pp. 25817-25824, (2006).
    Nilsen, M. H., Nordhei, C., Ramstad, A. L., Nicholson, D. G., Poliakoff, M., and Cabanas, A., “XAS (XANES and EXAFS) investigations of nanoparticulate ferrites synthesized continuously in near critical and supercritical water”, Journal of Physical Chemistry C, vol. 111, no. 17, pp. 6252-6262, (2007).
    O’Hayre, R., Nanu, M., Schoonman, J., Goossens, A., Wang, Q., and Grätzel, M., “The influence of TiO2 particle size in TiO2/CuInS2 nanocomposite solar cells”, Advanced Functional Materials, vol. 16, no. 12, pp. 1566-1576, (2006).
    Ohsaka, T., “Temperature-dependence of the Raman-spectrum in anatase TiO2”, Journal of the Physical Society of Japan, vol. 48, no. 5, pp. 1661-1668, (1980).
    O’Regan, B. and Grätzel, M., “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TIO2 films”, Nature, vol. 353, no. 6346, pp. 737-740, (1991).
    Parga, J. R., Cocke, D. L., Valenzuela, J. L., Gomes, J. A., Kesmez, M., Irwin, G., Moreno, H., and Weir, M., “Arsenic removal via electrocoagulation from heavy metal contaminated groundwater in La Comarca Lagunera México” Journal of Hazardous Materials, vol. 124, no. 1-3, pp. 247-254, (2005).
    Pei, Y. C., Wang, J. J., Xuan, X. P., Fan, J., and Fan, M. H., “Factors affecting ionic liquids based removal of anionic dyes from water”, Environmental Science and Technology, vol. 41, no. 14, pp. 5090-5095, (2007).
    Peng, C. Y., Kang. H. Y., Liao, C. Y., Wang, H. P., and Wang, H. C., “Interactions of arsenic and humic acid on Al2O3”, Arsenic in Geosphere and Human Diseases, CRC Press, Taylor & Francis Group, New York, (2010).
    Rajh, T., Nedeljkovic, J. M., Chen, L. X., Poluektov, O., and Thurnauer, M. C., “Improving optical and charge separation properties of nanocrystalline TiO2 by surface modification with vitamin C”, Journal of Physical Chemistry B, vol. 103, no. 18, pp. 3515-3519, (1999).
    Ravel, B. and Newville, M., “ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT”, Journal of Synchrotron Radiation, vol. 12, pp. 537-541, (2005).
    Serpone, N. and Pelizzetti, E., “Photocatalysis: Fundamentals and applications”, Wiley Interscience, New Work, (1989).
    Simamora, A. J., Hsiung, T. L., Chang, F. C., Yang, T. C., Liao, C. Y., and Wang, H. P., “Photocatalytic splitting of seawater and degradation of methylene blue on CuO/nano TiO2”, International Journal of Hydrogen Energy, vol. 37, no. 18, pp. 13855-13858, (2012).
    Smestad, G. P. and Grätzel, M. “Demonstrating electron transfer and nanotechnology: A natural dye-sensitized nanocrystalline energy converter”, Journal of Chemical Education, vol. 75, no. 6, pp. 752-756, (1998).
    Spurr R. A. and Myers, H., “Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer”, Analytical Chemistry, vol. 29, no. 5, pp. 760-762, (1957).
    Tang, H., Levy, F., and Berger, H., “Urbach tail of anatase TiO2”, Physical Review B, vol. 52, no. 11, pp. 7771-7774, (1995).
    Tokudome, H. and Miyauchi, M., “Titanate nanotube thin films via alternate layer deposition”, Chemical Communication, no. 8, pp. 958-959, (2004).
    Tsai, C. K., Kang, H. Y., Hong, C. I., Huang, C. H., Chang, F. C., and Wang, H. P., “Preparation of hollow spherical carbon nanocages”, Journal of Nanoparticle Research, vol. 14, no. 12, pp. 1315-1322, (2012).
    Usui, H., Matsui, H., Tanabe, N., and Yanagida, S., “Improved dye-sensitized solar cells using ionic nanocomposite gel electrolytes”, Journal of Photochemistry and Photobiology A-Chemistry, vol. 164, no. 1-3, pp. 97-101, (2004).
    Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A., Davis Jr., J. H., and Rogers, R. D., “Task-specific ionic liquids for the extraction of metal ions from aqueous solutions”, Chemical Communications, no. 1, pp. 135-136, (2001).
    Visser, A. E., Swatloski, R. P., Reichert, W. M., Mayton, R., Sheff, S., Wierzbicki, A., Davis Jr., J. H., and Rogers, R. D., “Task-specific ionic liquids incorporating novel cations for the coordination and extraction of Hg2+ and Cd2+: Synthesis, characterization, and extraction studies”, Environmental Science and Technology, vol. 36, no. 11, pp. 2523-2529, (2002).
    Wang, H. C., Wang, H. P., Peng, C. Y., Liu, H. L., and Huang, H. L., “X-ray absorption spectroscopic studies of As-humic substances in the ground water of the Taiwan blackfoot disease area”, Bulletin of Environmental Contamination and Toxicology, vol. 71, no. 4, pp. 798-803, (2003).
    Wang, P., Zakeeruddin, S. M., Comte, P., Exnar, I., and Grätzel, M., “Gelation of ionic liquid-based electrolytes with silica nanoparticles for quasi-solid-state dye-sensitized solar cells”, Journal of the American Chemical Society, vol. 125, no. 5, pp. 1166-1167, (2003).
    Wang, L. S., Xiao, M. W., Huang, X. J., and Wu, Y. D., “Synthesis, characterization, and photocatalytic activities of titanate nanotubes surface-decorated by zinc oxide nanoparticles”, Journal of Hazardous Materials, vol. 161, no. 1, pp. 49-54, (2009).
    Wang, Y., Morin, G., Ona-Nguema, G., Juillot, F., Guyot, F., Calas, G., and Brown, Jr G. E., “Evidence for different surface speciation of arsenite and arsenate on green rust: An EXAFS and XANES study”, Environmental Science and Technology, vol. 44, no. 1, pp. 109-115, (2010).
    Wei, G. T., Yang, Z. S., and Chen, C. J., “Room temperature ionic liquid as a novel medium for liquid/liquid extraction of metal ions”, Analytica Chimica Acta, vol. 488, no. 2, pp. 183-192, (2003).
    Wei, M. D., Konishi, Y., Zhou, H. S., Sugihara, H., and Arakawa, H., “Utilization of titanate nanotubes as an electrode material in dye-sensitized solar cells”, Journal of the Electrochemical Society, vol. 153, no. 6, pp. A1232-A1236, (2006).
    Wilkes, J. S., “A short history of ionic liquids - from molten salts to neoteric solvents”, Green Chemistry, vol. 4, no. 2, pp. 73-80, (2002).
    Wu, Z. Y., Ouvrard, G., Gressier, P., and Natoli, C. R., “Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra”, Physical Review B, vol. 55, no. 16, pp. 10382-10391, (1997).
    Xu, S. P., Du, A. J. H., Liu, J. C., Ng, J. W., and Sun, D. D. L., “Highly efficient CuO incorporated TiO2 nanotube photocatalyst for hydrogen production from water”, International Journal of Hydrogen Energy, vol. 36, no. 11, pp. 6560-6568, (2011).
    Xue, B. F., Wang, H. X., Hu, Y. S., Li, H., Wang, Z. X., Meng, Q. B., Huang, X. J., Chen, L. Q., Sato, O., and Fujishima, A., “Highly efficient dye-sensitized solar cells using a composite electrolyte”, Comptes Rendus Chimie, vol. 9, no. 5-6, pp. 627-630, (2006).
    Zhang, Q. L., Du, L. C., Weng, Y. X., Wang, L., Chen, H. Y., and Li, J. Q., “Particle-size-dependent distribution of carboxylate adsorption sites on TiO2 nanoparticle surfaces: Insights into the surface modification of nanostructured TiO2 electrodes”, Journal of Physical Chemistry B, vol. 108, no. 39, pp. 15077-15083, (2004).
    Zhang, Y. J., Wang, Y. C., Yan, W., Li, T., Li, S., and Hu, Y. R., “Synthesis of Cr2O3/TNTs nanocomposite and its photocatalytic hydrogen generation under visible light irradiation”, Applied Surface Science, vol. 255, no. 23, pp. 9508-9511, (2009).
    Ziόłzek, M., Martín, C., Cohen, B., Garcia, H., and Douhal, A., “Virtues and vices of an organic dye and Ti-doped MCM-41 based dye-sensitized solar cells”, Journal of Physical Chemistry C, vol. 115, no. 47, pp. 23642-23650, (2011).
    Zubavichus, Y. V., Slovokhotov, Y. L., Nazeeruddin, M. K., Zakeeruddin, S. M., Grätzel, M., and Shklover, V., “Structural characterization of solar cell prototypes based on nanocrystalline TiO2 anatase sensitized with Ru complexes. X-ray diffraction, XPS, and XAFS spectroscopy study”, Chemistry of Materials, vol. 14, no. 8, pp. 3556-3563, (2002).

    下載圖示 校內:2018-08-14公開
    校外:2018-08-14公開
    QR CODE