| 研究生: |
黃智杰 Huang, Chih-Chieh |
|---|---|
| 論文名稱: |
原生氧化層與孔洞對奈米鋁金屬誘發結晶矽之影響 The effects of native oxide layer and voids on the nano aluminum induced crystallizations |
| 指導教授: |
林仁輝
Lin, Jen-Fin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2010 |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 奈米鋁金屬誘發結晶 、非晶矽 、緻密性 、原生氧化 、山丘狀 、連續濺鍍 、三明治結構 、應力誘發矽結晶 |
| 外文關鍵詞: | nano aluminum induced crystallizations, amorphous silicon, compactness, native oxide, hillock dome-shaped, continuous sputtering, sandwich structure, stress induced crystallization |
| 相關次數: | 點閱:190 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以奈米鋁金屬誘發結晶矽的方法,探討非晶矽薄膜緻密性與介面原生氧化層對薄膜之效應。
透過不同速率沉積的非晶矽薄膜,了解誘發不同非晶矽結晶的條件,並利用連續濺鍍方式去除介面原生氧化層,討論誘發後結晶型態、薄膜結構與薄膜電性。
薄膜沉積速率快速所製作的非晶矽薄膜,堆疊緻密性較低,導致薄膜結構鬆散,僅需較低能量就可打斷非晶矽鍵結,使鋁/矽開始互相擴散產生共晶,誘發出結晶矽。薄膜製作過程中,矽膜表面生長的原生氧化層,阻礙了鋁/矽相互擴散,需提高能量才能誘發。亦造成薄膜表面出現山丘(Hillocks)狀特徵形貌,誘發後鋁原子擴散不均與矽膜內鋁元素的濃度提高,使得載子移動率無法提高。使用連續濺鍍方式沉積薄膜,與低濃度鋁誘發結晶矽,得到鋁原子在矽膜中有一定的擴散深度,但不均勻擴散於矽膜之中,造成載子濃度過高。創新運用矽/鋁/矽三明治結構,發現鋁/矽薄膜厚度差異越大,誘發後薄膜產生的孔洞越少。鋁金屬誘發結晶矽研究中,證實鋁晶粒移動造成推擠,應力誘發矽結晶。並得到80.1cm2/Vs載子移動率與1.5×1018cm-3載子濃度,確實有效提升誘發後薄膜的性質。
This research use the method of nano aluminum induced crystallizations to discuss the effects of the compactness of amorphous silicon thin film and the interface native oxide layer on thin film.
Through different rates of deposition of amorphous silicon thin film to understand the crystallization of amorphous silicon induced by different conditions and using a continuous sputtering to remove native oxide interface for discussing the state of induced crystallization, thin film structure and electrical properties of thin films.
The amorphous silicon thin film which manufactured from high deposition rate makes the compactness low and causes the membrane structure loose only need the low energy can be possible to break the bonds of amorphous silicon. It promotes the diffusion mutually between Al/Si and then produces eutectic induces the crystallization silicon.
The native oxide layer which grows onto the a-Si thin film surface within the thin film manufacture process can be the hindrance of Al/Si inter-diffusion. It must enhance the energy while inducing and after causing the thin film surface presents the hillock dome-shaped characteristic appearance. It also makes the Al atomic diffusion to be uneven and high concentration in thin film. These cause to carrier mobility can’t be enhance.
From using a continuous sputtering and low Al concentration induces the crystallizations know that the Al atom has certain diffusion depth in Si thin film. But it usually doesn’t diffuse uniformly so that carrier mobility is excessively high.
By using the innovative Si/Al/Si sandwich structure, discovered the bigger thickness difference between Al/Si film is, the less voids produced after induces crystallizations are. In aluminum induced crystallization, we confirmed that the stress induced crystallization is because of the movement of aluminum grain cause to squeeze Si.
Finally I promote the thin film’s quality effectively which has carrier mobility 80.1cm2/Vs and concentration 1.5×1018cm-3.
1. 林明獻 “太陽電池技術入門” 全華圖書股份有限公司, (2007)
2. 羅運俊, 何梓年 & 王長貴, “太陽能發電技術與應用,” 新文京開發出版股份有限公司, (2007)
3. D. C. Raynolds, G. Leies, L. L. Antes and R. E. Marburge, “Photovoltaic effect in cadmium sulfide,” Physical Review, Vol. 96, pp. 533-534, (1954)
4. C. Spinella and Salvatore Lombardo, “Crystal grain nucleation in amorphous silicon,” Journal of Applied Physics, Vol. 84, no. 10, pp. 5383-5414, (1998)
5. S. lm. James, H. J. Kim and M. O. Thompson, “Phase transformation mechanisms involved in excimer laser crystallization of amporphous silicon films,” Apply Physics Letter, Vol. 63, no. 14, pp. 1969-1971, (1993)
6. F. A. Quli and J. Singh, “Transmission electron microscopy studies of metal-induced crystallization of amorphous silicon,” Materials Science and Engineering, Vol. 67, no. 3, pp. 139-144, (1999)
7. A. M. Al-dhafiri, H. A. El-Jammal, A. Al-Shariah, H. A. Naseem and W.D. Brown, “Influence of nitrogen trifluoride and nitrogen plasma treatment on the formation of hillocks during aluminum induced crystallization of a-Si:H,” Thin Solid Films, Vol. 422, pp. 14-19, (2002)
8. 楊德仁 & 顏怡文 “太陽能電池材料” 五南圖書出版股份有限公司, (2008)
9. W. D. Callister, Jr., “Materials Science and Engineering: An Introduction, 6th Edition,” John Wiley & Sons, Inc. (2003)
10. O. Nast, S. Brehme, D. H. Neuhaus, S. R. Wenham, “Polycrystalline silicon thin films on Glass by aluminum-induced crystallization,” IEEE Transactions on Electron Devices, Vol. 46, no. 10, pp. 2062-2068, (1999)
11. J. Schneider, R. Heimburger, J. Klein, M. Muske, S. Gall and W. Fuhs, “Aluminum-induced crystallization of amorphous silicon: Influence of temperature profiles,” Thin Solid Films, Vol. 487, no. 1-2, pp. 107-112, (2005)
12. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders and S. B. Warner, “The science and design of engineering materials,” Mc-Graw Hill Science 2 edition, (2000)
13. O. Ebil, R. Aparicio, S. Hazra, R. W. Birkmire and E. Sutter, “Deposition and structural characterization of poly-Si thin films on Al-coated Glass substrates using hot-wire chemical vapor deposition,” Thin Solid Films, Vol. 430, no. 1-2, pp. 120-124, (2003)
14. J. A. Tsai, A. T. Tang, T. Noguchi and R. Reif, “Effects of Ge on material and electrical properties of polycrystalline SixGe1-x thin-film transistors,” Journal of Electrochemical Society, Vol. 142, no. 9, pp. 3220-3225, (1995)
15. J. F. Nijs, “Advanced silicon and semiconducting silicon-alloy based materials and Devices,” Taylor & Francis, (1994)
16. K. Niira, H. Senta, H. Hakuma, M. Komoda, H. Okui, K. Fukui, H. Arimune and K. Shirasawa, “Thin film poly-Si solar cells using PECVD and Cat-CVD with light confinement structure by RIE,” Solar Energy Materail Society, Vol. 74, no. 1, pp. 247-253, (2002)
17. T. Aoyama, G. Kawachi, N. Konishi, T. Suzuki, Y. Okajima and K. Miyata, ”Crystallization of LPCVD silicon films by low temperature annealing,” Journal of Electrochemical Society, Vol. 136, no. 4, pp. 1169-1173, (1989)
18. H. Kim, G. Lee, D. Kim and S. H. Lee, “A study of polycrystalline silicon thin films as a seed layer in liquid phase epitaxy using aluminum-induced crystallization,” Current Applied Physics, Vol. 2, no. 2, pp. 129-133, (2002)
19. G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong and M. A. Gasan, “Al induced crystallization of a-Si,” Journal of Applied Physics, Vol. 69, no. 9, pp. 6394-6399, (1991)
20. S. M. Choe, J. A. Ahn and O. Kim, “Fabrication of laser-annealed poly-TFT by forming a SixGe1-x thermal barrier,” IEEE Electron Device Letters, Vol. 22, no. 3, pp. 121-123, (2001)
21. S. W. Russell, J. Li and J. W. Mayer. “In-situ observation of fractal growth during a-Si crystallization in a Cu3Si matrix,” Journal of Applied Physics, Vol. 70, no. 9, pp. 5153-5155, (1991)
22. L. Hultman, A. Robertson and H. T. G. Hentzell, “Crystallization of amorphous silicon during thin-film gold reaction,” Journal of Applied Physics, Vol. 62, no. 9, pp. 3647-3655, (1987)
23. B. Bian, J. Yie, B. Li and Z. Wu, “Fractal formation in a-Si:H/Ag/a-Si:H films after annealing,” Journal of Applied Physics, Vol. 73, no. 11, pp. 7402-7406, (1993)
24. Y. Kawazu, H. Kudo, S. Onari and T. Arai, “Low-temperature crystallization of hydrogenated amorphous silicon induced by nickel silicide formation,” Japanese Journal of Applied Physics, Vol. 29, no. 12, pp. 2698-2704, (1990)
25. M. S. Haque, H. A. Naseem and W. D. Brown, “Interaction of aluminum with hydrogenated amorphous silicon at low temperatures,” Journal of Applied Physics, Vol. 75, no. 8, pp. 3928-3935, (1994)
26. M. S. Haque, H. A. Naseem and W. D. Brown, “Aluminum-induced degradation and failure mechanisms of a-Si:H solar cells,” Solar Energy Materials and Solar Cells, Vol. 41-42, pp. 543-555, (1996)
27. 莊達人, “VLSI製造技術,” 高立圖書有限公司, (2003)
28. P. I. Widenborg and A. G. Aberle, “Surface morphology of poly-Si films made by aluminum-induced crystallization on Glass substrates,” Journal of Crystal Growth, Vol. 242, no. 3-4, pp. 270-282, (2002)
29. M. S. Ashtikar and G. L. Sharma, “Silicide-mediated low temperature crystallization of hydrogenated amorphous silicon in contact with aluminum,” Journal of Applied Physics, Vol. 78, no.2, pp. 913-918, (1995)
30. 陳志強, “LTPS低溫複晶矽顯示器技術,” 全華科技圖書公司, (2004)
31. A. G. Aberle, P. I. Widenborg, A. Straub and N. P. Harder, “Polycrystalline silicon on Glass thin-film solar cell research at UNSW using the seed layer concept,” 3rd World Conference on Photovoltaic Energy Conversion, pp.1194-1197, (2003)
32. H. Y. Kim, B. Kim, J. U. Bae, K. J. H, “Kinetics of electric-field-enhanced crystallization of amorphous silicon in contact with Ni catalyst,” Applied Physics Letter, Vol. 81, no. 27, pp.5180-5182, (2002)
33. J. Kim and D. Kim, “Study of aluminum-induced crystallization process using sputtered Al layer,” 3rd World Conference on Photovoltaic Energy Conversion, Vol. B, pp.1248-1250, (2003)
34. O. Prache, “Active matrix molecular OLED microdisplays,” Dsiplays, Vol. 22, no. 2, pp. 49-56, (2001)
35. M. Zou, L. Cai, H. Wang and J. Xu, “Silicon nanowires by aluminum-induced crystallization of amorphous silicon,” Electrochemical and Solid-State Letters, Vol. 9, no. 2, pp. 31-33, (2006)
36. M. Zou, L. Cai and S. P. Dorey, “Self-assembly of aluminum-induced silicon nanowires,” Electrochemical and Solid-State Letters, Vol. 9, no. 4, pp.133-135, (2006)
37. 白木 靖寬, 吉田 貞史 編著 & 王建義 編譯, "薄膜工程學," 全華科技圖書股份有限公司, (2006)
38. A. Matsuda, “Formation kinetics and control of microcrystallite in μc-Si:H from glow discharge plasma,” Journal of Non-Crystalline Solids, Vol. 59-60, no. 2, pp. 767-774, (1993)
39. K. Yamamoto, “Very thin film crystalline silicon solar cells on Glass substrate fabricated at low temperature,” IEEE Transactions on Electron Devices, Vol. 46, no. 10, pp. 2041-2047, (1999)
40. 陳志慶, 黃偉欽 & 梁美蘭, “High-Resolution Thermal Field Emission Scanning Electron Microscopy ,” NCKU Micro-Nano Technology Center, pp.1-37, (2008)
41. M. A. Barghouti, H. A. Safe, H. Naseem, W. D. Brown and M. A. Jassim, “The effects of an oxide layer on the kinetics of metal-induced crystallization of a-Si:H,” Journal of the Electrochemical Society, Vol. 152, no. 5, pp.354-360, (2005)
42. G. E. Dieter, “Mechanical Metallurgy,” McGraw-Hill, (1988)
43. 汪建民 “材料分析” 中國材料科學學會, (1998)
44. 戴寶通和鄭晃忠 “太陽能電池技術手冊” 台灣電子材料與元件, (2008)
45. S. Kikuchi, “Diffraction of Cathode Rays by Mica,” Japanese Journal of Physics, Vol. 5, pp. 83-96, (1928)
46. J. Y. Wang, D. He, Y. H. Zhao, and E. J. Mittemeijer, “Wetting and crystallization at grain boundaries: Origin of aluminum-induced crystallization of amorphous silicon,” Applied Physics Letters, Vol. 88, pp. 061910-1-061910-3, (2006)